We analyze asymptotically almost periodic solutions for a class of (semilinear) fractional relaxation inclusions with Stepanov almost periodic coefficients. As auxiliary tools, we use subordination principles, fixed point theorems and the well known results on the generation of infinitely differentiable degenerate semigroups with removable singularities at zero. Our results are well illustrated and seem to be not considered elsewhere even for fractional relaxation equations with almost sectorial operators.