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ON GEOMETRIC FORMALITY OF

RATIONALLY ELLIPTIC MANIFOLDS

IN DIMENSIONS 6 AND 7

Svjetlana Terzić

Abstract. We discuss the question of geometric formality for rationally el-
liptic manifolds of dimension 6 and 7. We prove that a geometrically formal
six-dimensional biquotient with b2 = 3 has the real cohomology of a symmet-
ric space. We also show that a rationally hyperbolic six-dimensional manifold
with b2 6 2 and b3 = 0 can not be geometrically formal. As it follows from
their real homotopy classification, the seven-dimensional geometrically formal
rationally elliptic manifolds have the real cohomology of symmetric spaces as
well.

1. Introduction

The notion of geometric formality of a closed compact manifold M is defined by
an existence of a metric g on M such that the exterior product of harmonic forms
are again harmonic forms. It is proved in [15] that a geometrically formal mani-
fold of dimension 6 4 has the real cohomology of a symmetric space. Afterwards
this notion has been further studied and there were provided many examples of
non-geometrically formal homogeneous spaces [17, 18, 11], but also the examples
of geometrically formal homogeneous spaces which are not homotopy symmetric
spaces [18]. The notion of geometric formality has also been studied from the
point of view of its relation to the different positive curvatures [2, 1].

In this note we investigate the question of geometric formality of rationally
elliptic manifolds in small dimensions. The reason for considering rationally elliptic
manifolds is that a rationally hyperbolic manifold has many relations in its real
cohomology algebra comparing to the number of generators, which very often may
appear as an obstruction to geometric formality. In addition, the same estimation
on the Betti numbers that holds for the rationally elliptic manifolds [8] holds for
the geometrically formal manifolds as well [15].

In Subsubection 2.2.1 and Section 4 we show that, from the classification of
the rationally elliptic manifolds in dimensions five and seven it directly follows that
in these dimensions any geometrically formal manifold has the real cohomology of

2010 Mathematics Subject Classification: 53C25, 53C30.
Key words and phrases: geometric formality, rationally elliptic spaces.

211



212 TERZIĆ

a symmetric space. In Section 3 we consider the biquotients of dimension six for
which b2 = 3 and prove that any such geometrically formal biquotient has the real
cohomology algebra of a symmetric space. We also show that a rationally hyperbolic
six-dimensional manifold with b2 6 2 and b3 = 0 can not be geometrically formal.

2. Rationally elliptic manifolds and geometric formality

2.1. Notion of geometric formality. Let (M, g) be a closed oriented Rie-
mannian manifold and Ω∗(M) its de Rham algebra of differential forms. A differ-
ential form ω ∈ Ωk(M) is said to be harmonic if ∆ω = dδω + δdω = (d + δ)2ω = 0,
where d is the exterior derivative, δ is coderivative and ∆ is the Laplace-de Rham
operator. To recall this in more detail, let [, ] : Ωk

x(M)→ R be the scalar product
in the space of differential forms at TxM defined by

[αx, βx] =
1

k!

∑

i1,...,ik,j1,...,jk

gi1j1 · · · gikjk ai1...ik
bj1...jk

,

where α = 1
k!

∑

i1,...,ik

ai1...ik
dxi1 ∧· · ·∧dxik and β = 1

k!

∑

j1,...,jk

bj1...jk
dxj1 ∧· · ·∧dxjk .

The scalar product on the space Ωk(M) is defined by 〈α, β〉 =
∫

M
[αx, βx] d volg .

The Hodge star operator ∗ : Ωk(M)→ Ωn−k(M), n = dim M , is defined by

αx ∧ (∗β)x = [αx, βx] d volgx
.

Then for α ∈ Ωk−1 and β ∈ Ωk it holds 〈dα, β〉 = (−1)k〈α, (∗−1d∗)β〉. It implies
that the operator δ = (−1)k ∗−1 d∗ is adjoint to d in the space of k-forms.

Denote by Υ(M, g) ⊆ Ω∗(M) the graded linear subspace of harmonic forms. It
is well known that any harmonic form is closed and no harmonic form is exact. In
addition, the Hodge theorem states that any cohomology class [ω] ∈ H∗(M,R) con-
tains unique harmonic representative. Thus, there exists an isomorphism between
the graded vector spaces Υ(M, g) and H∗(M,R).

It naturally arises the question about the existence of the metric g on M such
that Υ(M, g) has an algebra structure under the exterior product ∧. For such a
metric the algebras (Υ(M, g),∧) and (H∗(M,R),∧) are isomorphic. This is defined
in [15]:

Definition 2.1. A Riemannian metric g on M is said to be formal if the
exterior product of its harmonic forms are harmonic forms.

Definition 2.2. A closed Riemannian manifold M is said to be geometrically
formal if it admits a formal Riemannian metric.

The following examples of geometrically formal manifolds are well known: the
real cohomology spheres are geometrically formal since they have, up to constant,
just one harmonic form; the symmetric spaces G/H are geometrically formal for
an invariant metric g. The second one follows from the observations [6] that any
G-invariant form on a symmetric space G/H is closed and none is exact. In addi-
tion, invariant forms ΩG(G/H) form an algebra under the exterior product. Since
harmonic forms for an invariant metric g are G-invariant, it follows that ΩG(G/H)
coincides with Υ(G/H, g) and, thus, (Υ(G/H, g),∧) is an algebra.
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We found useful to note the following:

Lemma 2.1. Assume that the manifold M is not geometrically formal. Then

the product metric g = gM×gN on M×N can not be formal for any closed manifold

N and any Riemannian metrics gM on M and gN on N .

Proof. Assume that product metric g on M ×N is a formal metric for some
closed manifold N and some Riemannian metrics gM on M and gN on N . We
claim that the metric gM is also formal. To see that let α be a harmonic form on
M relative to the metric gM and let ∗M be the corresponding star operator. Then
α is a harmonic form on M ×N relative to the metric g. Namely, since TxM and
TxN are orthogonal for the metric g we have that [β(x,y), α(x,y)] = [βM

(x,y), αx], where

α(x,y) = αx and βM
(x,y) is the restriction of the from β(x,y) on TxM ⊂ T(x,y)(M×N).

More precisely, if

β(x,y) =
1

k!

∑

j1,...,jk

k
∑

s=0

bj1...jk
(x, y)dxj1 ∧ · · · dxjs ∧ dyjs+1 ∧ · · · dyjk ,

then

βM
(x,y) =

1

k!

∑

j1,...,jk

bj1...jk
(x, y)dxj1 ∧ · · · ∧ dxjk .

Since

β(x,y) ∧ (∗M α)x ∧ (volN )y = βM
(x,y) ∧ (∗Mα)x ∧ (volN )y

= [βM
(x,y), αx](volM )x(volN )y = [β(x,y), α(x,y)](volM×N )(x,y),

we obtain that on M × N it holds ∗α = ∗Mα ∧ volN . It further implies that
d(∗α) = d(∗M α) ∧ volN ± ∗M α ∧ d(volN ) = 0, since obviously d(volN ) = 0 and
d(∗M α) = 0. Therefore if α and β are harmonic forms on M then α ∧ β is a
harmonic form on M × N . The restriction of α ∧ β on M is the same form, so it
follows that α ∧ β is a harmonic form on M and the metric gM is formal, which is
a contradiction. �

Remark 2.1. Let us point out one useful observation. Assume that a manifold
M is geometrically formal and consider its cohomology ring H∗(M,R) with its gen-
erators and relations. Choose harmonic form in each generator for H∗(M,R). Then
these harmonic forms satisfy the same relations as the corresponding generators in
H∗(M,R). In many cases the existence of such forms leads to the contradiction
meaning that the cohomology structure is often an obstruction to geometric for-
mality.

2.1.1. Relation between rational formality and geometric formality.

Definition 2.3. A manifold M is formal in the sense of rational homotopy
theory if Ω∗(M) is weakly equivalent to H∗(M,R):

(2.1) (Ω∗(M), d)← (C, d)→ (H∗(M), d = 0),

where both homomorphisms induce isomorphisms in cohomology.
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The first well known examples of formal spaces are the manifolds having free
cohomology algebras, then Kaehler manifolds, compact symmetric spaces, etc. Note
that the first proof of formality of compact symmetric spaces is based on the fact we
already recalled that an invariant metric on a compact symmetric space is formal.
Thus, in this case to prove formality one can take (C, d) = (Υ(G/H), 0) in (2.1),
where Υ(G/H) is an algebra of harmonic forms for an invariant metric.

In addition it is known: all homogeneous spaces G/H with rk H = rk G are
formal [20], all closed simply connected manifolds of dimension 6 6 are formal [19],
all closed simply connected 7-dimensional manifolds M with b2(M) 6 1 are formal
[10].

Remark 2.2. A geometrically formal manifold M is formal:

(Ω(M), d)← (Υ(M), d)→ (H∗(M), d = 0).

The converse is not true. For example, it is proved in [17] that the complete
flag manifolds SU(n+1)/T n are not geometrically formal, although they are formal
since rk SU(n + 1) = rk T n = n. Moreover, none of the complete flag manifolds of
a simple compact Lie group is geometrically formal, although they are all formal.
This is proved in [17] for the classical Lie groups and G2 and in [11] for the
exceptional Lie groups. For all these spaces their cohomology ring structure is an
obstruction for geometric formality. On the other hand, in [18] are provided the
series of Stiefel manifolds for which it is proved to be geometrically formal and not
homotopy equivalent to a symmetric space.

2.2. Rationally elliptic manifolds and geometric formality. Let X be
a simply connected topological space of finite type, that is dim Hk(X) < ∞ for
any k.

Definition 2.4. X is said to be rationally elliptic if rk πx(X) = dimQ π∗(X)⊗
Q is finite and it is said to be rationally hyperbolic if rk πk(X) = dimQ π∗(X)⊗Q

is infinite.

Example 2.1. The compact homogeneous spaces and the biquotients of com-
pact Lie groups are rationally elliptic spaces, see [8].

The ranks of the homotopy groups of a rationally elliptic space X , dim X = n
satisfy [8]:

(2.2)
∑

k

2k · rk π2k(X) 6 n,
∑

k

(2k + 1) · rk π2k+1(X) 6 2n− 1.

We want to consider the question of geometric formality, or more precisely the
weaker question of the real cohomology structure of geometrically formal manifolds,
for rationally elliptic spaces. Why to consider rationally elliptic spaces?

The first reason comes from the fact that the Betti numbers of a geometrically
formal manifold M satisfy [15]: bi(M) 6 bi(T

dim M ), 1 6 i 6 dim M . It implies
that

(2.3)

dim M
∑

i=1

bi(M) 6 2dim M .
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On the other hand, it is known [8] that the Betti numbers of a rationally elliptic
space X satisfy inequality (2.3) as well.

The second reason is that a rationally hyperbolic space has many relations in
its real cohomology algebra comparing to the number of generators. Namely, let us
recall [8] that a free algebra (∧V, d) is said to be a minimal model for a commutative
differential graded algebra (A, dA) if d(V ) ⊂ ∧>2V and there exists a morphism
f : (∧V, d)→ (A, dA), which induces an isomorphism in cohomology. The minimal
model µ(X) of a simply connected topological space X of a finite type is defined
to be the minimal model of AP L(X). It is well known that µ(X) is unique up to
isomorphism and it classifies the rational homotopy type of X . Moreover, the ranks
of the homotopy groups for X are given by the numbers of the generators of the
corresponding degree in the minimal model µ(X).

For a rationally formal simply connected space X , the minimal model µ(X)
coincides with the minimal model of (H∗(X,Q), d = 0). Therefore, the minimal
model of a formal simply connected space can be obtained from its cohomology
algebra. One just starts, see [8], with the cohomology generators of degree two and
builds up the minimal model by adding the generators of higher degree to eliminate
the cohomology relations, but in the same time keeping the freeness of the minimal
model. Thus, since for a rationally hyperbolic formal space X , µ(X) has infinite
number of generators, the number of relations in H∗(X,Q) is quite large comparing
to the number of generators in H∗(X,Q).

Note that µ(X) and µ(X) ⊗Q R have the same number of generators and
µ(X)⊗Q R is the minimal model for (H∗(X,R), d = 0) for a formal X . It implies
that the number of relations in H∗(X,R) for a rationally hyperbolic formal space
X is quite large as well. Therefore, taking into account Remark 2.1, the rationally
hyperbolic formal manifolds are hardly to expect to admit a formal metric.

From the side of geometry, it is conjectured by Gromov [12] that the estima-
tion (2.3) holds for positively curved manifolds, while there is also conjecture by
Bott [13] that a simply connected manifold which admits a metric of non-negative
sectional curvature is rationally elliptic. This brought attention to the study of the
connection between positive curvature and geometric formality. In that context the
following results are known.

• It is proved in [2] that for a simply connected compact oriented Riemann-
ian 4-manifold M which is geometrically formal and has non-negative
sectional curvature one of the following holds: M is homeomorphic to S4,
M is diffeomorphic to CP 2 or M is isometric to S2 × S2 with product
metric where both factors carry metrics with positive curvature.
• A homogeneous geometrically formal metric of positive curvature is either

symmetric or a metric on a rationally homology sphere, see [1].
• The normal homogeneous metric on Alloff-Wallach spaces is not geomet-

rically formal [18], but it is not positively curved as well. It is proved in
[1] that no other homogeneous metric is geometrically formal as well.

Remark 2.3. We further discuss the notion of geometric formality for the
rationally elliptic manifolds whose dimension is > 5, because of the more general
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result of [15] which states that a closed oriented geometrically formal manifold of
dimension 6 4 has the real cohomology algebra of a compact globally symmetric
space.

2.2.1. Five-dimensional rationally elliptic manifolds. The following results are
known:

• All five-dimensional simply connected rationally elliptic manifolds have
the rational homotopy type of S5 or S2 × S3 [21, 24];
• There are four diffeomorphism types five-dimensional biquotients [3]:

S5, S2 × S3, X−1 = SU(3)/SO(3), X∞.

The manifolds X−1 and X∞ are obtained by gluing two copies of non-trivial three

dimensional disc bundles over S2 along the common boundary CP 2#CP 2. The Wu
manifold X−1 is real cohomology sphere S5, while H∗(X∞,R) = H∗(S2 × S3,R).

Thus, all geometrically formal five-dimensional simply connected rationally el-
liptic manifolds have the real cohomology of a symmetric space. Among biquotients,
S5, S2 × S3 and X−1 are geometrically formal, while for X∞ it is for us an open
question.

3. Six-dimensional rationally elliptic manifolds

The second Betti number of a six-dimensional rationally elliptic manifold is
by (2.2) less than or equal to 3. The following results are known:

• All six-dimensional rationally elliptic manifolds with b2 6 1 have the real
cohomology of S6, S3 × S3, S2 × S4 and CP 3 [14, 23].
• All six-dimensional rationally elliptic manifolds with b2 = 2 have the real

homotopy type of CP 2 × S2, SU(3)/T 2 or CP 3#CP 3 [14].
• All six dimensional rationally elliptic manifolds with b2 = 3 have the

rational homotopy groups of S2 × S2 × S2 [23],

The first result on the real cohomology structure of the geometrically formal
rationally elliptic six-manifolds for which b2 6 2 is as follows [23]:

Proposition 3.1. All geometrically formal six-dimensional rationally elliptic

manifolds with b2 6 2 have the real cohomology of a symmetric space.

Corollary 3.1. The manifolds SU(3)/T 2 and CP 3#CP 3 are not geometri-

cally formal.

We discuss here the question of geometric formality for some simply-connected
six-dimensional biquotients for which b2 = 3.

Let us recall some notions and results on general six-dimensional biquotients.
The biquotient G//H is said to be reduced if G is simply-connected, H is connected
and no simple factor of H acts transitively on any simple factor of G. By the
result of Totaro [25] any compact simply-connected biquotient is diffeomorphic to
reduced ones. The biquotient is said to be decomposable if it can be obtained as the
total space of G1//H1 bundle over G2//H2. It is proved [4] that a reduced compact
simply connected six-dimensional biquotient G//H satisfies one of the following
statements:
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(1) it is diffeomorphic to a homogeneous space or Eschenburg inhomogeneous
flag manifold SU(3)//T 2;

(2) it is decomposable;
(3) it is diffeomorphic to S5 ×T 2 S3 or (S3)3//T 3.

The only irreducible homogeneous space of dimension 6 which does not have the
cohomology of a symmetric space is SU(3)/T 2 and it is not geometrically formal.
The Eschenburg inhomogeneous flag manifold SU(3)//T 2 is neither geometrically
formal as it is proved in [17].

We analyze now the following decomposable biquotients: three CP 2 bundles
over S2 and infinitely many S2 bundles with base a 4-dimensional biquotient: CP 2,
S2 × S2, CP 2#CP 2, CP 2#CP 2. Any bundle from the infinite families of the
considered bundles has the second Betti number equal to 3.

Lemma 3.1. All three CP 2 bundles over S2 have the real cohomology of CP 2×
S2, that is of a symmetric space.

Proof. Any CP 2-bundle E over S2 is obtained as the projectivisation of rank
three complex vector bundle over S2. Therefore, the integral cohomology of its
total space M is generated by two generators x and y of degree 2 subject to the
relations

x2 = 0, y3 + c1xy2 = 0.

If we put y1 = y + c1

3 x then x and y1 generate the real cohomology ring of M and

satisfy the relations x2 = 0, y2
1 6= 0, y3

1 = 0 and xy2
1 = y2x 6= 0. �

Note that the cohomology structure can not be obstruction for geometric for-
mality of any of these bundles. The trivial bundle S2×CP 2 is geometrically formal,
while for the other two bundles we can remark that if some of them admits a formal
metric it admits a symplectic structure as well.

It is proved in [17] that any of the infinitely many S2 bundle over CP 2 is
geometrically formal if and only if it is a trivial bundle S2 × CP 2. Applying the
same argument as it is done in [17] for these family of bundles, we prove the
following:

Theorem 3.1. None of the infinitely many non-trivial S2-bundles over CP 2#
CP 2 is geometrically formal.

Proof. Let M be the total space of a S2-bundle over CP 2#CP 2. Then M
is the unit sphere bundle in the associated rank 3 vector bundle and it is obtained
by the projectivisation of rank 2 complex vector bundle E. Therefore the integral
cohomology of M is given by H∗(M) = H∗(CP 2#CP 2,Z)[y] subject to the relation

(3.1) y2 + c1(E)y + c2(E) = 0,

where c1(E) and c2(E) are the pull backs of the first and second Chern classes from
H∗((CP 2#CP 2,Z). The cohomology ring H∗(CP 2#CP 2,Z) has two generators
x1, x2 of degree 2 satisfying x2

1 = x2
2, x1x2 = 0 and x3

1 = 0. Relation (3.1) reads

y2 + (ax1 + bx2)y + cx2
1 = 0 for a, b, c ∈ Z.
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Let z = y + a
2 x1 + b

2 x2, then z2 = y2 + (ax1 + bx2)y + a2+b2

4 x2
1. It follows that

(3.2) z2 + dx2
1 = 0, where d = c−

a2 + b2

4

and x1, x2, z are the cohomology generators for the real cohomology ring H∗(M,R).
We obtain that z2x1 = z2x2 = 0 and z3 = −dzx2

1 = −dzx2
2, what implies that zx2

1
is top degree cohomology class.

Assume that M is geometrically formal. Let ω1 and η be the harmonic repre-
sentatives for x1 and z respectively. Since ω3

1 = 0 it follows that the kernel foliation
of ω1 is at least two-dimensional. Let v1 and v2 be linearly independent vector
fields of this foliation. From (3.2), it follows iv1

(η2) = 2(iv1
η)η = 0.

If d 6= 0 then η3 = −dηω2
1 is a volume form on M . But, iv1

(η3) = 3(iv1
η)η2 = 0,

which is a contradiction.
If d = 0 then 4c = a2 + b2, what implies that the integers a and b are even. It

further implies that w2(V ) = c1(V ) (mod 2) = 0 and p1(V ) = c2
1(E) − 4c2(E) =

(a2 + b2 − 4c)x2
1 = 0. Therefore, by [22, 5] the bundle M is trivial that is M =

S2×(CP 2#CP 2). The connected sum CP 2#CP 2 is not geometrically formal, since
it is known not to admit a symplectic structure. It follows by Lemma 2.1 that no
product metric on M is formal. �

Theorem 3.2. None of the infinitely many S2-bundles over S2×S2 which does

not have the real cohomology of (S2)3 is geometrically formal.

Proof. As previously, the bundle M is obtained by the projectivisation of rank
2 complex vector bundle E. The integral cohomology of M is given by H∗(M) =
H∗(S2 × S2,Z)[y] subject to the relation:

(3.3) y2 + (ax1 + bx2)y + cx1x2 = 0 for a, b, c ∈ Z,

where x1, x2 are the pull backs of the generators of the cohomology ring H∗(S2 ×
S2,Z) and they satisfy relations x2

1 = x2
2 = 0. Let z = y + a

2 x1 + b
2 x2. Then x1, x2

and z represent the generators for H∗(M,R) and in terms of these generators the
relation (3.3) reads

(3.4) z2 + qx1x2 = 0,

where q = c − ab
2 . Since z2x1 = z2x2 = 0 we conclude that x1x2z is non-zero

top-degree cohomology class on M .
Assume that M is geometrically formal and let ω, η1 and η2 be the harmonic

representatives for z, x1 and x2. We have that η2
1 = η2

2 = 0, which implies that
there exist linearly independent vector fields v1 and v2 in the intersection of the
kernel foliations for η1 and η2. It follows from (3.4) that iv1

iv2
ω2 = 0, so ω2η1 and

ω2η2 can not be the volume forms on M . Thus, the volume form must be ωη1η2.
If q 6= 0 in (3.4) then it is easy to see that M does not have the real cohomology

of S2×S2×S2. The assumption that M is geometrically formal implies that ω3 is
a volume form on M as well, which is in contradiction with the fact iv1,v2

ω2 = 0.
If q = 0, then M has the real cohomology of S2×S2×S2. In this case we have

that ab = 2c, which implies that p1(V ) = c2
1(E)−4c2(E) = (ax1 +bx2)2−4cx1x2 =

0. Note that if the both integers a and b are even, then w2(V ) = 0 which implies
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that this bundle is trivial, that is M = S2×S2×S2, which is geometrically formal
symmetric space. �

Theorem 3.3. None of the infinitely many S2-bundles over CP 2#CP 2 which

does not have the real cohomology of (S2)3 is geometrically formal.

Proof. Let M be the total space of a S2-bundle over CP 2#CP 2. The real
cohomology ring for CP 2#CP 2 is the same as for S2 × S2. Therefore, as in the
proof of previous theorem, we conclude that if M does not have the real cohomology
of S2 × S2 × S2 then M can not be geometrically formal.

Let c1(E) = ax1 + bx2 and c2(E) = cx2
1 are the the pullbacks of the first

and the second Chern classes for E, where x1 and x2 are the generators for
H∗(CP 2#CP 2,Z). Then, as previously, the real cohomology ring for M is also

generated by x1, x2 and z such that z2 + dx2
1 = 0, where d = c− a2

−b2

4 . It implies

that M has the real cohomology of (S2)3 if and only if 4c = a2 − b2. In this case
p1(V ) = 0 and also the integers a and b are of the same parity. If both a and b are

even, then w2(V ) = 0 and the bundle E is trivial, that is M = S2 × (CP 2#CP 2).

It is proved in [16] that CP 2#CP 2 admits no formal metric, what implies that no
product metric on M is formal. �

Corollary 3.2. None of the biquotients from the infinite families of the six-

dimensional biquotients of the form (SU(2))3//T 3 different from S2 × S2 × S2 is

geometrically formal.

Proof. The six-dimensional biquotients of the form (SU(2))3//T 3 are classi-
fied in [4]. They are parametrized by the three families of infinite matrices and four
sporadic matrices. In the same paper it is established which of these biquotients
that correspond to these matrices are diffeomorphic. For the biquotients considered
in [24] which give one family of these biquotients and whose real cohomology ring
has three generators x1, x2, x3 subject to the relations x2

1 = 0, ax1x2+x2
2+x2x3 = 0,

bx1x3 + 2x2x3 + x2
3 = 0, it is proved in [18] that they are not geometrically formal.

We want to remark that, as it is pointed in [4], these biquotients are decomposable
meaning that any of them can be obtained as S2 bundle over S2 × S2 or as S2

bundle over CP 2#CP 2, so Theorem 3.2 and Theorem 3.3 provide the new proof
that they are not geometrically formal. The other family of these biquotients has
the real cohomology ring generated by x1, x2, x3 subject to the relations x2

1 = 0,
x2

2 + bx1x2 = 0, x2
3 + c1x1x3 + c2x2xx = 0. This family is considered in [23], where

it is proved that none of these biquotients which does not have the real cohomol-
ogy of (S2)3 is not geometrically formal. The third family of the biquotients has
the real cohomology generators x1, x2, x3 subject to the relations x2

1 + 2x1x2 = 0,
x2

2 + x1x2 = 0, x2
3 + c1x1x3 + c2x2x3 = 0. For this family it is proved in [4] that

they are decomposable meaning that they can be represented as S2 bundles over
CP 2#CP 2, so Theorem 3.1 proves that they are not geometrically formal. �

Remark 3.1. Note that the biquotients from Corollary 3.2 belong to the third
case in the description of six-dimensional biquotients that is given in [4]. This
condition also describes the manifold CP 3#CP 3.
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3.1. On some hyperbolic six-dimensional manifolds. We show that none
of the hyperbolic, closed, simply-connected six-dimensional manifolds for which
b2(M) 6 2 and b3(M) = 0 can be geometrically formal because of its cohomology
structure. For such a manifold it is known [14] that it is rationally hyperbolic if
and only if it has the real homotopy type of (S2×S4)#CP 3 or (S2×S4)#(S2×S4).

Proposition 3.2. A manifold having real cohomology structure of (S2×S4)#
CP 3 or (S2 × S4)#(S2 × S4) can not be geometrically formal.

Proof. The manifold (S2×S4)#CP 3 has three cohomology generators x, y, z,
such that deg x = deg z = 2 and deg y = 4 and x2 = 0, xz = 0 and yz = 0. If
assumed that this manifold is geometrically formal, we have harmonic forms α, β
and γ representing the classes x, y, z respectively, which satisfy the same relations
as these classes. Since α2 = 0 this form have four-dimensional kernel foliation.
Denote by v1, v2, v3, v4 linearly independent vector fields of this foliation. Since
αγ = 0 we obtain that 0 = ivi

ivj
(αγ) = αγ(vi, vj), what implies γ(vi, vj) = 0. It

further gives

iv4
iv3

iv2
iv1

(γ3) = iv4
iv3

iv2
(3iv1

(γ)γ2) = 3iv4
iv3

(γ(v1, v2)γ2)− 2iv1
(γ)iv2

(γ)γ

= −6iv4
(γ(v1, v3)− iv1

(γ)(γ(v2, v3)γ − iv2
(γ)iv3

(γ)) = −6iv4
(iv1

γiv2
γiv3

γ) = 0.

This is in contradiction with the fact that γ3 is a volume form.
The manifold (S2×S4)#(S2×S4) has four cohomology generators x1, x2, y1, y2

such that deg x1 = deg x2 = 2 and deg y1 = deg y2 = 4, which satisfy relations
x2

1 = x2
2 = 0, x1x2 = 0 and x1y2 = x2y1 = 0. If this manifold is geometrically

formal, we would have that the harmonic forms α1 and α2, which represent the
cohomology classes x1 and x2, satisfy α2

1 = α2
2 = 0. Therefore, the kernel foliations

for α1 and α2 are four-dimensional. We denote their basis by v1, v2, v3, v4 and
u1, u2, u3, u4 respectively.

Let β1 and β2 be harmonic representatives for y1 and y2. Since α1β2 = 0 and
α2β1 = 0 we obtain that β2(v1, v2, v3, v4) = 0 and β1(u1, u2, u3, u4) = 0.

The intersection of the kernel foliations for α1 and α2 is at least two-dimen-
sional. Note that this kernel foliations can not coincide since this gives contradiction
with the fact that α1β1 and α2β2 are volume forms.

Assume that the kernel intersection is two-dimensional and let v1 = u1 and v2 =
u2 be a basis of this intersection. Since α1α2 = 0, we obtain that 0 = iv3,v4

(α1α2) =
α2(v3, v4)α1 what gives α2(v3, v4) = 0. Therefore, (α2β2)(u1, u2, u3, u4, v3, v4) =
α2(v3, v4)β2(u1, u2, u3, u4) = 0, contradicting the fact that α2β2 is a volume form.

If the kernel intersection is three dimensional, let v1 = u1, v2 = u2, u3 = v3

and denote by v4 ∈ Ker(α1), v4 /∈ Ker(α2) and u4 ∈ Ker(α1), u4 ∈ Ker(α2), u4 /∈
Ker(α1). Then from α1β2 = 0 it follows that iu4

α1β2 + α1iu4
β2 = 0 and from

α1α2 = 0 it follows that iu4
α1iv4

α2 = 0. Further, there exists vector field x
orthogonal to the sum of these foliations Ker(α1) ⊕ Ker(α2). We obtain that
α1(u4, x)iv4

α2−α2(v4, x)iu4
α1 = 0. Note that α1(u4, x), α2(v4, x) 6= 0 since, say, for

α2(v4, x) = 0 we would have α2β2(u1, u2, u3, u4, v4, x) = α2(v4, x)β2(u1, u2, u3, u4)
= 0, which is in contradiction with α2β2 being volume form. Therefore, iu4

α1 =
α1(u4,x)
α2(v4,x) iv4

α2 which, together with previous, implies α1(u4,x)
α2(v4,x) iv4

α2β2 + α1iu4
β2 = 0.
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Therefore, we obtain that iv4
α2iu4

β2 = 0 contradicting that α2β2 is a volume
form. �

4. Seven-dimensional rationally elliptic manifolds

It is proved in [14] that a closed simply-connected seven-dimensional manifold
is rationally elliptic if and only if it has the real homotopy type of one of the
following manifolds: S7, S2 × S5, CP 2 × S3, S3 × S4, N7, S3 × (CP 2#CP 2) or

S3 × (CP 2#CP 2). Here the manifold N7 is a homogeneous space (SU(2))3/T 2,
where the embedding T 2 ⊂ (SU(2))3 is given by

{ (

z 0
0 z−1

)

,

(

w 0
0 w−1

)

,

(

zw 0
0 (zw)−1

) }

.

The manifolds S7, S2×S5, CP 2×S3 and S3×S4 are obviously geometrically
formal. On the other side, not all manifolds having the real homotopy types of these
manifolds are geometrically formal. The Alloff–Wallach spaces SU(3)/T 1 have the
real cohomology of S2 × S5, but the normal homogeneous metrics on these spaces
are not formal [18]. This result, as we already mentioned, is recently strengthened
in [1], where it is proved that none of the homogeneous metrics on Alloff-Wallach
spaces can be geometrically formal.

The real cohomology algebra for N7 is as follows:

R[x1, x2]⊗ ∧(y1, y2, y3), dx1 = dx2 = 0, dy1 = x2
1, dy2 = x2

2, dy3 = (x1 + x2)2,

where deg x1 = deg x2 = 2. It follows that N7 is not Cartan pair homogeneous space
and, thus, not formal in the sense of rational homotopy theory [20]. Therefore, it
can not be geometrically formal.

The product metric on any of manifolds S3×(CP 2#CP 2) and S3×(CP 2#CP 2)
can not be formal since, otherwise, it would by Lemma 2.1 imply that the connected
sums CP 2#CP 2 and CP 2#CP 2 are geometrically formal manifolds which is, as
we already noted, not the case.

Acknowledgment. The author would like to thank the referee whose remarks
made the author significantly clarify some places in the paper and improve the
exposition.
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