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Abstract. We study recurrence properties of the second order skew-sym-

metric tensor fields, which are referred to as bivectors, on a 4-dimensional
manifold admitting a Lorentz metric. Considering the known classification
scheme for these tensor fields, recurrent bivectors which can be scaled to be
parallel are first determined and these results are associated with the holonomy
theory. This examination then identifies proper recurrence of such bivectors
on the manifold. The link between these bivectors and the holonomy group is
investigated and some theorems are proved.

1. Introduction

Let M be a smooth, connected manifold admitting a smooth metric g of Lorentz
signature (+,+,+,−). Then, (M, g) is called a space-time and these are important
in Einstein’s general theory of relativity. It will be assumed that (M, g) is not flat
and throughout the following, ∇ will denote the Levi-Civita connection of (M, g).
The tangent space to M atm ∈ M is denoted by TmM and the inner product g(u, v)
arising from g(m) will be written as u.v for u, v ∈ TmM . A nonzero member u of
TmM is called spacelike, timelike or null if u.u > 0, u.u < 0 or u.u = 0, respectively.
For this signature, we can choose a pseudo orthonormal basis of mutually orthogonal
vectors x, y, z, t for TmM such that

x.x = y.y = z.z = −t.t = 1.

Alternatively, an associated null basis l, n, x, y can be chosen with
√

2l = z+ t,√
2n = z − t so that l and n are null vectors satisfying l.n = 1. Also, one can build

up a complex null basis l, n, s, s̄ where l and n are as above,
√

2s = x + iy, s̄ is
the complex conjugate of s and so s and s̄ are complex and null. The Riemann
curvature tensor arising from ∇ is denoted by Riem with components Rabcd and
one has the type (0, 4) curvature tensor with components Rabcd = gaeR

e
bcd. A

spanning set will be denoted by the symbol 〈 〉.
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Looking in the literature, there has been much interest in the geometry of 4-
dimensional manifolds which admit different metric signatures. More precisely, for
a 4-dimensional manifold, these signatures can only be positive definite or Lorentz
or (+,+,−,−) which is referred to as neutral signature (see, e.g., [4, 7, 9, 22]).
Recurrent tensor fields are one of the geometric objects which attract considerable
attention and these tensor fields have been studied by many authors in various
contexts (for example, see [2, 3, 6, 10, 12, 16, 17, 21]). Besides, recurrent and
parallel vector fields have a significant place in holonomy theory (see Section 2.3)
and in this perspective, these vector fields were investigated in, e.g., [3, 5, 6, 10,

12]. On the other hand, a second order symmetric tensor can be classified by
finding all possible Jordan canonical forms and Segre types. For each signature,
these classifications are known and the schemes can be found in, e.g., [5, 8, 18].
Some studies on the recurrence structure for second order symmetric tensor fields
and some applications of recurrent tensors to the Ricci tensor and the curvature
tensor can be found, for instance, in [2, 6, 10, 12, 16, 17, 21]. This paper studies
the features of recurrence for second order skew-symmetric tensors called bivectors.
It will be based on the classification of these tensor fields on a 4-dimensional Lorentz
manifold and these analyses will be combined with holonomy theory. Also, some
brief remarks will be given for signature (+,+,+,+).

2. Some preliminaries

In this section, some basic concepts about bivectors and their classification on 4-
dimensional Lorentz manifolds (including brief remarks for other metric signatures),
recurrent tensors and holonomy structure are given.

2.1. Bivectors and their classification. The 6-dimensional vector space of
all 2-forms at m ∈ M , which will be denoted by ΛmM , is a Lie algebra under matrix
commutation denoted by [ ]. A member F of ΛmM is referred to as bivector and if
we denote the components of F by Fab then Fab = −Fba and so the rank of F must
be even. If this rank is 2, F is called a simple bivector and if it is 4, then F is called
a nonsimple bivector. If F is simple, then it can be written as F ab = uavb − vaub

where u, v ∈ TmM . The 2-space spanned by u and v is uniquely determined by
F and it is called the blade of F . In this case, F or its blade will be denoted by
u ∧ v. A simple bivector is called spacelike (respectively, timelike or null) if its
blade is a spacelike (each nonzero member of it is spacelike) (respectively, timelike
(it contains exactly two distinct null directions) or null (it contains exactly one null
direction)) 2-space at m.

When g has Lorentz signature, the classification of bivectors is known from
general relativity theory and in a null basis l, n, x, y at m ∈ M , the canonical forms
and corresponding Segre types are given as follows (for details we refer to, e.g.,
[19, 5, 8]).

Fab = α(xayb − yaxb) (spacelike, Segre type {(11)zz̄})(2.1)

Fab = α(lanb − nalb) (timelike, Segre type {11(11)})(2.2)

Fab = α(laxb − xalb) (null, Segre type {(31)})(2.3)
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Fab = α(lanb − nalb) + β(xayb − yaxb) (nonsimple, Segre type{11zz̄})(2.4)

where α, β ∈ R and for the nonsimple case α 6= 0 6= β.
Moreover, if the metric is positive definite, all simple bivectors are spacelike

and the Segre type is {(11)zz̄}. If F is nonsimple, in an orthonormal basis x, y, z, w
at m, it can be characterized by F = α(x∧ y) + β(z ∧w) (α, β ∈ R and α 6= 0 6= β)
(see, e.g., [14]). In this case, F has a pair of complex eigenvectors (eigenvalues)
x± iy (±iα) and z± iw (±iβ) and its Segre type is written {zz̄ww̄} (or {(zz)(z̄z̄)}
if α = ±β).

When g has neutral signature, such a classification has been done in [8] but it
will not be needed here.

2.2. Recurrent tensor fields. A global, smooth tensor field T on M is called
a recurrent tensor if ∇T = T ⊗λ for some 1-form λ which is necessarily smooth on
M . It is first useful to remark that since a recurrent tensor need not be nowhere-zero
on the manifold M , it will be assumed that T is nowhere-zero on the nonempty,
connected, open subset U on which it is studied (for details of this section see
[12, p. 263]). Geometrically, any recurrent tensor has the property that given any
m,m′ ∈ U and curve m → m′ in U the value of T at m′ is proportional to the
parallel transport of T (m) along c at m′ and the proportionality ratio depends on c
and λ. If the 1-form λ vanishes on U , T is called parallel (or covariantly constant).
Let T be recurrent on U and suppose that there exists a nowhere-zero function ϕ on
U such that ϕT is parallel on U . Then λ is the gradient ∇(− log |ϕ|). Conversely,
if λ is a gradient, that is, λ = ∇ψ on U then e−ψT is parallel on U . This allows
us to give a definition of proper recurrence for bivectors in the following way. The
Ricci identity for a nowhere-zero recurrent bivector F is given by as follows:

(2.5) (∇d∇c − ∇c∇d)Fab = FaeR
e
bcd + FebR

e
acd = Fab(∇dλc − ∇cλd).

It can be seen from (2.5) that if FaeR
e
bcd + FebR

e
acd vanishes on U , then λ

is a gradient on some neighbourhood N of m and hence the bivector F can be
scaled to be parallel on N . According to this, a bivector F will be called properly
recurrent on U if the subset V ≡ {m ∈ U : (FaeR

e
bcd + FebR

e
acd)(m) 6= 0} is open

and dense in the subspace topology on U . A similar definition can be given for a
nowhere-zero recurrent vector field on U (see [12]). Also, it can be shown that the
Segre type of F , including degeneracies, is the same at each point of U and the
eigenvalues of F can be regarded as constant functions on U (see [13]). Another
useful remark is that if a bivector F is recurrent and nowhere-zero on U and if
F abFab 6= 0 at m ∈ U , then F abFab is nowhere-zero on U and a contraction of
the recurrence condition, ∇cFab = λcFab, with F ab shows that λ is the gradient of
1
2 (log |FabF ab|) and so F can be scaled to be parallel on U . Hence, only bivectors

satisfying F abFab = 0 on U may be properly recurrent. So, if the metric is positive
definite, any recurrent bivector can be scaled to be parallel. As a last remark, it

can be seen that if a bivector F is recurrent, the dual bivector
∗

F is also recurrent
(see [10]).

2.3. Holonomy structure. The holonomy group of (M, g) (more precisely
of ∇) denoted by Φ is a Lie group and so it has a Lie algebra φ (for details, see [15]).
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Table 1. Holonomy algebras for (+,+,+,−)

Parallel Recurrent Parallel Recurrent
Type Basis vector vector Type Basis vector vector

fields fields fields fields
R2 l ∧ n 〈x, y〉 l, n R9 l ∧ n, l ∧ x, l ∧ y — l

R3 l ∧ x 〈l, y〉 — R10 l ∧ n, l ∧ x, n ∧ x 〈y〉 —
R4 x ∧ y 〈l, n〉 — R11 l ∧ x, l ∧ y, x ∧ y 〈l〉 —
R5 l ∧ n+ ω(x ∧ y) — — R12 l ∧ x, l ∧ y, l ∧ n+ ω(x ∧ y) — l

R6 l ∧ n, l ∧ x 〈y〉 l R13 x ∧ y, y ∧ z, x ∧ z 〈t〉 —
R7 l ∧ n, x ∧ y — l, n R14 l ∧ n, l ∧ x, l ∧ y, x ∧ y — l

R8 l ∧ x, l ∧ y 〈l〉 — R15 o(1, 3) — —

When g has Lorentz signature, then φ is a subalgebra of the orthogonal algebra
of g, that is, o(1, 3). The possible holonomy algebras in bivector representation are
known (see, e.g., [5, 9, 10, 20]) and using the labellings R1 (flat), R2,. . . ,R15 given
in [20], these algebras are presented in Table 1. Here, 0 6= ω ∈ R. Additionally,
if 0 6= k ∈ TmM is an eigenvector of each member of φ, then there exists a local
recurrent vector field which is smooth on some neighbourhood of the point m and
whose value at m is k. Further, if each eigenvalue for k is zero for all F ∈ φ, then
this vector field can be chosen to be parallel. Thus, recurrent and parallel vector
fields are shown in Table 1.

3. Recurrence structures of real bivectors

In this section, the recurrence structures of real bivectors are studied on 4-di-
mensional Lorentz manifolds. As discussed in Section 2.2, if a recurrent bivector
satisfies F abFab 6= 0, then F can be scaled to be parallel. So, let us first investigate
the solutions of ∇F = 0. Suppose that F is spacelike and parallel. Then, taking the
covariant derivative of (2.1) and considering ∇F = 0, a contraction of the resulting
equation by xayb shows that ∇α = 0, i.e., α is constant on U . Thus, we get

(3.1) (∇cxa)yb + xa∇cyb − (∇cya)xb − ya∇cxb = 0.

By contracting (3.1) with xalb and xanb, we obtain, lb∇cyb = nb∇cyb = 0 (or
yb∇clb = yb∇cnb = 0 since xaxa = 1, laxa = laya = naya = 0). Applying these
to the derivative ∇clb = ecxb + fcyb + hclb (for some 1-forms e, f, h on U) give
ec = fc = 0 and so, one has ∇clb = hclb. Hence, l is recurrent. Performing similar
contractions and considering the basic conditions, the other tetrad derivatives are
found ∇cnb = −hcnb (and so n is recurrent), ∇cxb = qcyb and ∇cyb = −qcxb
for some 1-form q on U . Moreover, from the derivatives of x and y, one has
∇c(xb ± iyb) = ∓iqc(xb ± iyb), in other words x ± iy are complex, recurrent null
vector fields. From Table 1, the possible holonomy types are R2, R4 (here l and n

may be chosen parallel) or R7. The case when F is timelike [that is, F = α(l ∧ n)

from (2.2)] and parallel is completely analogous. In this case,
∗

F = α(x ∧ y) and

∇F = 0, then ∇
∗

F = 0 and hence one gets the expressed holonomy types as above.
Conversely, for each of these holonomy types the bivectors x∧y and l∧n are easily
checked to be parallel.
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Now, let F = l ∧ x′ (null) be parallel with l.x′ = 0 and so we can choose a
tetrad l, n, x, y and then x′ = ax + by (a, b ∈ R). Then the covariant derivative F
contracted with la gives la(∇cx

′

a) = −x′a(∇cla) = 0 whilst a contraction with x′a

shows that l is recurrent with recurrence 1-form ∇[− 1
2 log(x′.x′)] which is a gradient

and so l can be scaled to be parallel. This means that if F is null, M admits a
nowhere-zero, parallel, null eigenvector l of F (cf. [10]). Then, from Table 1, the
only possible holonomy types of M are R3, R4, R8 or R11. On the other hand,
from (2.5) the condition for the commutator of F ,

(3.2) FaeR
e
bcd + FebR

e
acd = FaeR

e
bcd − FbeR

e
acd = 0

must be satisfied for F = l∧x′. This condition is equivalent to [F,G] = 0 where G is
any bivector in the range space of the curvature map f defined by f : ΛmM → ΛmM
given by Gab → RabcdG

cd and which holds immediately for the holonomy type R3.
In fact, Table 1 shows that l and y are parallel vector fields for holonomy type R3.
Then the bivector l ∧ y is parallel and so R3 admits a parallel null bivector. For
holonomy type R4 with algebra G = x∧y, we have [F,G] 6= 0 and hence, condition
(3.2) is not satisfied. For holonomy type R8, an exponentiation from the algebra
gives ∇bxa = larb for some 1-form r and then l ∧ x is parallel. For holonomy type
R11, one has

Rabcd = A1GabGcd +A2HabHcd +A3JabJcd +A4(GabHcd +HabGcd)(3.3)

+A5(GabJcd + JabGcd) + A6(HabJcd + JabHcd)

where Ai (i = 1, ..., 6) are smooth functions, G = l ∧ x, H = l ∧ y and J = x ∧ y.
Using (3.3) in the commutator of F = l∧x′ and contracting the resulting equation
with nayb and nbxa shows that A3 = A5 = A6 = 0 and the range space of the
curvature map is spanned by the bivectors G and H . However, the Ambrose–
Singer theorem [1] says that if one fixes m ∈ M and for any m′ ∈ M computes the
range space, rgf , of the curvature map and parallel transports rgf to m along some
curve c : m′ → m and does this for all such m′ and c, the collection of bivectors
obtained at m spans φ. Therefore, since l is recurrent, the Ambrose-Singer theorem
gives the contradiction that φ contains only null members whose blade contains l.
Hence, R3 and R8 are the only possible holonomy types.

Next, let F be nonsimple and parallel. Then, ∇F = ∇
∗

F = 0 are satisfied for

F = α(l∧n)+β(x∧y) and
∗

F = α(x∧y)−β(l∧n) (α, β ∈ R and α 6= 0 6= β) in some

basis l, n, x, y. Under these conditions, we get FabF
ab and Fab

∗

F ab are constant.
This gives α2 −β2 and αβ constant. Now, (α2 + β2)2 = (α2 − β2)2 + 4α2β2 and so
α2 + β2 is constant. Hence, α and β are constant and so ∇(x ∧ y) = ∇(l ∧ n) = 0.
Therefore, l and n are recurrent whose recurrence 1-forms differ only in sign, x± iy

are complex recurrent vector fields and the possible holonomy types are R2, R4 or
R7 from an earlier result.

Now, suppose that F is nowhere-zero and properly recurrent on U , that is,
∇cFab = λcFab for some recurrence 1-form λ on U . If F is spacelike or timelike,
then F abFab 6= 0. So, the proper recurrence for such bivectors is not possible here.
If F is nonsimple, using (2.4), one gets F abFab = 2(β2 −α2). One can deduce from
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here that if α 6= ±β then F abFab 6= 0. This yields that λ is a gradient and hence F
can be scaled to be parallel. Thus, for the proper recurrence of nonsimple bivectors,
we only need to check the case when α = ±β (that is, the case F abFab = 0). With

α = β (the case α = −β will be similar) we have F = G +
∗

G,
∗

F =
∗

G − G with

G,
∗

G simple and nonnull, G = α(l ∧ n),
∗

G = α(x ∧ y). Then ∇cFab = λcFab,

∇c

∗

F ab = λc
∗

F ab and so ∇cGab = λcGab, ∇c

∗

Gab = λc
∗

Gab and since GabGab 6= 0, λ
is a gradient. As a result, a nonsimple bivector cannot be properly recurrent and
so the only possibility for proper recurrence is the null bivector case.

In that case, let us suppose that F is null with F = l∧x in some tetrad l, n, x, y.
Then if F is recurrent, i.e., ∇c(laxb − xalb) = (laxb − xalb)λc. Contractions with
la and xa show that l is recurrent with a recurrence 1-form equal to λ. So, if λ is
not a gradient, the null bivector F is properly recurrent and this yields a properly
recurrent null vector l. From Table 1, the potential holonomy types are R2, R6,
R7, R9, R12 or R14. For holonomy type R2, l ∧ x is clearly properly recurrent.
For holonomy types R6 and R9 exponentiation from the algebra gives in each case
∇bxa = larb for some 1-form r and so l ∧ x is properly recurrent for these types
also.

Now consider types R7, R12 and R14. For types R7 and R14, the argument
given earlier using the Ambrose-Singer theorem and the recurrence of l shows that
x∧ y must appear in the range of the curvature map at some m ∈ M and hence in
some open neighbourhood U of m. Now (3.2) adapted to the case when F = l ∧ x′

is properly recurrent shows that a necessary condition for proper recurrence of F is
that [F, T ] is proportional to F for each T in the range of f . This fails for the choice
T = x ∧ y. A similar argument rules out for the R12 case because of the bivector
l ∧ n+ ω(x ∧ y) (which, as above, must be in the range of f at some m ∈ M).

All these results proved above are put together in the following theorem.

Theorem 3.1. Let M be a smooth, connected, 4-dimensional manifold admit-
ting a Lorentz metric and F be a nowhere-zero, recurrent bivector on some open
subset U of M . Then, the following conditions hold.

(i) If ∇F = 0 with F nonnull (simple or nonsimple), then the holonomy type
is either R2, R4 or R7.

(ii) If ∇F = 0 with F is null, then the holonomy type is either R3 or R8.
(iii) If F is properly recurrent on U , then F must be null and the holonomy

type is either R2, R6 or R9.

4. Complex bivectors

In this section, complex bivectors on 4-dimensional Lorentz manifolds will be
considered and the above idea about the recurrence structure will be expanded
to these bivectors. Let the set of complex bivectors at the point m be denoted
by CB(m) which is a 6-dimensional complex vector space. Define 3-dimensional

subspaces of CB(m) by
+
Zm ≡ {G ∈ CB(m) :

∗

G = −iG} and
−

Zm ≡ {G ∈ CB(m) :
∗

G = iG} where ∗ is the Hodge duality operator defined for members of this complex
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vector space. Thus, one has CB(m) =
+
Zm ⊕

−

Zm. A member of
+
Zm is called a self-

dual bivector and it can be written in the form
+
F ≡ F + i

∗

F for a real bivector F .

Furthermore, a member of
−

Zm is called an anti self-dual bivector and can be written

in the form
−

F ≡ F−i
∗

F for a real bivector F . It is clear that
+
F and

−

F are conjugates.

According to these,
+
F = l ∧ n + i(x ∧ y) and

−

F = l ∧ n− i(x ∧ y) are examples of
self-dual and anti self-dual bivectors, respectively.

On the other hand, using the complex null basis l, n, s, s̄ expressed in Section 1,

one has a basis V , W , Z for
+
Zm which are defined, respectively, by V = l ∧ s̄,

W = n ∧ s and Z = l ∧ n + s̄ ∧ s. Then, a basis for
−

Zm is V̄ , W̄ , Z̄, that is, the
conjugates of V , W , Z (for details, see [5, pp. 177–178]). In this case, the following
conditions between these bivectors are satisfied:

WabV
ab = W̄abV̄

ab = 2, ZabZ
ab = Z̄abZ̄

ab = −4

and the other such contractions between any two of them are all zero.
Like the classification of real bivectors given in Section 2.1, one can classify the

complex bivectors as follows (some details can be found in [11]). If
+
F is a simple

member of
+
Zm, then its blade is totally null, that is, it is spanned by a pair of

orthogonal, complex null vectors (the same applies to
−

Zm). Therefore, any simple

member
+
F ∈

+
Zm can be written as

+
F = p ∧ q for complex vectors p and q which

satisfy p.p = q.q = p.q = 0. It can be shown that up to a (complex) scaling, the
blade of a complex totally null bivector has a unique real null direction (see [11]).
Let k be the unique (up to scaling) real null vector satisfying

(4.1)
+
F abk

b = 0.

Then, for the real bivectors F and
∗

F , the conditions Fabk
b = 0 and

∗

F abk
b = 0

hold. This shows that F ,
∗

F are real null bivectors and also k is the (real) unique,
up to scaling, common eigenvector of these bivectors and it is null. In this case, the

self-dual bivector
+
F equipped with these conditions will be called null, otherwise it

will be called nonnull. In the latter case, F and
∗

F are both nonnull. According to

these classifications,
+
F = l ∧ n+ i(x ∧ y) and

+
G = l ∧ x− i(l ∧ y) are examples of

nonnull and null self-dual bivectors, respectively.
With the inspiration from the real case, we shall define the recurrence structure

for self-dual bivectors (similarly, it can be done for anti self-dual bivectors). A self-
dual bivector is called complex recurrent if the condition

(4.2) ∇c

+
F ab =

+
F abPc

is satisfied for some complex 1-form P . Then we have from (4.2)

(4.3) ∇cFab = Fabξc −
∗

F abµc, ∇c

∗

Fab = Fabµc +
∗

Fabξc
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where P = ξ+ iµ with ξ, µ being real 1-forms. It can be seen from (4.3) that if the

imaginary part of the complex 1-form P is zero then the real bivectors F and
∗

F

are recurrent and the converse is also true. Thus, we have the following lemma.

Lemma 4.1. Let a self-dual (or anti self-dual) bivector be complex recurrent. A
necessary and sufficient condition for its real and imaginary parts to be recurrent
is that the recurrence 1-form of the self-dual (or anti self-dual) bivector is real.

On the other hand, for a self-dual bivector, one can calculate that

(4.4)
+
F ab

+
F ab = 2FabF

ab + 2iFab
∗

F ab

since FabF
ab = −

∗

F ab
∗

F ab for Lorentz signature. It is useful to note that a real

bivector F is simple if and only if
∗

F is simple if and only if
∗

F abF
ab = 0 (see [5,

pp. 174–175]). Therefore, we obtain from (4.4) that F (and
∗

F ) is simple if and only

if
+
F ab

+
F ab = 2FabF

ab, that is,
+
F ab

+
F ab is real. In addition to these, we can conclude

that F and
∗

F are (real) null bivectors if and only if FabF
ab = Fab

∗

F ab = 0 ⇔
+
F ab

+
F ab = 0, that is,

+
F is null. Besides this,

+
F is nonnull if and only if

+
F ab

+
F ab 6= 0.

Now suppose that
+
F is complex recurrent with recurrence 1-form P = ξ + iµ.

Let the real and imaginary parts of P be the gradients of some functions. In other
words, assume that there exists some nowhere zero functions η and θ on U such
that ξ = ∇η and µ = ∇θ. Then, using (4.3), it can obtained that the real and

imaginary parts of e−(η+iθ)
+
F = e−η[(cos θ)F + (sin θ)

∗

F ] + ie−η[(cos θ)
∗

F − (sin θ)F ]
are both parallel. This means that a complex recurrent bivector with a (complex)
recurrence 1-form P whose real and imaginary parts are gradients can be scaled to
be a complex parallel bivector whose real and imaginary parts are parallel.

Firstly, assume that
+
F is nonnull and complex recurrent. Then,

+
F ab

+
F ab 6= 0

and (4.2) gives that ∇c(
+
F ab

+
Fab) = 2Pc(

+
F ab

+
F ab). So, P is a complex gradient and,

according to the previous argument,
+
F can be scaled to a complex parallel bivector.

Thus, only complex self-dual bivectors satisfying
+
F ab

+
F ab = 0 (so

+
F is null) may be

properly (complex) recurrent.

Let us now suppose that
+
F is null and complex recurrent. Taking the covariant

derivative of (4.1) and using (4.2), we get
+
F ab∇ck

b = 0. Then, we obtain
∗

F ab(∇ck
b)qc = Fab(∇ck

b)qc = 0

for all q ∈ TmM . Since k is the unique null direction of the real bivectors F and
∗

F (and it is the unique null direction of
+
F at the same time) and

+
F is complex

recurrent, the parallel propagation preserves k being null and due to the discreteness
of the real null eigenvector, k must be recurrent. Therefore, if a self-dual null
bivector is complex recurrent, then there exists a (real) recurrent null vector field.
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Conversely, let k be a recurrent null vector field satisfying equation (4.1). Then,
∇bka = karb for some (real) 1-form r. In this case, the covariant derivative of

(4.1) gives (∇c

+
F ab)k

b = 0 (and so (∇cFab)k
b = (∇c

∗

F ab)k
b = 0). Therefore,

(∇c

+
F ab)k

bqc = 0 for all q. So, (∇c

+
F ab)q

c is a self-dual bivector and it can be

written in a linear combination of the basis V , W , Z for
+
Zm given earlier with

k = l. A contraction with kb then shows that (∇c

+
Fab)q

c is a multiple of the

bivector
+
F for all q. This shows that

+
F is complex recurrent. Similar results can

be done for
−

F . Hence, we have the following theorem.

Theorem 4.1. Let M be a smooth, connected, 4-dimensional manifold admit-

ting a Lorentz metric and
+
F (or

−

F ) be a nowhere-zero, self-dual (or anti self-dual),

complex null bivector on some open subset U of M . Then,
+
F (or

−

F ) is complex
recurrent if and only if there exists a real, null, recurrent vector field on U .

According to the above theorem, we proved that the existence of a real, null,
recurrent vector field is equivalent to the existence of a complex recurrent, self-dual,
null bivector. However, this equivalence cannot hold for the real null bivector case
as we showed in Section 3. More precisely, we proved that a real, recurrent null
bivector implies a real, recurrent null vector field but the converse is not true. For
instance, for holonomy types R7, R12 and R14, l is a recurrent (null) vector field
but using the Ambrose-Singer theorem we showed the nonexistence of a real null
recurrent bivector for these holonomy types. In addition to these, for holonomy

types R2, R4 and R7,
+
F = l ∧ n + i(x ∧ y) is a nonnull, self-dual bivector and it

is (complex) parallel because of the fact that for each of these holonomy types,
∇cla = rcla, ∇cna = −rcna, ∇cxa = qcya and ∇cya = −qcxa for some 1-forms r
and q and so ∇(l∧n) = ∇(x∧y) = 0. Moreover, for these holonomy types, there is
a real, null recurrent vector field (in fact, there are two; l and n which are parallel
for type R4 and which are properly recurrent for types R2 and R7) and so there
exists a complex recurrent null bivector from Theorem 4.1. Hence, the existence of a
nonnull complex recurrent bivector implies the existence of a complex recurrent null

bivector. Besides, for holonomy type R2, the self-dual bivector
+
F = l ∧ x− i(l ∧ y)

is null and complex recurrent with recurrence 1-form real and equal to that of l.
Also, for holonomy type R6, by remembering the exponentiation from the algebra,

one has ∇bxa = laqb for some 1-form q and then
+
F is a (null) complex recurrent

bivector with a real recurrence 1-form. For holonomy types R11, R12 and R14, the
bivector l ∧ x − i(l ∧ y) is complex, null and complex recurrent, but no real null
recurrent bivector exists for these holonomy types.
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