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Abstract. A part of research activity of Professor Mileva Prvanović is related
to the theory of pseudosymmetry type manifolds. We present her contribution
to this theory.

1. Warped product manifolds satisfying some curvature conditions

A part of research activity of Professor Mileva Prvanović is related to the
theory of pseudosymmetry type manifolds. Her results on this subject are contained
in [5,8,15–18,25–27]. In this paper we present comments and remarks on results
contained in [5, 8, 25–27]. We mention that in [2, 23] (see also [1]) some surveys
on research results of Professor Prvanović are given.

Let (M, g), n = dim M > 3, be a semi-Riemannian manifold. We denote by
∇, R, S, κ and C the Levi-Civita connection, the Riemann–Christoffel curvature
tensor, the Ricci tensor, the scalar curvature and the Weyl conformal curvature
tensor of (M, g), respectively. We refer to [5, 11, 14, 17] for precise definitions of

the symbols used. Let (M, g) and (Ñ , g̃), dim M = p, dim Ñ = n − p, 1 6 p < n,
be semi-Riemannian manifolds and F a positive smooth function on M . We denote

by M ×F Ñ the warped product manifold of (M, g) and (Ñ , g̃), see, e.g., [3,24,27].
It is well known that if a semi-Riemannian manifold (M, g), n > 3, is locally

symmetric, then ∇R = 0 on M . This implies the following integrability condition
R(X, Y ) · R = 0, in short R · R = 0. Semi-Riemannian manifolds satisfying the
last condition are called semisymmetric, see, e.g., [28]. Semisymmetric manifolds
form a subclass of the class of pseudosymmetric manifolds. A semi-Riemannian
manifold (M, g), n > 3, is said to be pseudosymmetric if the tensors R · R and
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Q(g, R) are linearly dependent at every point of M , see, e.g., [29]. This is equiva-
lent to R ·R = LRQ(g, R) on UR = {x ∈ M | R − (κ/(2(n − 1)n) g ∧ g 6= 0 at x},
where LR is some function on this set. It seems that the Schwarzschild space-
time, the Kottler spacetime, the Reissner–Nordstrøm spacetime, as well as some
Friedmann–Lemaître–Robertson–Walker spacetimes are the “oldest” examples of
non-semisymmetric pseudosymmetric manifolds, see, e.g., [11,14]. A semi-Rieman-
nian manifold (M, g), n > 3, is called Ricci-pseudosymmetric if the tensors R · S
and Q(g, S) are linearly dependent at every point of M , see, e.g., [11,13,19]. This
is equivalent to R · S = LS Q(g, S) on US = {x ∈ M | S − (κ/n) g 6= 0 at x},
where LS is some function on this set. Every pseudosymmetric manifold is Ricci-
pseudosymmetric. The converse statement is not true, see, e.g., [13,19].

A semi-Riemannian manifold (M, g), n > 3, is said to be recurrent, resp., bire-

current, if ∇R = Φ ⊗ R, resp., ∇2R = Ψ ⊗ R, on the set U of all points of M at
which the Riemann–Christoffel curvature tensor R is nonzero, where Φ is an 1-form
and Ψ a 2-form on U . In [24] Professor Mileva Prvanović determined necessary
and sufficient conditions for a warped product manifold to be a recurrent manifold.
A few years later, results of [24] were used in investigation of birecurrent, confor-
mally symmetric (∇C = 0), conformally recurrent (∇C = Φ ⊗ C) and conformally
birecurrent (∇2C = Ψ ⊗ C) warped product manifolds [9, 21, 22]. In particular,
some result contained in [21, pp. 21–22], we can present as follows: if the warped

product manifold M ×F Ñ , dim M > 1, dim Ñ > 3, is a semisymmetric manifold,

then the fiber (Ñ , g̃) is a pseudosymmetric manifold.
In [27] Professor Prvanović presented a survey of results on warped product

manifolds. In particular, Section 4.4 of that paper is closely related to pseudosym-
metric and Ricci-pseudosymmetric manifolds. We mention that necessary and suf-
ficient conditions for a warped product manifold to be pseudosymmetric, resp.,
Ricci-pseudosymmetric, are given in [10], resp., [13,19].

As it was proved in [20], on every hypersurface M , dim M > 3, isometrically
immersed in a semi-Riemannian space of constant curvature N , the tensors R · R,
Q(S, R) and Q(g, C) of M satisfy on M the following identity

(1.1) R · R = Q(S, R) + LQ(g, C),

where L = (−(n − 2)κ̃)/(n(n + 1)) and κ̃ is the scalar curvature of the ambient
space. Evidently, if N is a semi-Euclidean space, then (1.1) reduces to

(1.2) R · R = Q(S, R).

The necessary and sufficient conditions for a warped product manifold to be a
manifold satisfying (1.1), resp., (1.2), were determined in [8], resp., in [7]. For

instance, in [8, Theorem 4.1] it was stated that every manifold M ×F Ñ , dim M =

1, dim Ñ = 3, satisfies (1.1), for some function L. Thus, in particular, every
4-dimensional generalized Robertson–Walker spacetime satisfies (1.1). Recently,

in [11, Theorem 7.1 (i)] it was proved that warped product manifold M ×F Ñ ,

dim M = dim Ñ = 2, as well as warped product manifold M ×F Ñ , with the fiber

(Ñ , g̃), dim M = 2, dim Ñ = n − 2 > 3, which is a space of constant curvature,
satisfies (1.1). In the proof of that theorem results of [8] were applied.
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The semi-Riemannian manifold (M, g), n > 3, is said to be a quasi-Einstein
manifold if rank (S − α g) = 1 on US ⊂ M , where α is some function on this set.
Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein
field equations and the investigation on quasi-umbilical hypersurfaces of confor-
mally flat spaces, see e.g., [4] and references therein. Recently quasi-Einstein man-
ifolds satisfying some pseudosymmetry type curvature conditions were investigated
among others in [5,11]. There are different extensions of the class of quasi-Einstein
manifolds. For instance we have the class of almost quasi-Einstein manifolds, see,
e.g., [4], or the class of 2-quasi-Einstein manifolds, see, e.g., [11,12].

Let (Ñ , g̃), dim Ñ = n−1 > 4, be a not of constant curvature semi-Riemannian
Einstein manifold, M = (a, b), a < b, g11 = ε = ±1, and F : (a, b) → R+ a

smooth function. According to [13], the manifold M ×F Ñ , is a Ricci-pseudo-

symmetric manifold satisfying R · R = LSQ(g, S) on US ⊂ M ×F Ñ , with LS =
ε((F ′2/4F 2) − (F ′′/2F )), F ′ = dF/dt, F ′′ = dF ′/dt and t ∈ (a, b). Further,
on US we also have [5, Theorem 4.1]: rank(S − ((κ/(n − 1)) − LS) g) = 1 and
(n − 2)(R · C − C · R) = Q(S, R) − LSQ(g, R). From this we obtain [11, Example
4.1] (n − 2)(R · C − C · R) = Q(S, C) − LSQ(g, C).

Let M ×F Ñ be a warped product manifold such that (Ñ , g̃), dim Ñ = n−1 > 4,
is a semi-Riemannian non-Einstein manifold, M = (a, b), a < b, g11 = ε = ±1, and
F : (a, b) → R+ a smooth function. In [5, Theorem 4.4] the necessary and sufficient
conditions for such warped product to be a quasi-Einstein manifold are given.

As it was stated in Section 1, every warped product manifold M×F Ñ , dim M =

1, dim Ñ = 3, satisfies (1.1). We also have the following result related to manifolds:

M ×F Ñ , dim M = 1, dim Ñ > 3 [11, Theorem 4.3]. Let M ×F Ñ , dim M = 1,

dim Ñ = n − 1 > 3, be the manifold such that (Ñ , g̃) is a quasi-Einstein manifold

and let (Ñ , g̃) is a conformally flat manifold, when n > 5. Then the manifold

M ×F Ñ satisfies (1.1) and C · C = LCQ(g, C), for some function and LC .

2. Ricci-generalized pseudosymmetric manifolds

According to [6], a semi-Riemannian manifold (M, g), n = dim M > 3, is said
to be Ricci-generalized pseudosymmetric if on M we have

(2.1) R · R = LQ(S, R),

where L is some function on M . In [25, 26] Professor Mileva Prvanović presented
some extension of the class of manifolds satisfying (2.1). Namely, in [25, 26] SP-
Sasakian manifolds satisfying the following curvature conditions were investigated

R · R = Lp Q(Sp, R), p = 0, 1, 2, . . . ,(2.2)

R · T = Lq Q(Sq, T ), q = 0, 1, 2, . . . ,(2.3)

where Lp and Lq are some functions, the tensors S0, S1, S2, S3, . . ., are defined by
S0 = g, S1 = S, S2(X, Y ) = S(SX, Y ), S3(X, Y ) = S2(SX, Y ), . . ., respectively, S
is the Ricci operator, g(SX, Y ) = S(X, Y ), T is a generalized curvature tensor and
X, Y are vector fields on M .



4 DESZCZ, GŁOGOWSKA, JEŁOWICKI

It is known that the Gödel spacetime satisfies among other things the condi-
tions: (1.2), S2 = κS and κ = const 6= 0, see, e.g., [11, p. 14]. These relations
yield R · R = (1/κ)Q(S2, R). Thus the Gödel spacetime satisfies (2.2), with p = 1
and L1 = 1, i.e., (1.2), as well as (2.2), with p = 2 and L2 = 1/κ.

We define on an open connected and nonempty set M ⊂ R4 the metric g by

gijdxidxj = f1(x1) (dx1)2 + f2(x1) (dx2)2 + f3(x1) (dx3)2 + f4 (x2, x3) (dx4)2,

where f1, . . . , f4 are some positive smooth functions on M . We can check that at
every point of M the tensors R · R, Q(g, C), Q(S, R), Q(S2, R) and Q(S3, R) are
linearly dependent.

Let M × Ñ be the product manifold of a 3-dimensional Riemannian manifold

(M, g) and an 1-dimensional Riemannian manifold (Ñ , g̃). It is known that (1.2)

holds on M × Ñ [7, Corollary 3.2]. Moreover, we also have on M × Ñ : S4 +α3S3 +

α2S2 + α1S + α0g = 0, where α0, . . . , α3 are some functions. Let U ⊂ M × Ñ
be the set of all points at which α1 is nonzero. Thus α1R · R = −α0Q(g, R) −
α2Q(S2, R) − α3Q(S3, R) − Q(S4, R) on U .

Let M , dim M = n > 4, is a hypersurface isometrically immersed in a Rie-
mannian space of constant curvature N . The Ricci tensor S of the hypersurface M
satisfies Sn + αn−1Sn−1 + · · · + α2S2 + α1S + α0g = 0, where α0, α1, . . . , αn are
some functions on M . Let U be the set of all points of M at which α1 is nonzero.
Now, using (1.1), we can express the tensor R · R by a linear combination of the
tensors Q(g, C), Q(g, R), Q(S2, R), . . . , Q(Sn, R).

Using the above presented remarks, we can define, on a semi-Riemannian man-
ifold of dimension > 4, the following curvature conditions:

(a) the tensor R · R is a linear combination of the tensors Q(g, C), Q(g, R),
Q(S2, R), . . . , Q(Sk, R), where k = 0, 1, 2, . . . , and

(b) the tensor R · S is a linear combination of the tensors Q(Sk, Sl), k < l,
where k = 0, 1, 2, . . . and l = 1, 2, . . ..

Some particular subcase of (b), the tensor R · S is a linear combination of
the tensors Q(g, S), Q(g, S2) and Q(S, S2), was investigated in [11, Section 6], see
also [12, Section 4].
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