We give a construction of the Piunikhin--Salamon--Schwarz isomorphism between the Morse homology and the Floer homology generated by Hamiltonian orbits starting at the zero section and ending at the conormal bundle. We also prove that this isomorphism is natural in the sense that it commutes with the isomorphisms between the Morse homology for different choices of the Morse function and the Floer homology for different choices of the Hamiltonian. We define a product on the Floer homology and prove triangle inequality for conormal spectral invariants with respect to this product.