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DEGENERATE MULTI-TERM FRACTIONAL
DIFFERENTIAL EQUATIONS IN LOCALLY

CONVEX SPACES

Marko Kostić

Abstract. We investigate, in the setting of sequentially complete locally con-
vex spaces, degenerate multi-term fractional differential equations with Caputo
derivatives. The obtained theoretical results are illustrated with some exam-
ples.

1. Introduction and preliminaries

Let n ∈ Nr{1}, 0 6 α1 < · · · < αn, let A1, . . . , An−1 be closed linear operators
on a Hausdorff sequentially complete locally convex space E, and let f : [0, ∞) → E
be a continuous function. The well-posedness of the following multi-term fractional
differential equation has been analyzed in a series of recent papers (cf. [20, Section
2.10] for an extensive survey of results on abstract multi-term fractional differential
equations with Caputo fractional derivatives)

Dαn
t u(t) +

n−1∑

i=1

AiD
αi
t u(t) = f(t), t > 0; u(j)(0) = uj, j = 0, . . . , ⌈αn⌉ − 1.

Define mi := ⌈αi⌉, i ∈ Nn−1, Ti,Lu(t) := AiD
αi
t u(t), if t > 0, i ∈ Nn−1 and αi > 0,

and Ti,Ru(t) := Dαi
t Aiu(t), if t > 0 and i ∈ Nn−1. Henceforth it will be assumed

that, for every t > 0 and i ∈ Nn−1, Tiu(t) denotes either Ti,Lu(t) or Ti,Ru(t). In
this paper, we will consider the following degenerate abstract multi-term problem:

(1.1)

n−1∑

i=1

Tiu(t) = f(t), t > 0.
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In such a way, we will continue our previous research studies [22, 27], where we
have looked at generation of degenerate fractional resolvent operator families and
hypercyclic properties of degenerate multi-term fractional differential equations.

In order to subject initial conditions to equation (1.1), we shall follow the
approach from [27]. First of all, assume that α > 0 and m = ⌈α⌉. Let us recall
that the Caputo fractional derivative Dα

t u [6, 20] is defined for those functions

u ∈ Cm−1([0, ∞) : E) for which gm−α∗(u−
∑m−1

j=0 u(j)(0)gj+1) ∈ Cm([0, ∞) : E), by

Dα
t u(·) =

dm

dtm

[
gm−α ∗

(
u −

m−1∑

j=0

u(j)(0)gj+1

)]
.

If α ∈ N, then the Caputo fractional derivative Dα
t u(·) is defined iff u ∈ Cm([0, ∞) :

E); in this case, Dα
t u(·) = (dα/dtα)u(·) ∈ C([0, ∞) : E). The following facts can

be proved by using the equality [6, (1.21)], induction and closedness of A:

(a) Suppose that l ∈ N and u, Au ∈ Cl([0, ∞) : E). Then u(j)(t) ∈ D(A), t > 0
and Au(j)(t) = (Au)(j)(t), t > 0 (0 6 j 6 l).

(b) Suppose that the Caputo fractional derivatives Dα
t u and Dα

t Au are defined.
Then u(j)(t) ∈ D(A), t > 0, Au(j)(t) = (Au)(j)(t), t > 0 (0 6 j 6 m − 1),
Dα

t u(t) ∈ D(A), t > 0, ADα
t u(t) = Dα

t Au(t), t > 0, and

Jα
t ADα

t u(t) = Jα
t Dα

t Au(t) = Au(t) −
m−1∑

j=0

Au(j)(0)gj+1(t), t > 0,

where Jα
t u(t) := (gα ∗ u)(t), t > 0.

Set Pλ :=
∑n−1

i=1 λαi−αn−1Ai, λ ∈ C r {0}, I := {i ∈ Nn−1 : αi > 0 and Ti,Lu(t)
appears on the left hand side of (1.1)}, Q := max I, if I 6= ∅ and Q := mQ := 0,
if I = ∅. We will subject the following initial conditions to the equation (1.1), cf.
(a)–(b):

(1.2) u(j)(0) = uj , 0 6 j 6 mQ −1 and (Aiu)(j)(0) = ui,j if mi −1 > j > mQ.

If Tn−1u(t) = Tn−1,Lu(t), then (1.2) reads u(j)(0) = uj, 0 6 j 6 mn−1 − 1. If
this is not the case, then choice (1.2) may be nonoptimal, the index i ∈ Nn−1 has
to satisfy the inequality mi − 1 > mQ in the second equality appearing in (1.2),
and we cannot expect the existence of solutions of problem (1.1)–(1.2), in general
(consider, for example, the case n = 3, A2 = A1 and u2,0 6= u1,0); furthermore, for
any index i ∈ Nn−1 satisfying the inequality mi−1 > mQ and for every nonnegative
integer k ∈ [mQ, mi − 1], we need to introduce exactly one initial value ui,k.

The most important subcases of problem (1.1))–(1.2) are the following frac-
tional Sobolev degenerate equations:

(DFP)R :

{
Dα

t Bu(t) = Au(t) + f(t), t > 0,

Bu(0) = Bx; (Bu)(j)(0) = 0, 1 6 j 6 ⌈α⌉ − 1,

and

(DFP)L :

{
BDα

t u(t) = Au(t) + f(t), t > 0,

u(0) = x; u(j)(0) = 0, 1 6 j 6 ⌈α⌉ − 1,
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where α > 0. For further information concerning the wellposedness of Sobolev
first order degenerate equations, the reader may consult the monographs by Favini,
Yagi [9], Krein [31], Carroll, Showalter [7], Melnikova, Filinkov [34] and Sviridyuk,
Fedorov [45], as well as the papers [1,10–14,35,50,51,55]. The well-posedness of
various types of degenerate Sobolev equations of second order have been analyzed
in [2,4,7,9,15,22,36,44,52,56]. The corresponding results on degenerate Sobolev
equations with integer higher-order derivatives can be found in [3], [9, Section 5.7],
[45–49,56].

For the purpose of study of abstract multi-term problem (1.1)–(1.2), we in-
troduce the classes of exponentially equicontinuous k-regularized C-resolvent (i, j)-
propagation families (Subsection 2.1) and exponentially equicontinuous (k; C)-reg-
ularized resolvent (i, j)-propagation families (Subsection 2.2). We investigate sub-
ordination principles, regularity properties, existence and uniqueness of solutions of
problem (1.1)–(1.2) and its integral analogons; besides this, we clarify some results
on the C-wellposedness of the equation (DFP)L in Subsection 2.2 (cf. Abdelaziz,
Neubrander [1] for the case α = 1). In a follow-up research [25], we are going to
analyze various types of degenerate Volterra integro-differential equations by using
results from the theory of multivalued linear operators [9,34].

Before we explain the notation used throughout the paper, it should be noticed
that we take under consideration some equations that are valuable only from the
mathematical point of view and do not have any physical significance, for now at
least.

Unless specifed otherwise, we shall always assume that E is a Hausdorff sequen-
tially complete locally convex space over the field of complex numbers, SCLCS for
short; the abbreviation ⊛ stands for the fundamental system of seminorms which
defines the topology of E. If X is also an SCLCS over the field of complex num-
bers, then we denote by L(E, X) the space of all continuous linear mappings from
E into X ; L(E) ≡ L(E, E). By E∗ we denote the dual space of E; if E is a
Banach space, then we denote by ‖x‖ the norm of an element x ∈ E. If A is a
linear operator acting on E, then the domain and range of A will be denoted by
D(A) and R(A), respectively. Since no confusion seems likely, we will identify A
with its graph. Given s ∈ R in advance, set ⌈s⌉ := inf{l ∈ Z : s 6 l}. Define
Σα := {z ∈ C r {0} : | arg(z)| < α} (α ∈ (0, π]). By ACloc([0, ∞)) we denote the
space consisting of all complex valued functions that are absolutely continuous on
any finite interval [0, T ] (T > 0). The Gamma function is denoted by Γ(·) and
the principal branch is always used to take the powers; the convolution like map-

ping ∗ is given by f ∗ g(t) :=
∫ t

0 f(t − s)g(s) ds. Set gζ(t) := tζ−1/Γ(ζ), 0ζ := 0

(ζ > 0, t > 0), Nl := {1, . . . , l}, N0
l := {0, 1, . . . , l} (l ∈ N) and g0(t) := the Dirac

δ-distribution.
Fairly complete information about fractional calculus and fractional differential

equations can be obtained by consulting [6, 8, 16–22, 27, 28, 32, 39, 40]. In the
sequel, we shall use the following fact about Caputo fractional derivatives: Assume
that α > 0, m = ⌈α⌉, β ∈ (0, α) and the Caputo fractional derivative Dα

t u(·) is

defined. Then we know that the Caputo fractional derivative Dβ
t u(·) is also defined
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and the following equality holds:

(1.3) Dβ
t u(t) =

(
gα−β ∗ Dα

t u(·)
)
(t) +

m−1∑

j=⌈β⌉

u(j)(0)gj+1−β(t), t > 0.

The Mittag-Leffler function Eα,β(z) is defined by

Eα,β(z) :=

∞∑

n=0

zn

Γ(αn + β)
, z ∈ C.

In this place, we assume that 1/Γ(αn + β) = 0 if αn + β ∈ −N0. Set, for short,
Eα(z) := Eα,1(z), z ∈ C. The asymptotic behaviour of the entire function Eα,β(z)
is given in the following auxiliary lemma; cf. also [32, 42] and the formulae [6,
(1.27)–(1.28)] for the case 0 < α < 2, which is the most important in our analysis.

Lemma 1.1. [53] Let 0 < σ < 1
2 π. Then, for every z ∈ C r {0} and m ∈

Nr {1},

Eα,β(z) =
1

α

∑

s

Z1−β
s eZs −

m−1∑

j=1

z−j

Γ(β − αj)
+ O

(
|z|−m

)
, |z| → ∞,

where Zs is defined by Zs := z1/αe2πis/α and the first summation is taken over all
those integers s satisfying | arg(z) + 2πs| < α(π

2 + σ).

Throughout the paper, we shall always assume that the function k(t) is a scalar-
valued continuous kernel on [0, ∞). The following conditions on function k(t) will
be used occasionally:

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0, ∞) and

there exists β ∈ R such that k̃(λ) := L(k)(λ) := lim
b→∞

∫ b

0 e−λtk(t)dt :=
∫ ∞

0 e−λtk(t)dt exists for all λ ∈ C with Re λ > β. Put abs(k) :=inf{Re λ :

k̃(λ) exists}, δ̃(λ) := 1 and denote by L−1 the inverse Laplace transform.
(P2): k(t) satisfies (P1) and k̃(λ) 6= 0, Re λ > β for some β > abs(k).

Let γ ∈ (0, 1) and ω ∈ R. Recall that the Wright function Φγ(·) is defined by
Φγ(t) := L−1(Eγ(−λ))(t), t > 0. Following [54, Definition 1.1.3], we say that a
function h : (ω, ∞) → E belongs to the class LT − E iff there exists a function
f ∈ C([0, ∞) : E) such that for each p ∈ ⊛ there exists Mp > 0 satisfying p(f(t)) 6

Mpeωt, t > 0 and h(λ) =
∫ ∞

0 e−λtf(t) dt, λ > ω; if this is the case, then we know
that the function λ 7→ h(λ), λ > ω can be analytically extended to the right half
plane {λ ∈ C : Re λ > ω}.

The reader may consult [54] and [20] for further information concerning the
Laplace transform of functions with values in sequentially complete locally convex
spaces (cf. [5] for the Banach space case). In the sequel, we shall use the following
uniqueness type theorem for the Laplace transform.

Lemma 1.2. Let ω > 0, and let f1, f2 ∈ C([0, ∞) : E) satisfy that for each
p ∈ ⊛ there exists M ′

p > 0 such that p(f1(t)) + p(f2(t)) 6 M ′
peωt, t > 0. Suppose
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that a continuous function g : [0, ∞) → C satisfies (P1) and that A is a closed linear
operator on E satisfying that for λ > a,

∫ ∞

0
e−λtf1(t)dt ∈ D(A),

A

∫ ∞

0
e−λtf1(t)dt =

∫ ∞

0
e−λtf2(t)dt +

∫ ∞

0
e−λtg(t)x dt, λ > a,

for some x ∈ E. Then, for every t > 0, one has f1(t) ∈ D(A) and Af1(t) =
f2(t) + g(t)x.

In [22], we have recently considered the C-wellposedness of the following de-
generate abstract Volterra equation:

(1.4) Bu(t) = f(t) +

∫ t

0
a(t − s)Au(s)ds, t > 0,

where t 7→ f(t), t > 0 is a continuous E-valued mapping, a ∈ L1
loc([0, ∞)) and A, B

are closed linear operators with domain and range contained in E (cf. also [11–13]
and [18]). Following Xiao and Liang [55,56], we have introduced in [22] the class
of exponentially equicontinuous (a, k)-regularized C-resolvent families for (1.4) as
follows.

Definition 1.1. [22] Suppose that the functions a(t) and k(t) satisfy (P1),
as well as that R(t) : D(B) → E is a linear mapping (t > 0). Let C ∈ L(E)
be injective. Then the operator family (R(t))t>0 is said to be an exponentially
equicontinuous (a, k)-regularized C-resolvent family for (1.4) iff there exists ω >

max(0, abs(a), abs(k)) such that the following holds:

(i) The mapping t 7→ R(t)x, t > 0 is continuous for every fixed element x ∈ D(B).
(ii) The family {e−ωtR(t) : t > 0} is equicontinuous, i.e., for every p ∈ ⊛, there

exist c > 0 and q ∈ ⊛ such that p(e−ωtR(t)x) 6 cq(x), x ∈ D(B), t > 0.
(iii) For every λ ∈ C with Re λ > ω and k̃(λ) 6= 0, the operator B − ã(λ)A is

injective, C(R(B)) ⊆ R(B − ã(λ)A) and

k̃(λ)
(
B − ã(λ)A

)−1
CBx =

∫ ∞

0
e−λtR(t)x dt, x ∈ D(B).

If k(t) = gr+1(t) for some r > 0, then it is also said that (R(t))t>0 is an
exponentially equicontinuous r-times integrated (a, C)-regularized resolvent fam-
ily for (1.4); an exponentially equicontinuous 0-times integrated (a, C)-regularized
resolvent family for (1.4) is also said to be an exponentially equicontinuous (a, C)-
regularized resolvent family for (1.4).

For further information concerning the applications of (a, k)-regularized C-
resolvent families to non-degenerate Volterra integro-differential equations (cf. Def-
inition 1.1 with B = I), the reader may consult the monograph [20]. For abstract
non-scalar Volterra equations, we refer the reader to [25,29,30,40].
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2. Degenerate k-regularized C-resolvent propagation families
for problem (1.1)–(1.2)

Let us recall that n ∈ N r {1}, 0 6 α1 < · · · < αn−1, as well as that
A1, . . . , An−1 are closed linear operators on E and that f : [0, ∞) → E is a contin-
uous function. Let the set I and number Q be defined as above.

Suppose, for the time being, that the initial values uj ∈ E (0 6 j 6 mQ − 1)
satisfy uj ∈ D(Ai), provided i ∈ Nn−1, Tiu(t) = Ti,Ru(t) and 0 6 j 6 mi − 1 (put
ui,j := Aiuj in this case), and ui,j ∈ E, provided i ∈ Nn−1, Tiu(t) = Ti,Ru(t) and
mi − 1 > j > mQ. We start this section by introducing the notion of a strong
solution of problem (1.1)–(1.2).

Definition 2.1. A function u ∈ C([0, ∞) : E) is said to be a strong solution of
problem (1.1)–(1.2) iff the term Tiu(t) is well defined and continuous for any t > 0,
i ∈ Nn−1, and (1.1)–(1.2) holds identically on [0, ∞).

Now we would like to observe the following fact. If Q > 0, then we can consider
the problem obtained from problem (1.1) by replacing some of the terms Ti,R(t),
for 1 6 i 6 Q, with the corresponding terms of form Ti,L(t). By (1.3) and (b), it
readily follows that a strong solution of problem (1.1)–(1.2)) is also a strong solu-
tion of the problem described above, when endowed with initial conditions (1.2).
It is also worth noting that we have considered in [27, Remark 11(i)] problem (1.1)
endowed with slightly different initial conditions, and that the existence of strong
solutions of certain classes of multi-term problems with hypercyclic behaviour has
been investigated in [27, Theorem 10] (cf. [27, Example 13] for an interesting appli-
cation of the above-mentioned theorem involving the Ornstein-Uhlenbeck operators
on L2-type spaces).

Define now, for every i ∈ Nn−1 and t > 0,

Ti,Lu(t) := gαn−1−αi ∗ Ai

[
u(·) −

mi−1∑

j=0

ujgj+1(·)

]
(t), if Tiu(t) = Ti,Lu(t),(2.1)

Ti,Ru(t) := gαn−1−αi ∗

[
Aiu(·) −

mi−1∑

j=0

ui,jgj+1(·)

]
(t), if Tiu(t) = Ti,Ru(t).(2.2)

Let Tiu(t) denote, as before, exactly one of the terms Ti,Lu(t) or Ti,Ru(t). Inte-
grating equation (1.1) αn−1 times, the foregoing arguments imply that any strong
solution t 7→ u(t), t > 0 of problem 1.1–(1.2) satisfies the following integral equation

(2.3)

n−1∑

i=1

Tiu(t) =
(
gαn−1 ∗ f

)
(t), t > 0.

This motivates us to introduce the following definition.

Definition 2.2. Let uj ∈ E (0 6 j 6 mQ−1), let ui,j ∈ E, provided i ∈ Nn−1,
Tiu(t) = Ti,Ru(t) and 0 6 j 6 mi − 1, and let V ⊆ Nn−1. Then a continuous E-
valued function t 7→ u(t), t > 0 is said to be a V-mild solution of (2.3) iff (i)–(v)
hold where
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(i) gαn−1−αi ∗ [u(·) −
∑mi−1

j=0 ujgj+1(·)](t) ∈ D(Ai) for all t > 0 and i ∈ I ∩ V , the

mapping t 7→ Ai(gαn−1−αi ∗ [u −
∑mi−1

j=0 ujgj+1])(t), t > 0 is well-defined and
continuous for all i ∈ I ∩ V ,

(ii) the mapping t 7→ (gαn−1−αi ∗ Ai[u −
∑mi−1

j=0 ujgj+1])(t), t > 0 is continuous
for all i ∈ I r V ,

(iii) (gαn−1−αi ∗ u)(t) ∈ D(Ai) for all t > 0 and i ∈ (Nn−1 r I) ∩ V , the mapping
t 7→ Ai(gαn−1−αi ∗ u)(t), t > 0 is continuous for all i ∈ (Nn−1 r I) ∩ V ,

(iv) the mapping t 7→ (gαn−1−αi ∗ Aiu)(t), t > 0 is well-defined and continuous for
all i ∈ (Nn−1 r I) r V ,

(v) for every t > 0, the following holds:

∑

i∈I∩V

Ai

(
gαn−1−αi ∗

[
u(·) −

mi−1∑

j=0

ujgj+1(·)

])
(t)

+
∑

i∈IrV

(
gαn−1−αi ∗ Ai

[
u(·) −

mi−1∑

j=0

ujgj+1(·)

])
(t)

+
∑

i∈(Nn−1rI)rV

(gαn−1−αi ∗ Aiu)(t) +
∑

i∈(Nn−1rI)∩V

Ai(gαn−1−αi ∗ u)(t)

=
∑

i∈Nn−1rI

∑

j∈N0
mi−1

gαn−1−αi+1+j(t)ui,j + (gαn−1 ∗ f)(t), t > 0.

If V = ∅ (V = Nn−1), then we also say that u(t) is a strong (mild) solution of (2.3).

Any strong solution of problem (1.1)–(1.2) is also a strong solution of problem
(2.3), and any V-mild solution of problem (2.3) is also a V ′-mild solution of (2.3)
provided that V , V ′ ⊆ Nn−1 and V ⊆ V ′. As already observed in [27] for the
problem (DFP)L, a sufficiently smooth strong solution of the problem (2.3) need
not be a strong solution of problem (1.1)–(1.2) in the case that I 6= ∅. The situation
is quite complicated even in the case that I = ∅ because then we can only prove
that a strong solution of problem (2.3) satisfies the equation

∑

i∈Nn−1

(
gmn−1−mi ∗gmi−αi ∗

[
Aiu(·)−

mi−1∑

j=0

ui,jg1+j(·)

])
(t) = (gαn−1 ∗f)(t), t > 0,

which does not imply, in general, that the function

t 7→ gmi−αi ∗

[
Aiu −

mi−1∑

j=0

ui,jg1+j

]
(t), t > 0

is mi-times continuously differentiable for i ∈ Nn−1 (the problem (DFP)R is an
exception, cf. [27]). Because of that, we shall primarily consider degenerate integral
equation (2.3) in the sequel.

Remark 2.1. Before dividing our further research into two separate subsec-
tions, it should be observed that we can further generalize the abstract form of
problem (1.1) by assuming that some of the terms Tiu(t) can be expressed as sums
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of terms like A′
iD

αi
t (B′

iD
βi

t u(t)) and Dαi
t A′′

i (Dβi

t B′′
i u(t)), with A′

i, B′
i, A′′

i , B′′
i

being closed linear operators on E and βi > 0 (cf. [44, Chapter VI] for correspond-
ing examples). It would take too long to go into further details concerning this
topic here.

2.1. Exponentially equicontinuous k-regularized C-resolvent (i, j)-
propagation families for (1.1)–(1.2). Following the method employed in the
papers [55,56] and [22], we introduce the notion of an exponentially equicontinuous
k-regularized C-resolvent propagation family for problem (1.1)–(1.2) as follows (cf.
the problem (2.3) with I = ∅, x = ui,j , the other initial values being zeroes, and
then apply the formula [6, (1.23)] for the Laplace transform of Caputo derivatives
of the αth order).

Definition 2.3. Suppose that the function k(t) satisfies (P1), as well as that
1 6 i 6 n − 1, 0 6 j 6 mi − 1 and Ri,j(t) : D(Ai) → E is a linear mapping
(t > 0). Let the operator C ∈ L(E) be injective. Then the operator family
(Ri,j(t))t>0 is said to be an exponentially equicontinuous k-regularized C-resolvent
(i, j)-propagation family for problem (1.1)–(1.2) iff there exists ω > max(0, abs(k))
such that the following holds:

(i) The mapping t 7→ Ri,j(t)x, t > 0 is continuous for every fixed element x ∈
D(Ai).

(ii) The family {e−ωtRi,j(t) : t > 0} is equicontinuous, i.e., for every p ∈ ⊛, there
exist c > 0 and q ∈ ⊛ such that p(e−ωtRi,j(t)x) 6 cq(x), x ∈ D(Ai), t > 0.

(iii) For every λ ∈ C with Re λ > ω and k̃(λ) 6= 0, the operator Pλ is injective,
C(R(Ai)) ⊆ R(Pλ) and

(2.4) λαi−αn−1−j k̃(λ)P −1
λ CAix =

∫ ∞

0
e−λtRi,j(t)x dt, x ∈ D

(
Ai

)
.

If k(t) = gr+1(t) for some r > 0, then it is also said that (Ri,j(t))t>0 is
an exponentially equicontinuous r-times integrated C-regularized resolvent (i, j)-
propagation family for (1.1)–(1.2); an exponentially equicontinuous 0-times inte-
grated C-regularized resolvent (i, j)-propagation family for (1.1)–(1.2) is also said
to be an exponentially equicontinuous C-regularized resolvent (i, j)-propagation
family for (1.1)–(1.2).

Before we state the following important extension of [56, Theorem 3.1], it is
worth noting that we do not use here the condition CAi ⊆ AiC, in contrast to
the corresponding definitions from [55, 56] and [22], and that the existence of
an exponentially equicontinuous k-regularized C-resolvent (i, 0)-propagation fam-
ily for problem (1.1)–(1.2) implies the existence of an exponentially equicontin-
uous k-regularized C-resolvent (i, j)-propagation family for problem (1.1)–(1.2)
(j ∈ N0

mi−1); if this is the case, we have Ri,j(t)x = (gj ∗ Ri,0(·)x)(t), t > 0,

j ∈ N0
mi−1, x ∈ D(Ai). Observe also that the uniqueness theorem for Laplace

transform implies that there exists at most one exponentially equicontinuous k-
regularized C-resolvent (i, j)-propagation family for problem (1.1)–(1.2) and that
the assertions of [22, Remark 2.3(iv), Proposition 2.4, Theorem 2.5] can be refor-
mulated in our context.
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Theorem 2.1. Suppose that 1 6 i 6 n − 1, 0 6 j 6 mi − 1 and there exists
an exponentially equicontinuous k-regularized C-resolvent (i, j)-propagation family
(Ri,j(t))t>0 for problem (1.1)–(1.2).

(i) Assume that there exists l ∈ Nn−1 such that the following condition:
(C.1) For every v ∈ Nn−1 r {l} and x ∈ D(Ai), there exist a number ω0 > ω

and a continuous E-valued function t 7→ fi,j,v(t; x), t > 0 such that,
for every p ∈ ⊛, there exists Mp > 0 with p(fi,j,v(t; x)) 6 Mpeωt, t > 0

(v ∈ Nn−1r{l}) and that, for every λ ∈ C with Re λ > ω0 and k̃(λ) 6= 0,
∫ ∞

0
e−λtfi,j,v(t; x) dt = λαi−αn−1−j+αv−αn−1 k̃(λ)AvP −1

λ CAix

holds. Then for each v0 ∈ D(Ai) the function u(t) := Ri,j(t)v0, t > 0 is a mild
solution of the integral equation

n−1∑

v=1

Av

(
gαn−1−αv ∗ u

)
(t) =

(
gαn−1−αi+j ∗ k

)
(t)CAiv0, t > 0,(2.5)

defined in the same way as in Definition 2.2(ii).
(ii) Let ∅ 6= K ⊆ Nn−1. If the following conditions hold,

(C.2) For every l ∈ K and x ∈ D(Ai), and for every v ∈ Nn−1 r {l},
there exist a number ωl,v > ω and a continuous E-valued function
t 7→ gi,j,l,v(t; x), t > 0 such that, for every p ∈ ⊛, there exists Mp,l,v > 0
with p(gi,j,l,v(t; x)) 6 Mp,l,veωl,vt, t > 0 (l ∈ K, v ∈ Nn−1 r {l}) and

that, for every λ ∈ C with Re λ > ωl,v and k̃(λ) 6= 0,
∫ ∞

0
e−λtgi,j,l,v(t; x)dt = λαi−αn−1−j+αv−αl k̃(λ)AvP −1

λ CAix

(C.3) For every l ∈ K, there exist a number ωl > ω and a continuous function
hl : [0, ∞) → C satisfying (P1) and

h̃l(λ) = k̃(λ)λαi−αl−j , Re λ > ωl,

then for each v0 ∈ D(Ai) the function u(t) = Ri,j(t)v0, t > 0 satisfies that
the mappings t 7→ Alu(t), t > 0 are well-defined, continuous and that for each
p ∈ ⊛ there exist Mp > 0 and ω0 > ω with p(Alu(t) − hl(t)CAiv0) 6 Mpeω0t,
t > 0 (l ∈ K). Furthermore, for every t > 0,

∑

l∈K

(gαn−1−αl
∗ Alu)(t) +

∑

l∈Nn−1rK

Al(gαn−1−αl
∗ u)(t)(2.6)

=
(
gαn−1−αi+j ∗ k

)
(t)CAiv0.

(iii) Suppose that (C.1) holds. Let v0 ∈
⋂n−1

i=1 D(Ai), let ∅ 6= K ⊆ Nn−1, and let
CAp ⊆ ApC for all p ∈ Nn−1. If the following condition holds,
(C.4) For every l ∈ K and for every v ∈ Nn−1 r {i}, there exist a number

ωl,v > ω and a continuous function hl,v : [0, ∞) → E satisfying that, for
every p ∈ ⊛, there exists Mp,l,v > 0 with p(hl,v(t)) 6 Mp,l,veωl,vt, t > 0

and h̃l,v(λ) = k̃(λ)λαv −αn−1−jAlP
−1
λ CAvv0, Re λ > ωl,v, k̃(λ) 6= 0,



58 KOSTIĆ

then the function u(t) = Ri,j(t)v0, t > 0 satisfies that the mappings t 7→ Alu(t),
t > 0 are well-defined, continuous and that for each p ∈ ⊛ there exist Mp > 0
and ω0 > ω with p(Alu(t) − (gj ∗ k)(t)CAlv0) 6 Mpeω0t, t > 0 (l ∈ K).
Furthermore, for every t > 0, (2.6) holds.

(iv) Suppose that CAp ⊆ ApC, p ∈ Nn−1 and k(t) satisfies (P2), as well as that
n = 3 or that n > 4 and the following condition holds:
(C.5) For every p ∈ ⊛ and l ∈ Nn−1 r {i}, there exist numbers λp,l, σp,l > 0,

a seminorm qp,l ∈ ⊛ and a function hp,l : (λp,l, ∞) → (0, ∞) such that

p(P −1
λ CAlx) 6 [qp,l(x) + qp,l(Alx)]hp,l(λ), λ > λp,l, x ∈ D(Al), and

limλ→+∞ e−λσp,lhp,l(λ) = 0.
Then the function u(t) = Ri,j(t)v0, t > 0 is a unique mild solution of integral
equation (2.5), provided that v0 ∈ D(Ai) and the assumptions of (i) hold. Fur-
thermore, the function u(t) = Ri,j(t)v0, t > 0 is a unique function satisfying
that the mapping t 7→ Alu(t), t > 0 is well-defined, continuous (l ∈ K) and
that (2.6) holds, provided that v0 ∈ D(Ai) and the assumptions of (ii) hold,

resp. v0 ∈
⋂n−1

i=1 D(Ai) and the assumptions of (iii) hold.

Proof. Let v0 ∈ D(Ai). Due to the condition (C.1) and Lemma 1.2, we have
that the function t 7→ Av(gαn−1−αv ∗ Ri,j(·)v0)(t), t > 0 is well-defined, continuous
and that for each p ∈ ⊛ there exist M ′

p > 0 and ω′ > ω with p(Av(gαn−1−αv ∗

Ri,j(·)v0)(t)) 6 M ′
peω′t, t > 0 (v ∈ Nn−1 r {l}); furthermore,

∫ ∞

0
e−λtAv(gαn−1−αv ∗ Ri,j(·)v0)(t)dt = k̃(λ)λαi−αn−1−j+αv −αn−1AvP −1

λ CAiv0,

for any v ∈ Nn−1 r {l} and for any λ ∈ C with Re λ > ω′ and k̃(λ) 6= 0. Using the
identity

(2.7) k̃(λ)λαi−αn−1−j+αl−αn−1AlP
−1
λ CAiv0

= k̃(λ)λαi−αn−1−j

[
CAiv0 −

∑

v∈Nn−1r{l}

λαv−αn−1 AvP −1
λ CAiv0

]
,

for any λ ∈ C with Re λ > ω′ and k̃(λ) 6= 0, and Lemma 1.2, it readily follows that
the function t 7→ Al(gαn−1−αl

∗ Ri,j(·)v0)(t), t > 0 is well-defined, continuous and
that

Al(gαn−1−αl
∗ Ri,j(·)v0)(t) = (gαn−1−αi+j ∗ k)(t)CAiv0

−
∑

v∈Nn−1r{l}

Al(gαn−1−αv ∗ Ri,j(·)v0)(t), t > 0,

proving that the function u(t) = Ri,j(t)v0, t > 0 is a mild solution of integral
equation (2.5). Suppose now that conditions (C.2)–(C.3) hold, as well as that
v0 ∈ D(Ai) and ∅ 6= K ⊆ Nn−1. Clearly, (C.2) implies (C.1) with any l ∈ K.
Similarly as in the proof of (i), the conditions (C.2)–(C.3) in combination with
equation (2.7), multiplied by λαn−1−αl , imply that there exists a sufficiently large
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number ω′
l > ω such that

Al

∫ ∞

0
e−λtRi,j(t)v0 dt = h̃l(λ)CAiv0 −

∫ ∞

0
e−λt

∑

v∈Nn−1rK

gi,j,l,v(t; v0)dt,

for any l ∈ K and for any λ ∈ C with Re λ > ω′
l. Then we can use the assertion (i)

and Lemma 1.2 to complete the proof of (ii). In order to prove (iii), observe first

that the assumptions v0 ∈
⋂n−1

i=1 D(Ai) and CAp ⊆ ApC, p ∈ Nn−1 imply that

P −1
λ C(λαi−αn−1Aiv0)+

∑

v∈Nn−1r{i}

P −1
λ C(λαv −αn−1Avv0) = P −1

λ CPλv0 = Cv0,(2.8)

provided Re λ > ω and k̃(λ) 6= 0. Making use of (2.4) and (2.8), we obtain that,
for any such value of complex parameter λ, the following holds:

Al

∫ ∞

0
e−λtRi,j(t)v0 dt = λ−j k̃(λ)AlP

−1
λ C(λαi−αn−1Aiv0)

= λ−j k̃(λ)Al

[
Cv0 −

∑

v∈Nn−1r{i}

λαv−αn−1P −1
λ CAvv0

]
.

Keeping in mind the last equation, as well as condition (C.4) and Lemma 1.2, the
proof of (iii) follows instantly. We will prove the uniqueness of solutions in (iv) only
in the case that v0 ∈ D(Ai) and the assumptions of (i) hold. Let t 7→ u(t), t > 0
be a mild solution of integral equation (2.5) with v0 = 0. Convoluting the function
u(·) with gξ(·), for a sufficiently large number ξ > 0, we may assume without of
generality that, for every v ∈ Nn−1, the mapping t 7→ Avu(t), t > 0 is well-defined
and continuous. Set, for every t > 0 and ζ > 0, vt,ζ(λ) := (gζ ∗ eλ·)(t) − λ−ζetλ,
λ > 0; vt,0(λ) := 0 (t > 0, λ > 0). Then the mapping t 7→ vt,ζ(λ) is continuous in
t > 0, for any fixed numbers ζ > 0 and λ > 0, and by [54, Lemma 1.5.5, p. 23],
there exists M > 1 such that the mapping λ 7→ vt,ζ(λ), λ > 0 satisfies

(2.9) |vt,ζ(λ)| 6 M
[
(1 + t)ζ−1λ−1(1 + λ1−ζ) + tζ−1λ−1]

, λ > 0, t > 0, ζ > 0.

Keeping in mind that CAp ⊆ ApC, p ∈ Nn−1, we have that, for every t > 0 and
λ > 0,

λαi−αn−1

∫ t

0
eλ(t−s)AiCu(s)ds +

∫ t

0
vt−s,αn−1−αi(λ)AiCu(s)ds

= C

∫ t

0
eλ(t−s)(gαn−1−αi ∗ Aiu)(s)ds

= (−C)
∑

v∈Nn−1r{i}

∫ t

0
eλ(t−s)(gαn−1−αv ∗ Avu)(s)ds

= −
∑

v∈Nn−1r{i}

[
λαv−αn−1

∫ t

0
eλ(t−s)AvCu(s)ds +

∫ t

0
vt−s,αn−1−αv (λ)AvCu(s)ds

]
,
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which clearly implies that, for every λ > ω, σ > 0 and t > 0, the following holds:

λαi−αn−1−j k̃(λ)e−λσ

∫ t

0
eλ(t−s)Cu(s)ds

(2.10)

= −λαi−αn−1−j k̃(λ)e−λσP −1
λ C

∫ t

0
vt−s,αn−1−αi (λ)Aiu(s)ds

− λαi−αn−1−j k̃(λ)e−λσ
∑

v∈Nn−1r{i}

P −1
λ C

∫ t

0
vt−s,αn−1−αv (λ)Avu(s)ds.

By (2.4) and (2.10), we obtain that, for every λ > ω, σ > 0 and t > 0, the following
holds:

e−λσ

∫ t

0
eλ(t−s)Cu(s)ds

= −
λαn−1+j−αi e−λσ

k̃(λ)

∫ ∞

0
e−λsRi,j(s)

( ∫ t

0
vt−r,αn−1−αi(λ)u(r)dr

)
ds

− e−λσ
∑

v∈Nn−1r{i}

P −1
λ CAv

∫ t

0
vt−s,αn−1−αv (λ)u(s)ds.

For the estimation of the first addend on the right-hand side of the above equality,
we can use the fact that there exist numbers σ0 > 0 and M ′ > 1 such that

(2.11)
e−λσ0

|k̃(λ)|
6 M ′, λ > ω + 1;

cf. the proof of [22, Theorem 2.8]. Keeping in mind (2.9) and (2.11), it can be
simply proved that, for every σ > σ0 and for every p ∈ ⊛, we have
(2.12)

lim
λ→+∞

p
(λαn−1+j−αi e−λσ

k̃(λ)

∫ ∞

0
e−λsRi,j(s)

( ∫ t

0
vt−r,αn−1−αi(λ)u(r)dr

)
ds

)
= 0.

If n > 4, then condition (C.5) in combination with the previous equality and (2.9)
shows that, for every p ∈ ⊛, there exists a sufficiently large number σp > 0 such
that limλ→+∞ e−λσpp((eλ· ∗ Cu)(t)) = 0, t > 0; the same holds in the case that
n = 3 because then we can use, instead of condition (C.5), equation (2.8) and the
arguments already seen in proving equation (2.12), to conclude that

lim
λ→+∞

p
(

e−λσ
∑

v∈Nn−1r{i}

P −1
λ CAv

∫ t

0
vt−s,αn−1−αv (λ)v(s)ds

)
= 0,

for any σ > σ0 and t > 0. In such a way, we obtain that for each p ∈ ⊛

the following holds: limλ→+∞

∫ t

0 eλ(t−s−σ)Cu(s)ds = 0, t > 0, σ > σp. By the
dominated convergence theorem, it readily follows that for each p ∈ ⊛ we have:

limλ→+∞ p(
∫ t−σ

0 eλ(t−s−σ)Cu(s)ds) = 0, t > σ > σp. Therefore,

lim
λ→+∞

∫ t

0
eλ(t−s)Cu(s)ds = 0, t > 0.
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Since C is injective, we can apply [20, Lemma 2.1.33(iii)] (cf. [38, Lemma 1.4.4,
p. 100] for the Banach space case) to complete the proof. �

The uniqueness of solutions of integral equation (2.5), resp. (2.6), can be proved
even in the case of non-existence of an exponentially equicontinuous k-regularized
C-resolvent (i, j)-propagation family for problem (1.1)–(1.2). Strictly speaking, the
proof of Theorem 2.1 implies the following uniqueness type theorem for degenerate
multi-term problems (cf. [10, Theorem 3.1] for a pioneering result on the uniqueness
of degenerate first order equations):

Theorem 2.2. Suppose that CAp ⊆ ApC for all p ∈ Nn−1, V ⊆ Nn−1 and
the requirements in (C.5) hold for every seminorm p ∈ ⊛ and for every number
l ∈ Nn−1. Then there exists at most one mild solution t 7→ u(t), t > 0 of integral
equation (2.5) with v0 = 0, resp. there exists at most one continuous E-valued
function t 7→ u(t), t > 0 satisfying that the mapping t 7→ Alu(t), t > 0 is well-
defined, continuous (l ∈ K) and that (2.6) holds with v0 = 0. In particular, there
exists at most one V-mild solution of problem (2.3) and there exists at most one
strong solution of problem (1.1)–(1.2).

Remark 2.2. Suppose again that the general assumptions of Theorem 2.1
hold, i.e., that 1 6 i 6 n − 1, 0 6 j 6 mi − 1 and there exists an exponentially
equicontinuous k-regularized C-resolvent (i, j)-propagation family (Ri,j(t))t>0 for
problem (1.1)–(1.2).

(i) Suppose that k(t) satisfies (P2) and that, for every l ∈ Nn−1 r {i}, there
exists jl ∈ N0

ml−1 such that there exists an exponentially equicontinuous k-
regularized C-resovent (l, jl)-propagation family for problem (1.1)–1.2. By the
proof of Theorem 2.1(iv), we have that condition (C.5) automatically holds.

(ii) The uniqueness of solutions of non-degenerate integral equations has been
recently considered in [30]. It ought to be observed that we must impose the
additional condition CAp ⊆ ApC, p ∈ N0

n−1 in the formulation of Theorem 3.2
in [30] in order for its proof to work.

(iii) Let ∅ 6= K ⊆ Nn−1. Suppose that v0 ∈ D(Ai) and conditions (C.2)–(C.3) hold,

or that v0 ∈
⋂n−1

i=1 D(Ai), CAp ⊆ ApC for all p ∈ Nn−1, and the conditions
(C.1) and (C.4) hold. Let u(t) be the solution of (2.6), satisfying the proper-
ties stated above. Consider now equation (2.3) and the notion introduced in
Definition 2.2 with indexes i, j replaced by i′, j′. Then the following holds:
(a) If i ∈ Nn−1 r I, k(t) = 1, uj′ = 0 (0 6 j′ 6 mi′ − 1), ui′,j′ = CAiv0,

provided i′ = i and j′ = j, and ui′,j′ = 0, otherwise, then u(t) is a
(Nn−1 r K)-mild solution of (2.3) with f(t) = 0.

(b) If i ∈ I, k(t) = 1, ui′,j′ = 0 (i′ ∈ Nn−1, j′ ∈ N0
mi′ −1), uj′ = Cv0,

provided j′ = j, uj′ = 0, otherwise, and CAi ⊆ AiC, then u(t) is a
(Nn−1 r K)-mild solution of (2.3) with f(t) = 0, provided that for each
i′ ∈ {s ∈ I r {i} : ms − 1 > j} one has Ai′Cv0 = 0.

(iv) Making use of [54, Theorem 1.1.9], Lemma 1.2 and the formula [6, (1.23)], we
can clarify some sufficent conditions for the existence of terms
ApD

αp

t u(t) and D
αp

t Apu(t) (p ∈ Nn−1). Unfortunately, it is very hard to
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verify these conditions in practical situations because we do not know the
precise values of elements Ri,j(0)x, R′

i,j(0)x, . . . (x ∈ D(Ai)).

The notion of an exponentially equicontinuous (equicontinuous), analytic k-
regularized C-resolvent (i, j)-propagation family (Ri,j(t))t>0 for problem (1.1)–
(1.2) is introduced in the following definition.

Definition 2.4. Suppose that 1 6 i 6 n − 1, 0 6 j 6 mi − 1, 0 < α 6 π
and there exists an exponentially equicontinuous k-regularized C-resolvent (i, j)-
propagation family (Ri,j(t))t>0 for problem (1.1)–(1.2). Suppose, further, that the
function k(t) satisfies (P1), as well as that C ∈ L(E) is an injective mapping. Then
it is said that (Ri,j(t))t>0 is an exponentially equicontinuous (equicontinuous),
analytic k-regularized C-resolvent (i, j)-propagation family (Ri,j(t))t>0 for problem
(1.1)–(1.2), of angle α, iff the following holds:

(i) For every x ∈ D(Ai), the mapping t 7→ Ri,j(t)x, t > 0 can be analytically
extended to the sector Σα; since no confusion seems likely, we shall denote the
extension by the same symbol.

(ii) For every x ∈ D(Ai) and β ∈ (0, α), one has limz→0,z∈Σβ
Ri,j(z)x = Ri,j(0)x.

(iii) For every β ∈ (0, α), there exists ωβ > max(0, abs(k)) (ωβ = 0) such that the
family {e−ωβzRi,j(z) : z ∈ Σβ} is equicontinuous, i.e., for every p ∈ ⊛, there
exist c > 0 and q ∈ ⊛ such that p(e−ωβzRi,j(z)x) 6 cq(x), x ∈ D(Ai), z ∈ Σβ .

The proof of following theorem can be given by using the arguments given in
that of [24, Theorem 3.7].

Theorem 2.3. Assume that the function k(t) satisfies (P1), 1 6 i 6 n − 1,
0 6 j 6 mi − 1, ω > max(0, abs(k)), α ∈ (0, π/2] and the operator C ∈ L(E)
is injective. Assume, further, that for every λ ∈ C with Re λ > ω and k̃(λ) 6= 0,
we have that the operator Pλ is injective and C(R(Ai)) ⊆ R(Pλ). Let for each
x ∈ D(Ai) there is an analytic function qx : ω + Σ π

2 +α → E such that

qx(λ) = λαi−αn−1−j k̃(λ)P −1
λ CAix, Re λ > ω, k̃(λ) 6= 0.

Suppose that, for every β ∈ (0, α) and p ∈ ⊛, there exist cp,β > 0 and rp,β ∈ ⊛

such that p((λ − ω)qx(λ)) 6 cp,βrp,β(x), x ∈ D(Ai), λ ∈ ω + Σβ+(π/2) and that, for
every x ∈ D(Ai), there exists the limit limλ→+∞ λqx(λ) in E. Then there exists
an exponentially equicontinuous k-regularized C-resolvent (i, j)-propagation family
(Ri,j(t))t>0 for problem (1.1)–(1.2), of angle α, and for each β ∈ (0, α) the family
{e−ωzRi,j(z) : z ∈ Σβ} is equicontinuous.

Differential properties of (a, k)-regularized C-resolvent families have been in-
vestigated in [22, Theorems 3.4 and 3.5]; these assertions can be simply reformu-
lated for exponentially equicontinuous (analytic) k-regularized C-resolvent (i, j)-
propagation families in locally convex spaces. As the following theorem shows, this
is also the case with the assertion of [22, Theorem 3.3].

Theorem 2.4. Suppose that 1 6 i 6 n − 1, 0 6 j 6 mi − 1, 0 < γ < 1,
0 6 j′ 6 mi − 1, and there exists an exponentially equicontinuous k-regularized
C-resolvent (i, j)-propagation family (Ri,j(t))t>0 for problem (1.1)–(1.2) satisfying
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that the family {e−ωtRi,j(t) : t > 0} is equicontinuous for some ω > max(0, abs(k)).
Assume that k(t) satisfies (P1) and there exists a scalar-valued continuous kernel
kγ(t) on [0, ∞), satisfying (P1), and a positive real number η > 0 such that

k̃γ(λ) = λγ−1+j′−γj k̃
(
λγ

)
, λ > η.

Then there exists an exponentially equicontinuous k-regularized C-resolvent (i, j′)-
propagation family (Ri,j′,γ(t))t>0 for problem (1.1)–(1.2), with αi replaced by γαi

(i ∈ Nn−1) , and (Ri,j′,γ(t))t>0 is given by Ri,j′,γ(0) := Ri,j(0),

Ri,j′,γ(t)x :=

∫ ∞

0
t−γΦγ(st−γ)Ri,j(s)x ds, x ∈ D(Ai), t > 0.

Furthermore, the family {e−ω1/γtRi,j′,γ(t) : t > 0} is equicontinuous and, for every
ζ > 0, the equicontinuity of the family {e−ωt(1 + tζ)−1Ri,j(t) : t > 0}, resp.
{e−ωtt−ζRi,j(t) : t > 0}, implies the equicontinuity of the family

{e−ω1/γt(1 + tγζ)−1(1 + ωtζ(1−γ))−1Ri,j′,γ(t) : t > 0},

resp. {e−ω1/γtt−γζ(1 + ωtζ(1−γ))−1Ri,j′,γ(t) : t > 0},

and the following holds:

(i) The mapping t 7→ Ri,j′,γ(t)x, t > 0 admits an analytic extension to the sector
Σmin(( 1

γ −1) π
2 ,π) for all x ∈ D(Ai).

(ii) If ω = 0 and ε ∈
(
0, min

((
1
γ − 1

)
π
2 , π

))
, then the family {Ri,j′,γ(z) : z ∈

Σmin(( 2
γ −1) π

2 ,π)−ε} is equicontinuous and limz→0,z∈Σ
min(( 1

γ
−1) π

2
,π)−ε

Ri,j′,γ(z)x

= Ri,j′,γ(0)x for all x ∈ D(Ai).
(iii) If ω > 0 and ε ∈ (0, min(( 1

γ − 1)π
2 , π

2 )), then there exists δγ,ε > 0 such that the

family {e−δγ,ε Re zRi,j′,γ(z) : z ∈ Σmin(( 1
γ −1) π

2 , π
2 )−ε} is equicontinuous. More-

over, limz→0,z∈Σ
min(( 1

γ
−1) π

2
, π

2
)−ε

Ri,j′,γ(z)x = Ri,j′,γx for all x ∈ D(Ai).

Remark 2.3. Using the proof of [6, Theorem 3.1] and an elementary argu-
mentation, it can be simply verified that any of conditions (C.1)–(C.5) is invariant
under the action of subordination principle described in Theorem 2.4.

Before illustrating our abstract results from this subsection by some examples,
we would like to observe that the analysis carried out in [40, Theorem 4.1, p. 101],
[22, Theorem 2.6(i)] and Theorem 2.1 can be used in the study of the following
degenerate integral equation:

∑

j∈K

(aj ∗ Aju)(t) +
∑

j∈Nn−1rK

Aj(aj ∗ u)(t) = f(t), t > 0,

where ∅ 6= K ⊆ Nn−1, f ∈ C([0, ∞) : E), and the functions a1(t), . . . , an−1(t)
satisfy certain properties. For the sake of brevity and better exposition, we shall
only refer the reader to [29, Theorem 4.4] for the corresponding result in the case
of non-degenerate equations.
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Example 2.1. (cf. also [29, Example 5.1(i)]) Suppose that cl ∈ Cr 0 (1 6 l 6
n − 1), as well as that A and B are closed linear operators on E, and Al = clB for
1 6 l 6 n − 1. We consider the following degenerate multi-term problem:

(2.13) Dαn
t Bu(t) +

n−1∑

l=1

clD
αl
t Bu(t) = Dα

t Au(t), t > 0,

equipped with the initial conditions of the form (1.2). Here 0 6 α1 < · · · < αn,
0 6 α < αn, and

Pλ =

n−1∑

l=1

clλ
αl−αnB − λα−αn A + B, λ ∈ C r {0}.

(i) (a) Suppose 0 < δ 6 2, σ > 1, πδ
2(αn−α) − π

2 > 0, 0 6 j 6 ⌈αn⌉ − 1, and

there exists an exponentially equicontinuous (σ − 1)-times integrated C-resolvent
propagation family (R(t))t>0 for problem (1.4), with a(t) = gδ(t). Put σ′ :=

max(1, 1 − j + (αn − α)(σ − 1)δ−1) and θ := min
(

π
2 , πδ

2(αn−α) − π
2

)
. Then, for every

sufficiently small number ε > 0, there exists ωε > 0 such that C(R(B)) ⊆ R(Pλ)

for all λ ∈ ωε + Σ π
2

δ−ε and that the family {|λ|
δ−σ

δ (1 + |λ|
1
δ )(λB − A)−1CBx : λ ∈

ωε + Σ π
2 δ−ε, x ∈ D(B)} is equicontinuous. Noting also that

arg

(
λαn−α +

n−1∑

l=1

clλ
αl−α

)
≈ (αn − α) arg(λ), λ → ∞, arg(λ) <

π

αn − α
,

our choice of θ implies that, for every sufficiently small number ε > 0, there exists
ω′

ε > 0 such that, for every λ ∈ ω′
ε + Σ π

2
+θ−ε, one has

λαn−α +
n−1∑

l=1

clλ
αl−α ∈ ωε + Σ π

2
δ−ε.

Put now, for every x ∈ D(B) and λ ∈ ω′
ε + Σ π

2
+θ−ε,

qx(λ) := λ−j−σ′

P −1
λ CBx.

Then qx : ω′
ε + Σ π

2
+θ−ε → E is an analytic function and, for every β ∈ (0, θ) and

p ∈ ⊛, there exist cp,β > 0 and rp,β ∈ ⊛ such that p((λ − ω′
ε)qx(λ)) 6 cp,βrp,β(x),

x ∈ D(B), λ ∈ ω′
ε +Σ π

2
+θ−ε. By the proof of [5, Proposition 4.1.3, p. 248], we have

that limRe λ→+∞ λδ−σ+1(λδB − A)−1CBx = Ri,j(0)x, x ∈ D(B), which simply
implies that, for every x ∈ D(B), there exists the limit limλ→+∞ λqx(λ) in E.
Therefore, Theorem 2.3 implies that there exists an exponentially equicontinuous,
analytic (σ′ −1)-times integrated C-resolvent (n, j)-propagation family (Rn,j(t))t>0

for problem (2.13), of angle θ (with the clear meaning).

(b) Suppose 0 < δ 6 2, σ > 1, 0 6 j 6 ⌈αn⌉−1, γ ∈ (0, π
2 ] and

δ( π
2 +γ)

(αn−α) − π
2 > 0.

Put σ1 := σ′ and θ1 := min(π
2 ,

δ( π
2 +γ)

(αn−α) − π
2 ). Arguing similarly as in (a), one can

prove the following: Suppose that for each ε ∈ (0, π
2 + γ) there exists ωε > 0 such
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that for each x ∈ D(B) there exists an analytic function qx : ωε + Σ π
2 +γ−ε → E

satisfying that

qx(λ) = λδ−σ(λδB − A)−1CBx, λ ∈ ωε + Σ π
2 +γ−ε, x ∈ D(B),

and that for each p ∈ ⊛ there exist cp > 0 and qp ∈ ⊛ so that

p(qx(λ)) 6 cp
qp(x)

1 + |λ|
, λ ∈ ωε + Σ π

2 +γ−ε, x ∈ D(B).

Then the existence of limit limRe λ→+∞ λδ−σ+1(λδB − A)−1CBx in E, for all
x ∈ D(B), implies that there exists an exponentially equicontinuous, analytic
(σ1 − 1)-times integrated C-resolvent (n, j)-propagation family (Rn,j(t))t>0 for
problem (2.13), of angle θ1; if there is an element x ∈ D(B) such that the limit
limRe λ→+∞ λδ−σ+1(λδB − A)−1CBx does not exist in E, then the above holds
with any number σ2 > σ1. For the purpose of illustration of obtained results, as-
sume now that n ∈ N and iA′

l, 1 6 l 6 n are commuting generators of bounded
C0-groups on a Banach space E. Put A′ := (A′

1, . . . , A′
n); we refer the reader

to [57] and [22, Section 4] for the definition of a closable operator P (A′), where
P (x) is a complex polynomial in n variables, and for more details about functional
calculus for commuting generators of bounded C0-groups (if E = Lp(Rn) for some
p ∈ [1, ∞), then the obvious choice is A′

l := −i∂/∂xl, with maximal distibutional
domain). Suppose 0 < δ < 2, ω > 0, P1(x) and P2(x) are non-zero complex polyno-

mials, N1 = dg(P1(x)), N2 = dg(P2(x)), β > n
2

(N1+N2)
min(1,δ) (resp. β > n| 1

p − 1
2 | (N1+N2)

min(1,δ) ,

if E = Lp(Rn) for some 1 < p < ∞), P2(x) 6= 0, x ∈ Rn and

(2.14) sup
x∈Rn

Re
((P1(x)

P2(x)

)1/δ)
6 ω.

Set

(2.15) Rδ(t) :=
(

Eδ

(
tδ P1(x)

P2(x)

)
(1 + |x|2)−β/2

)
(A′), t > 0.

By [22, Theorem 4.3], we know that (Rδ(t))t>0 ⊆ L(E) is a global exponentially

bounded (gδ, Rδ(0))-regularized resolvent family for problem (1.4) with B = P2(A′),

A = P1(A′) and a(t) = gδ(t). By the conclusion in (a), it readily follows that there
exists an exponentially equicontinuous, analytic C-resolvent (n, j)-propagation fam-
ily (Rn,j(t))t>0 for problem (2.13), of angle θ = min(π

2 , πδ
2(αn−α) − π

2 ). Since condi-

tion (ii.1) given in the formulation of [22, Theorem 2.8] holds, with a(t) = gδ(t) and
k(t) = 1, it is not diificult to prove, with the help of our previous consideration and
the results concerning the Laplace transform of analytic vector-valued functions
(see e.g. [24, Section 3]) that conditions (C.1) and (C.5) hold for (2.13), as well
as that condition (C.4) holds for (2.13) provided that αn−1 6 α; we need the last
condition because the inclusion λαn−1−αn−1AP −1

λ Cx ∈ LT − E has to be satisfied
(x ∈ E), it is also worth noting that we do not need the condition αn−1 6 α for
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the existence of solutions of the integral equation

Bu(t) +

n−1∑

l=1

cl(gαn−αl
∗ Bu)(t) = A(gαn−α ∗ u)(t) + CBv0, t > 0,

cf. (2.6). It is also worth noting that we can refine the results on C-wellposednes
of equation (2.13) by using the estimates quoted in [22, Remark 4.4(ii)] and that
we can similarly consider equation (2.13) in El-type spaces (cf. [22, Remark 4.5]).

(ii) (cf. [29, Example 5.1(i)-(b)] and [22, Example 3.8] for more details) Let
s > 1, 0 6 j 6 ⌈αn⌉ − 1, ka,b(t) := L−1(exp(−aλb))(t), t > 0 (a > 0, b ∈ (0, 1)),

E :=
{

f ∈ C∞[0, 1]; ‖f‖ := sup
p>0

‖f (p)‖∞

p!s
< ∞

}

A′ := −d/ds, D(A′) := {f ∈ E; f ′ ∈ E, f(0) = 0}.

Let P1(z) =
∑N1

l=0 al,1zl, z ∈ C, aN1,1 6= 0 be a complex non-zero polynomial, and

let P2(z) =
∑N2

l=0 al,2zl, z ∈ C, aN2,2 6= 0 be a complex non-zero polynomial so
that N1 = dg(P1) > 1 + dg(P2) = 1 + N2 (we leave to the interested reader the
analysis of the case N1 6 N2, in which we always have the existence of integrated
solution resolvent (n, j)-propagation families for problem (2.13)). Set A := P1(A′)
and B := P2(A′). Using the consideration given in [22, Example 3.8], we can prove
that there exist numbers b > 0 and c > 0 such that

(2.16) ‖(λB − A)−1‖ = O
(
eb|λ|1/(N1−N2)s+c|λ|1/(N1−N2))

, λ ∈ C,

and that, for every complex non-zero polynomial P (z) with dg(P ) 6 N1, there
exists ζ > 0 such that

(2.17) ‖(λB − A)−1P (A′)f‖ 6 ζ‖f‖eb|λ|1/(N1−N2)s+c|λ|1/(N1−N2)

,

for all λ ∈ C and f ∈ D(P (A′)) (observe that the above estimates can be used
in proving the existence of convoluted solutions of fractional analogs of equation
(λ − ∆)ut = α∆ − β∆2 (α, β > 0, λ ∈ R), in contrast with the assertions of
[22, Theorems 4.2 and 4.3] which can be applied only in the case that λ > 0; as
observed by G. A. Sviridyuk, this equation is important in evolution modeling of
some problems appearing in the theory of liquid filtration, see e.g. [9, p. 6]). Let
θ ∈ (0, π/2], b′ = (αn − α)/(N1 − N2) and let b′ 6 π/(π + 2θ). Owing to (2.16),
(2.17) and Theorem 2.3, we obtain that there is a sufficiently large number a′ > 0
such that there exists an exponentially equicontinuous, analytic ka′,b′ -regularized
I-resolvent (n, j)-propagation family (Rn,j(t))t>0 for problem (2.13), of angle θ,
satisfying conditions (C.1)–(C.5). Denote, as before, Tl,Lu(t) = BDαl

t u(t), t > 0
if l ∈ Nn and αl > 0, Tl,Ru(t) = Dαl

t Bu(t), t > 0 if l ∈ Nn, T0,Lu(t) = ADα
t u(t),

t > 0 if α > 0, and T0,Ru(t) = Dα
t Au(t), t > 0. Let Tlu(t) be either Tl,Lu(t) or

Tl,Ru(t) (l ∈ N0
n). Then it can be easily seen that for each x ∈ D(B) the function

u(t) = Rn,j(t)x, t > 0 is a unique strong solution of the problem

Tnu(t) +

n−1∑

l=1

clTlu(t) = T0u(t) +
(
k

(mn)
a′,b′ ∗ gj+mn−αn

)
(t), t > 0,
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with all initial values chosen to be zeroes. Observe, finally, that the analysis con-
tained in [29, Example 5.4] can be used for the construction of hypoanalytic ex-
ponentially equicontinuous k-regularized I-resolvent (n, j)-propagation families for
the problem

∑

l∈K

Pl(A
′)Dαl

t u(t) +
∑

l∈Nn−1rK

Dαl
t Pl(A

′)u(t) = 0, t > 0,

where P1(z), . . . , Pn−1(z) are complex non-zero polynomials satysfying certain prop-
erties, and K ⊆ Nn−1.

2.2. Exponentially equicontinuous (a, k)-regularized C-resolvent
families generated by A, B; exponentially equicontinuous (k; C)-regular-
ized resolvent (i, j)-propagation families for (1.1)–(1.2). In this subsection,
we shall mainly consider the C-wellposedness of problem (DFP)L with A and B
being closed linear operators on E. Set pB(x) := p(x) + p(Bx), x ∈ D(B), p ∈ ⊛.
Then the calibration (pB)p∈⊛ induces the Hausdorff sequentially complete locally
convex topology on D(B). We shall denote this space simply by [D(B)].

Following the consideration given in [1, Section 2], we introduce the following
definition.

Definition 2.5. Suppose that the functions a(t) and k(t) satisfy (P1), as well
as that R(t) ∈ L(E, [D(B)]) for all t > 0. Let C ∈ L(E) be injective, and let
CA ⊆ AC and CB ⊆ BC. Then the operator family (R(t))t>0 is said to be
an exponentially equicontinuous (a, k)-regularized C-resolvent family generated by
A, B iff there exists ω > max(0, abs(a), abs(k)) such that the following holds:

(i) The mappings t 7→ R(t)x, t > 0 and t 7→ BR(t)x, t > 0 are continuous
for every fixed element x ∈ E.

(ii) The family {e−ωtR(t) : t > 0} ⊆ L(E, [D(B)]) is equicontinuous, i.e., for
every p ∈ ⊛, there exist c > 0 and q ∈ ⊛ such that

p(e−ωtR(t)x) + p(e−ωtBR(t)x) 6 cq(x), x ∈ E, t > 0.

(iii) For every λ ∈ C with Re λ > ω and k̃(λ) 6= 0, the operator B − ã(λ)A is
injective, R(C) ⊆ R(B − ã(λ)A) and

k̃(λ)(B − ã(λ)A)−1Cx =

∫ ∞

0
e−λtR(t)x dt, x ∈ E.

If k(t) = gr+1(t) for some r > 0, then it is also said that (R(t))t>0 is an ex-
ponentially equicontinuous r-times integrated (a, C)-regularized resolvent family
generated by A, B; an exponentially equicontinuous 0-times integrated (a, C)-
regularized resolvent family generated by A, B is also said to be an exponentially
equicontinuous (a, C)-regularized resolvent family generated by A, B.

Before going any further, it should be noticed that we have already constructed
some examples of (gα, k)-regularized C-resolvent families generated by A, B in
Example 2.1(ii).

Remark 2.4. Suppose that the functions a(t) and k(t) satisfy (P1), as well as
that CA ⊆ AC and CB ⊆ BC.
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(i) It is clear that an exponentially equicontinuous (a, k)-regularized C-resolvent
family generated by A, B, if exists, must be unique.

(ii) If for each λ ∈ C with Re λ > ω and k̃(λ) 6= 0 the operator B commutes
with (B − ã(λ)A)−1C, then the operator family (BR(t))t>0 is an exponen-
tially equicontinuous (a, k)-regularized C-resolvent family for (1.4), and the
condition (ii.1) stated in the formulation of [22, Theorem 2.8] holds. Further-
more, for each t > 0 the operator BR(t) can be continuously extended from
D(B) to the whole space E.

(iii) Assume that (R(t))t>0 is an exponentially equicontinuous (a, k)-regularized C-
resolvent family for (1.4) and that there exists a strongly continuous operator

family (R̂(t))t>0 ⊆ L(E) such that R̂(t)x = R(t)x, t > 0, x ∈ D(B) (the last
condition automatically follows from the previous one if E is complete and B is
densely defined; cf. [22, Remark 2.3(iv)]). If B−1 ∈ L(E) and BR(t) ⊆ R(t)B,
t > 0, then (R(t)B−1)t>0 is an exponentially equicontinuous (a, k)-regularized
C-resolvent family generated by A, B.

The proof of the following theorem can be deduced by using slight modifications
of the proofs of [1, Proposition 2.1, Lemma 2.2] and the fact that the assertion
of [21, Lemma 2.4] continues to hold in SCLCSs.

Theorem 2.5. Let (R(t))t>0 be an exponentially equicontinuous (a, k)-regular-
ized C-resolvent family generated by A, B, and let abs(|a|) < ∞. Then the following
holds:

(i) For every x ∈ E and for every λ ∈ C with Re λ > ω and k̃(λ) 6= 0, we have

k̃(λ)B(B − ã(λ)A)−1Cx =

∫ ∞

0
e−λtBR(t)x dt.

(ii) R(t)Bx = k(t)Cx +
∫ t

0 a(t − s)R(s)Ax ds, t > 0, x ∈ D(A) ∩ D(B).

(iii)
∫ t

0 a(t − s)R(s)x ds ∈ D(A) ∩ D(B), t > 0, x ∈ E.

(iv) BR(t)x = k(t)Cx + A
∫ t

0 a(t − s)R(s)x ds, t > 0, x ∈ E.
(v) R(t)B(D(A) ∩ D(B)) ⊆ D(A) ∩ D(B), t > 0.
(vi) B(B − ã(λ)A)−1CAx = A(B − ã(λ)A)−1CBx for every x ∈ D(A)∩D(B) and

for every λ ∈ C with Re λ > ω and k̃(λ) 6= 0; AR(t)Bx = BR(t)Ax, t > 0,
x ∈ D(A) ∩ D(B).

(vii) Suppose that the function k(t) is differentiable at a point t0 > 0 and that
a ∈ ACloc([0, ∞)). If λ ∈ C satisfies Re λ > ω and k̃(λ) 6= 0, then for every
j ∈ N0, z ∈ C and for every complex polynomial P (·), we have

( d

dt

[
(z(B − ã(λ)A)−1C − P (C))jR(t)Bx

])
t=t0

= (z
(
B − ã(λ)A)−1C − P (C))j

( d

dt
R(t)Bx

)
t=t0

.



DEGENERATE MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS 69

(viii) Let x ∈ D(A) ∩ D(B). Then the function t 7→ u(t), t > 0, defined by u(t) :=
R(t)Bx, t > 0 satisfies u ∈ C([0, ∞) : [D(A)]) ∩ C([0, ∞) : [D(B)]) and

Bu(t) = k(t)CBx +

∫ t

0
a(t − s)Au(s)ds, t > 0.

Remark 2.5. (i) Suppose that x ∈ D(A)∩D(B), α > 0 and there exists an ex-
ponentially equicontinuous (gα, C)-regularized resolvent family (R(t))t>0 generated

by A, B. Using the identity R(t)Bx = Cx+
∫ t

0 gα(t−s)R(s)Ax ds, t > 0, it readily
follows that the mapping t 7→ R(t)Bx, t > 0 is (m − 1)-times continuously differ-
entiable on [0, ∞), where m = ⌈α⌉. Furthermore, it can be easily verified that the
Caputo derivative Dα

t R(t)Bx is well defined as well as that Dα
t R(t)Bx = R(t)Ax,

t > 0. Keeping in mind Remark 2.2(ii) and Proposition 2.5(vi), we get that the
function u(t) := R(t)Bx, t > 0 is a unique solution of the following Cauchy problem:

u ∈ C([0, ∞) : [D(A)]) ∩ C([0, ∞) : [D(B)]) ∩ Cm−1([0, ∞) : E),

BDα
t u(t) = Au(t), t > 0,

u(0) = Cx; u(j)(0) = 0, 1 6 j 6 m − 1.

In Theorem 2.6 below, we extend this result to the class of exponentially equi-
continuous (gα, gαl+1)-regularized C-resolvent families generated by A, B (l∈N).

(ii) Now we would like to illustrate the conclusion deduced in the first part of
this remark to degenerate fractional equations associated with the abstract differ-
ential operators [20,57]. For the sake of simplicity, we shall only consider the equa-
tions of order α ∈ (0, 2); cf. [22, Subsection 4.1] for further information concerning
the case α = 2. Assume that n ∈ N and iAj , 1 6 j 6 n are commuting generators
of bounded C0-groups on a Banach space E. Suppose again that 0 < α < 2,
ω > 0, P1(x) and P2(x) are non-zero complex polynomials, N1 = dg(P1(x)),

N2 = dg(P2(x)), β > n
2

(N1+N2)
min(1,α) (resp. β > n| 1

p − 1
2 | (N1+N2)

min(1,α) , if E = Lp(Rn)

for some 1 < p < ∞), P2(x) 6= 0, x ∈ Rn and that (2.14) holds with δ replaced by
α. Define (Rα(t))t>0 as in (2.15), with δ replaced by α; C ≡ Rα(0). Then we know
that (Rα(t))t>0 ⊆ L(E) is a global exponentially bounded (gα, Rα(0))-regularized
resolvent family for the problem

(P )R :

{
Dα

t P2(A)u(t) = P1(A)u(t), t > 0,

u(0) = Cx; u(j)(0) = 0, 1 6 j 6 ⌈α⌉ − 1;

cf. Definition 1.1 with a(t) = gα(t) and k(t) = 1. Furthermore, the analysis con-
tained in [22, Remark 4.4(i)] implies that there exists an exponentially bounded,

strongly continuous operator family (Gα(t))t>0 such that Gα(t)x = P2(A)
−1

Rα(t)x,
t > 0, x ∈ E and λα−1(λαB − A)−1Cx =

∫ ∞

0 e−λtGα(t)x dt for any x ∈ E and
λ > 0 sufficiently large. Hence, (Gα(t))t>0 is an exponentially equicontinuous

(gα, C)-regularized resolvent family generated by P1(A), P2(A), so that for each

f ∈ D(P1(A)) ∩ D(P2(A)), the function u(t) := Rα(t)x, t > 0 is a unique solution
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of the following Cauchy problem:

(P )L :





u ∈ C([0, ∞) : [D(P1(A))]) ∩ C([0, ∞) : [D(P2(A))]),

P2(A)Dα
t u(t) = P1(A)u(t), t > 0,

u(0) = Cx; u(j)(0) = 0, 1 6 j 6 ⌈α⌉ − 1.

The consideration is quite similar in the case that the requirements of [22, Theorem
4.3] hold (cf. also [22, Remark 4.4(ii)] and [22, Remark 4.5], which enables us to
consider the wellposedness of problem (P )L in El-type spaces [54]).

We shall employ the following auxiliary lemma in the proof of Theorem 2.6
mentioned above.

Lemma 2.1. (cf. [20, Corollary 2.1.20]) Suppose α > 0, l ∈ N, z ∈ C, A is a
subgenerator of an exponentially equicontinuous (gα, glα+1)-regularized C-resolvent

family (Sl,α(t))t>0 on E, z − A is injective, R(C) ⊆ R((z − A)l) and (z − A
)−1

C ∈

L(E), . . . , (z − A)−lC ∈ L(E). Set, for every x ∈ E and t > 0,

Sα(t)x := (−1)lSl,α(t)x +

l−1∑

j=0

(−1)j+1
(

l

j

)
zl−j

[
L−1

( rαj

(rα − z)l

)
∗ Sl,α(·)x

]
(t)

+

l∑

j=1

(−1)l−jL−1
( rα−1

(rα − z)l+1−j

)
(t)(z − A)−jCx.

Then (Sα(t))t>0 is an exponentially equicontinuous (gα, (z − A)−lC)-regularized
resolvent family with a subgenerator A.

Now we state the following important extension of [1, Theorem 2.2] (cf. the
forthcoming monograph [26] for more details about applications of Theorem 2.6 in
the study of analytical solutions to fractional Barenblatt–Zheltov–Kochina equation
in finite domains).

Theorem 2.6. Suppose that α > 0, l ∈ N, z ∈ C, there exists an exponentially
equicontinuous (gα, glα+1)-regularized C-resolvent family (Sl,α(t))t>0 generated by
A, B, the operator zB−A is injective and x ∈ D(A)∩D(B)∩D(((zB−A)−1B)lC).
Define

u(t) := (−1)lSl,α(t)Bx +

l−1∑

j=0

(−1)j+1
(

l

j

)
zl−j

[
L−1

( rαj

(rα − z)l

)
∗ Sl,α(·)Bx

]
(t)

+

l∑

j=1

(−1)l−jL−1
( rα−1

(rα − z)l+1−j

)
(t)((zB − A)−1B)jCx, t > 0.

Then the function u(t) is a unique solution of the problem (DFP)L with f(t) ≡ 0
and the initial value x replaced by ((zB−A)−1B)lCx (we will designate this problem
by (DFP)L,l in the sequel).

Proof. The uniqueness of solutions follows similarly as in Remark 2.5(i) and
we shall only prove that the function u(t) is a solution of the problem (DFP)L,l.
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Denote xj := ((zB − A)−1B)jCx (j ∈ N0
l ), Fj,l(t) := L−1( rαj

(rα−z)l )(t), t > 0

(0 6 j 6 l − 1) and Gj,l(t) := L−1( rα−1

(rα−z)l+1−j )(t), t > 0 (1 6 j 6 l). Then the

function Fj,l(t) is continuous on (0, ∞), locally integrable on [0, ∞) and exponen-
tially bounded on [1, ∞) (0 6 j 6 l − 1), while the function Gj,l(t) is continuous
and exponentially bounded on [0, ∞) (1 6 j 6 l); cf. [20]. Set m := ⌈α⌉. By
Theorem 2.5(ii), we have that the mapping t 7→ Sl,α(t)Bx, t > 0 is (m − 1)-times
continuously differentiable and

dm−1

dtm−1 Sl,α(t)Bx = gαl+2−m(t)Cx +

∫ t

0
gα+1−m(t − s)Sl,α(s)Ax ds, t > 0;

hence ( dj

dtj Sl,α(t)Bx)t=0 = 0, 0 6 j 6 m − 1. This simply implies that the mapping
t 7→ [Fj,l ∗ Sl,α(·)Bx](t), t > 0 is (m − 1)-times continuously differentiable as well
as that

dm−1

dtm−1 [Fj,l ∗ Sl,α(·)Bx](t) =
[
Fj,l ∗

dm−1

dtm−1 Sl,α(·)Bx
]
(t), t > 0,

provided 0 6 j 6 l − 1; hence, ( dp

dtp [Fj,l ∗ Sl,α(·)Bx](t))t=0 = 0, 0 6 p 6 m − 1
(0 6 j 6 l − 1). Now it is not difficult to prove that

Dα
t Sl,α(t)Bx = glα+1−α(t)Cx + Sl,α(t)Ax, t > 0,

Dα
t

[
Fj,l ∗ Sl,α(·)Bx

]
(t) = glα+1−α(t)Cx + Sl,α(t)Ax, t > 0 (0 6 j 6 l − 1).

Suppose, for the time being, that the assumptions of Lemma 2.1 hold. Since for
each x ∈ D(A) the function v(t) := Sα(t)x, t > 0 is a unique solution of the problem

{
Dα

t v(t) = Av(t), t > 0,

v(0) = Cx; v(j)(0) = 0, 1 6 j 6 m − 1,

we may conclude from the above (by plugging l = 1, 2, . . . successively in Lemma
2.1) that for each j ∈ Nl the function Gj,l(t) is (m − 1)-times continuously differ-

entiable on [0, ∞) as well as that ( dp

dtp Gj,l(t))t=0 = 0, 1 6 p 6 m − 1 (1 6 j 6 l)
and that the Caputo derivative Dα

t Gj,l(t) is well defined (1 6 j 6 l). Since
Gl,l(t) = Eα(ztα), t > 0, it readily follows that the function u(t) satisfies u(0) = xl

and u(j)(0) = 0, 1 6 j 6 m − 1. It remains to be proved that BDα
t = Au(t), t > 0.

Carrying out a straightforward computation, it can be easily seen that this equality
holds iff

(−1)lgαl+1−α(t)BCx +

l−1∑

j=0

(−1)j+1
(

l

j

)
zl−j [Fj,l ∗ gαl+1−α](t)BCx

+

l∑

j=1

(−1)l−jDα
t Gj,l(t)Bxj =

l∑

j=1

(−1)l−jGj,l(t)Axj , t > 0

iff

(−1)lgαl+1−α(t)BCx +

l−1∑

j=0

(−1)j+1
(

l

j

)
zl−j [Fj,l ∗ gαl+1−α](t)BCx
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+

l∑

j=1

(−1)l−jDα
t Gj,l(t)Bxj =

l∑

j=1

(−1)l−jGj,l(t)[zBxj − Bxj−1], t > 0.

This is true because the coefficients of Bxj , for every fixed number j ∈ N
0
l , on both

sides of previous equality are equal (cf. also the proof of [20, Theorem 2.1.19]). �

Suppose that the operator B is injective, x ∈ D(AB−1), α > 0 and there ex-
ists an exponentially equicontinuous (gα, C)-regularized resolvent family (R(t))t>0

generated by A, B. Then it can be easily checked that the function u(t) := R(t)x,
t > 0 is a unique solution of problem (DFP)L with f(t) ≡ 0 and the initial value
x replaced by CB−1x. We leave to the interested reader the problem of transfer-
ring this conclusion, as well as the other ones from [1, Remark 2.4], to degenerate
fractional equations whose solutions are goverened by (gα, gαl+1)-regularized C-
resolvent families generated by A, B (l ∈ N).

Assume now that n ∈ N r {1}, 0 6 α1 < · · · < αn−1, and A1, . . . , An−1

are closed linear operators on E. In the analysis of existence and uniqueness of
integral equations associated with the problem (1.1)–(1.2), we can also use the
notion of an exponentially equicontinuous (analytic) (k; C)-regularized resolvent
(i, j)-propagation family.

Definition 2.6. (cf. Definition 2.3 and Definition 2.4) Suppose that the func-
tion k(t) satisfies (P1), as well as that 1 6 i 6 n − 1, 0 6 j 6 mi − 1 and
Ri,j(t) ∈ L(E, [D(Ai)]) for all t > 0. Let the operator C ∈ L(E) be injective.

(i) Then the operator family (Ri,j(t))t>0 is said to be an exponentially equi-
continuous (k; C)-regularized resolvent (i, j)-propagation family for problem (1.1)–
(1.2) iff there exists ω > max(0, abs(k)) such that the following holds:

(a) The mappings t 7→ Ri,j(t)x, t > 0 and t 7→ AiRi,j(t)x, t > 0 are continuous
for every fixed element x ∈ E.

(b) The family {e−ωtRi,j(t) : t > 0} ⊆ L(E, [D(Ai)]) is equicontinuous, i.e., for
every p ∈ ⊛, there exist c > 0 and q ∈ ⊛ such that

p(e−ωtRi,j(t)x) + p(e−ωtAiRi,j(t)x) 6 cq(x), x ∈ E, t > 0.

(c) For every λ ∈ C with Re λ > ω and k̃(λ) 6= 0, the operator Pλ is injective,
R(C) ⊆ R(Pλ) and

λαi−αn−1−j k̃(λ)P −1
λ Cx =

∫ ∞

0
e−λtRi,j(t)x dt, x ∈ E.

(ii) Let (Ri,j(t))t>0 be an exponentially equicontinuous (k; C)-regularized re-
solvent (i, j)-propagation family for problem (1.1)–(1.2). Then it is said that
(Ri,j(t))t>0 is an exponentially equicontinuous (equicontinuous), analytic (k; C)-
regularized resolvent (i, j)-propagation family for problem (1.1)–(1.2), of angle α,
iff the following holds:

(a) For every x ∈ E, the mappings t 7→ Ri,j(t)x, t > 0 and t 7→ AiRi,j(t)x, t > 0
can be analytically extended to the sector Σα; since no confusion seems likely,
we shall denote these extensions by the same symbols.
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(b) For every x ∈ E and β ∈ (0, α), one has limz→0,z∈Σβ
Ri,j(z)x = Ri,j(0)x and

limz→0,z∈Σβ
AiRi,j(z)x = AiRi,j(0)x.

(c) For every β ∈ (0, α), there exists ωβ > max(0, abs(k)) (ωβ = 0) such that
the family {e−ωβzRi,j(z) : z ∈ Σβ} ⊆ L(E, [D(Ai)]) is equicontinuous, i.e., for
every p ∈ ⊛, there exist c > 0 and q ∈ ⊛ such that

p(e−ωβzRi,j(z)x) + p(e−ωβzAiRi,j(z)x) 6 cq(x), x ∈ E, z ∈ Σβ.

Exponentially equicontinuous (analytic) (k; C)-regularized resolvent (i, j)-prop-
agation families yield results very similar to those obtained by k-regularized C-
resolvent (i, j)-propagation families. Without going into a deeper analysis, we
shall only observe that the assertions of Theorem 2.1(i)–(iii), Remark 2.2(i), (iii),
Theorem 2.3 and Theorem 2.4 can be restated for exponentially equicontinuous
(k; C)-regularized resolvent (i, j)-propagation families. Details can be left to the
interested reader.
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