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DEGENERATE MULTI-TERM FRACTIONAL
DIFFERENTIAL EQUATIONS IN LOCALLY
CONVEX SPACES

Marko Kostié

ABSTRACT. We investigate, in the setting of sequentially complete locally con-
vex spaces, degenerate multi-term fractional differential equations with Caputo
derivatives. The obtained theoretical results are illustrated with some exam-
ples.

1. Introduction and preliminaries

Let n e N\{1},0 < aq < -+ < ayp, let Ay,..., A,,_1 be closed linear operators
on a Hausdorff sequentially complete locally convex space E, and let f: [0,00) — F
be a continuous function. The well-posedness of the following multi-term fractional
differential equation has been analyzed in a series of recent papers (cf. [20, Section
2.10] for an extensive survey of results on abstract multi-term fractional differential
equations with Caputo fractional derivatives)

n—1
Diru(t) + Y ADFu(t) = f(t), t>0; u9(0)=u;, j=0,...,[a,] - L
1=1

Define m; := ’—Oéi-|, i€ Ny_q, Ti7Lu(t) = AiD?iu(t), ift>0,i€N,_7 and a; > 0,
and T; pu(t) := Dy" A;u(t), if t > 0 and i € N,,_1. Henceforth it will be assumed
that, for every ¢t > 0 and ¢ € Ny,_1, Tju(t) denotes either T; pu(t) or T; pu(t). In
this paper, we will consider the following degenerate abstract multi-term problem:

(1.1) niTiu(t) = f(t), t>0.
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In such a way, we will continue our previous research studies [22]127], where we
have looked at generation of degenerate fractional resolvent operator families and
hypercyclic properties of degenerate multi-term fractional differential equations.
In order to subject initial conditions to equation (IIJ), we shall follow the
approach from [27]. First of all, assume that o > 0 and m = [a]. Let us recall
that the Caputo fractional derivative D¢u [6L120] is defined for those functions
u € C™1(]0,00) : E) for which gm,a*(ufzgrol u(0)gj+1) € C™([0,00) : E), by

am m—1 )
D{u(-) = e [gm_a * (u - z; u(J)(O)gj_H)].
§=

If & € N, then the Caputo fractional derivative Dgu(-) is defined iff u € C™([0, 00) :
E); in this case, Dfu(-) = (d*/dt*)u(-) € C([0,00) : E). The following facts can
be proved by using the equality [6l, (1.21)], induction and closedness of A:
(a) Suppose that I € N and u, Au € C'([0,00) : E). Then u)(t) € D(A), t >0

and Aul) (t) = (Au)D(t), t >0 (0 < j <1).
(b) Suppose that the Caputo fractional derivatives Du and D¢ Au are defined.

Then V) (t) € D(A), t > 0, AuW)(t) = (Au)9(t), t >0 (0 < j < m—1),

D¢u(t) € D(A), t > 0, AD¢u(t) = D& Au(t), t > 0, and

m—1
JEAD{u(t) = JPDy Au(t) = Au(t) = Y AuD (0)g41(t), >0,
§=0

where JXu(t) := (ga *u)(t), t = 0.
Set Py := Z?;ll Avimn=1 4, A e CN {0}, Z:={i € Ny : oy > 0 and T; pu(t)
appears on the left hand side of (1))}, @ := maxZ, if Z # ) and Q := mg := 0,
if Z = 0. We will subject the following initial conditions to the equation (Z1J), cf.
(a)-(b):

(1.2) u(j)(O) =u;, 0<j<mg—1 and (Aiu)(j)(O) =u;; if mi—1272mg.

If T _qu(t) = Tp_y pu(t), then (IL2) reads u)(0) = uj, 0 < j < my_y — 1. If
this is not the case, then choice (2] may be nonoptimal, the index i € N,,_; has
to satisfy the inequality m; — 1 > mg in the second equality appearing in (L2),
and we cannot expect the existence of solutions of problem (LI)-(T2), in general
(consider, for example, the case n = 3, A2 = A; and ug ¢ # u1,0); furthermore, for
any index ¢ € N,,_; satisfying the inequality m; —1 > m¢ and for every nonnegative
integer k € [mqg, m; — 1], we need to introduce exactly one initial value u; .

The most important subcases of problem (LI)))-(2]) are the following frac-
tional Sobolev degenerate equations:

[DeBu(t) = Au(t) + f(t), t>0,
(DFP) {Bu(O) =Bz; (Bu)W(0)=0, 1<j<[a] -1,
and
(DFP), : BDYu(t) = Au(t) + f(t), t>0,
Frlu0 =2 u(0)=0, 1<j<[a] -1,
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where o« > 0. For further information concerning the wellposedness of Sobolev
first order degenerate equations, the reader may consult the monographs by Favini,
Yagi [9], Krein [31], Carroll, Showalter [7], Melnikova, Filinkov [34] and Sviridyuk,
Fedorov [45], as well as the papers [1[10H14![35/[50/51155]. The well-posedness of
various types of degenerate Sobolev equations of second order have been analyzed
in [2,41[7][91[15[22//361/44.[52//56]. The corresponding results on degenerate Sobolev
equations with integer higher-order derivatives can be found in [3], [9] Section 5.7],
[45H491/56].

For the purpose of study of abstract multi-term problem (LI)-(T32), we in-
troduce the classes of exponentially equicontinuous k-regularized C-resolvent (3, j)-
propagation families (Subsection [2Z1]) and exponentially equicontinuous (k; C)-reg-
ularized resolvent (i, j)-propagation families (Subsection [2:2)). We investigate sub-
ordination principles, regularity properties, existence and uniqueness of solutions of
problem (I)—(T2) and its integral analogons; besides this, we clarify some results
on the C-wellposedness of the equation (DFP), in Subsection (cf. Abdelaziz,
Neubrander [I] for the case @ = 1). In a follow-up research [25], we are going to
analyze various types of degenerate Volterra integro-differential equations by using
results from the theory of multivalued linear operators [91[34].

Before we explain the notation used throughout the paper, it should be noticed
that we take under consideration some equations that are valuable only from the
mathematical point of view and do not have any physical significance, for now at
least.

Unless specifed otherwise, we shall always assume that E is a Hausdorff sequen-
tially complete locally convex space over the field of complex numbers, SCLCS for
short; the abbreviation ® stands for the fundamental system of seminorms which
defines the topology of E. If X is also an SCLCS over the field of complex num-
bers, then we denote by L(F, X) the space of all continuous linear mappings from
E into X; L(E) = L(E,E). By E* we denote the dual space of E; if E is a
Banach space, then we denote by ||z|| the norm of an element x € E. If A is a
linear operator acting on F, then the domain and range of A will be denoted by
D(A) and R(A), respectively. Since no confusion seems likely, we will identify A
with its graph. Given s € R in advance, set [s] := inf{l € Z : s < l}. Define
Yo :={z € C~ {0} : |arg(z)|] < a} (a € (0,7]). By ACioc([0,00)) we denote the
space consisting of all complex valued functions that are absolutely continuous on
any finite interval [0,7] (T > 0). The Gamma function is denoted by I'(-) and
the principal branch is always used to take the powers; the convolution like map-
ping x is given by f * g(t) := fotf(t — 8)g(s)ds. Set gc(t) := t*~1/T(¢), 0¢ := 0
(C>0,t>0), N :={1,...,0}, NY := {0,1,...,1} (I € N) and go(t) := the Dirac
o-distribution.

Fairly complete information about fractional calculus and fractional differential
equations can be obtained by consulting [6][8]16H22] 27, 28][32][39,40]. In the
sequel, we shall use the following fact about Caputo fractional derivatives: Assume
that @ > 0, m = [«], B € (0,a) and the Caputo fractional derivative Dgu(-) is
defined. Then we know that the Caputo fractional derivative Df u(-) is also defined
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and the following equality holds:

MS

(1.3) D{u(t) = (go—p * D u( (0)gj+1-5(t), t=0.

=[5
The Mittag-Leffler function E,, 5(,2) is defined by

[e%S) o

In this place, we assume that 1/T'(an + ) = 0 if an + 8 € —Ngy. Set, for short,
E.(z) = Ea,1(2), z € C. The asymptotic behaviour of the entire function E, g(z)
is given in the following auxiliary lemma; cf. also [32|[42] and the formulae [6]
(1.27)—(1.28)] for the case 0 < o < 2, which is the most important in our analysis.

LEMMA 1.1. [53] Let 0 < 0 < 3m. Then, for every z € C\ {0} and m €
N~ {1},

*EZZPB@ZS*WSLJrO(M*m) |z] = o0
o2 2 (6~ i) ’ ’

where Zs is defined by Zy = z'/*e*™/* and the first summation is taken over all
those integers s satisfying |arg(z) + 27ms| < a(5 + o).

Throughout the paper, we shall always assume that the function k(¢) is a scalar-
valued continuous kernel on [0,00). The following conditions on function k() will
be used occasionally:

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0,00) and
there exists € R such that k(\) := L(k)(\) = hm fo “ME(t)dt =

fo e~ ME(t)dt exists for all A € C with Re \ > . Put abs( ) :=inf{Re \ :
E(\) eX1sts} (N =1 and denote by £~" the inverse Laplace transform.
k(t) satisfies (Pl) and k(A) # 0, Re A > 8 for some 5 > abs(k).
1

Let 'y € (O ) and w € R. Recall that the Wright function ®.(-) is defined by
D, (t) “L(E,(=)\))(t), t = 0. Following [54] Definition 1.1. 3] we say that a
functlon h (w,00) = E belongs to the class LT — E iff there exists a function
feC(0,00): E) such that for each p € ® there exists M, > 0 satisfying p(f(t)) <
Mpe®t, t > 0 and h(\) = [;"e M f(t)dt, A > w; if this is the case, then we know
that the function A r—> h(A), A > w can be analytically extended to the right half
plane {A € C: Re A > w}.

The reader may consult [54] and [20] for further information concerning the
Laplace transform of functions with values in sequentially complete locally convex
spaces (cf. [5] for the Banach space case). In the sequel, we shall use the following
uniqueness type theorem for the Laplace transform.

(P2):

LEMMA 1.2. Let w > 0, and let f1, fo € C([0,00) : E) satisfy that for each
p € ® there exists M, > 0 such that p(fi(t)) + p(fa(t)) < Mje**, t > 0. Suppose
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that a continuous function g: [0,00) — C satisfies (P1) and that A is a closed linear
operator on E satisfying that for A > a,

/OO e Mfi(t)dt € D(A),

0

A/ ef)‘tfl(t)dt:/ 67)\tf2(t)dt+/ e Mg(t)xdt, > a,
0 0 0

for some x € E. Then, for every t > 0, one has f1(t) € D(A) and Af1(t) =
f2(t) + g(t)z.

In [22], we have recently considered the C-wellposedness of the following de-
generate abstract Volterra equation:

(1.4) Bu(t) = f(t) +/O a(t — s)Au(s)ds, t >0,

where ¢ — f(t), t > 0 is a continuous E-valued mapping, a € L. ([0,00)) and A, B
are closed linear operators with domain and range contained in E (cf. also [1IH13]
and [18]). Following Xiao and Liang [55l[56], we have introduced in [22] the class
of exponentially equicontinuous (a, k)-regularized C-resolvent families for (L) as
follows.

DEFINITION 1.1. [22] Suppose that the functions a(t) and k() satisfy (P1),
as well as that R(t): D(B) — FE is a linear mapping (¢t > 0). Let C € L(E)
be injective. Then the operator family (R(t));>o is said to be an exponentially
equicontinuous (a, k)-regularized C-resolvent family for ([4]) iff there exists w >
max(0,abs(a),abs(k)) such that the following holds:

(i) The mapping t — R(t)x, t > 0 is continuous for every fixed element 2 € D(B).
(ii) The family {e"*!R(t) : t > 0} is equicontinuous, i.e., for every p € ®, there
exist ¢ > 0 and ¢ € ® such that p(e “'R(t)z) < cq(z), x € D(B), t > 0.
(iii) For every A € C with ReX > w and k(\) # 0, the operator B — a(\)A is
injective, C(R(B)) C R(B — a(\)A) and

k(\)(B —a(\)A) " CBz = /OOO e MR(t)zdt, =€ D(B).

If k(t) = gr41(t) for some r > 0, then it is also said that (R(¢))i>o is an
exponentially equicontinuous r-times integrated (a, C')-regularized resolvent fam-
ily for (I4); an exponentially equicontinuous 0-times integrated (a, C)-regularized
resolvent family for (I4) is also said to be an exponentially equicontinuous (a, C)-
regularized resolvent family for (I4]).

For further information concerning the applications of (a, k)-regularized C-
resolvent families to non-degenerate Volterra integro-differential equations (cf. Def-
inition [[J] with B = I), the reader may consult the monograph [20]. For abstract
non-scalar Volterra equations, we refer the reader to [251[291[30./40].
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2. Degenerate k-regularized C-resolvent propagation families
for problem (1.1)—(1.2)

Let us recall that n € NN {1}, 0 €< oy < -+ < an_1, as well as that
A1, ..., A,_1 are closed linear operators on E and that f: [0,00) — F is a contin-
uous function. Let the set Z and number @) be defined as above.

Suppose, for the time being, that the initial values u; € E (0 < j < mg — 1)
satisfy u; € D(4;), provided i € N,,_1, Tyu(t) = T; pu(t) and 0 < j < m; — 1 (put
u;,; = Aju; in this case), and u; ; € E, provided i € N,,_1, Tju(t) = T; gu(t) and
m; —1 > j > mg. We start this section by introducing the notion of a strong

solution of problem (TCI)—(T2).

DEFINITION 2.1. A function u € C([0,00) : E) is said to be a strong solution of
problem (I)-(T2) iff the term T;u(t) is well defined and continuous for any ¢ > 0,
1 € Np—1, and (LI)—(T2) holds identically on [0, c0).

Now we would like to observe the following fact. If @ > 0, then we can consider
the problem obtained from problem ([I]) by replacing some of the terms T; r(t),
for 1 < ¢ < @, with the corresponding terms of form T; 1, (¢). By (L3) and (b), it
readily follows that a strong solution of problem (LI)-(T2)) is also a strong solu-
tion of the problem described above, when endowed with initial conditions (L2).
It is also worth noting that we have considered in [27, Remark 11(i)] problem (1))
endowed with slightly different initial conditions, and that the existence of strong
solutions of certain classes of multi-term problems with hypercyclic behaviour has
been investigated in [27] Theorem 10] (cf. [27, Example 13] for an interesting appli-
cation of the above-mentioned theorem involving the Ornstein-Uhlenbeck operators
on L2-type spaces).

Define now, for every ¢ € N,,_; and ¢ > 0,

m;—1

@U'RM03%Maﬂ&P@E:W%ﬂﬂ@ﬂ”mwﬂw@
j=0

mifl

(2.2) Tiru(t) = ga,_—a; * [AW(') - > Ui,j9j+1(')] (t), if Tyu(t) = Ti rul(t).
=0

Let T;u(t) denote, as before, exactly one of the terms 7; pu(t) or T; ru(t). Inte-
grating equation (LI cvu,—1 times, the foregoing arguments imply that any strong
solution ¢ — wu(t), t > 0 of problem [[T}H(I2)) satisfies the following integral equation

(23) 3 Toult) = (gonr * O, 130

This motivates us to introduce the following definition.

DEFINITION 2.2. Let u; € E (0 < j < mg—1),let u; ; € E, providedi € N,,_1,
Tiu(t) = T; ru(t) and 0 < j < m; — 1, and let V C N,,_y. Then a continuous E-
valued function ¢t — u(t), t > 0 is said to be a V-mild solution of (Z3)) iff (i)—(v)
hold where
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() Ga_1—a; *[u() — Z;nzgl ujgi+1(-)](t) € D(A;) forallt > 0 and ¢ € TNV, the
mapping t — A;(Ja, _1—a; * [u — Z;n:(;l ujgj+1])(t), t = 0 is well-defined and
continuous for alli € TNV,
(ii) the mapping t — (ga, _,—a; * Ailu — Z?:io_l ujgj+1])(t), t = 0 is continuous
foralli e Z\V,
(iil) (goy_1—a; *u)(t) € D(A;) for all ¢ > 0 and ¢ € (N,—1 N\ Z) NV, the mapping
t— Ai(ga,_1—a; *u)(t), t = 0 is continuous for all i € (N,,_1 NZ) NV,
(iv) the mapping t = (ga, _,—a; * Aiu)(t), t = 0 is well-defined and continuous for
alli e (Npo1 NI) NV,
(v) for every t > 0, the following holds:

> A (9%1—% * [U(') - "tz;l Uj9j+1(')])(t)

€NV
mifl
Y (sonra i) = Y w0 )0
i€I~V =0
+ Z (ganflfai * Aiu)(t) + Z Ai(ganflfai * U)(t)
1€(Nyp—1NI)\NV 1€(N,,—1N\Z)NV

= Z Z Jan_1—a;+1+j (t)u’i,j + (gan—l * f)(t)a t=0.

i€ENp _1\T jeN?

m;—1

IfV =0 (V=N,_1), then we also say that u(t) is a strong (mild) solution of (Z3).

Any strong solution of problem ([T)-(L2) is also a strong solution of problem
@3), and any V-mild solution of problem (Z3)) is also a V’-mild solution of (Z3))
provided that V,V' C N,,_; and ¥V C V'. As already observed in [27] for the
problem (DFP),, a sufficiently smooth strong solution of the problem ([23) need
not be a strong solution of problem (II)-(L2) in the case that Z # (). The situation
is quite complicated even in the case that Z = () because then we can only prove
that a strong solution of problem (Z3]) satisfies the equation

m;—1 q

5 (s [ A= 3 w150 )0 = (0,500 120
1€Np 1 j=0 -

which does not imply, in general, that the function

m;—1 q

t— Im;—a; * [Azu — Z Ui 59145 (t), t>=0

=0 .

is m;-times continuously differentiable for i € N,,_; (the problem (DFP), is an
exception, cf. [27]). Because of that, we shall primarily consider degenerate integral
equation (Z3) in the sequel.

REMARK 2.1. Before dividing our further research into two separate subsec-
tions, it should be observed that we can further generalize the abstract form of
problem (L)) by assuming that some of the terms T;u(t) can be expressed as sums
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of terms like A/D% (B/D?u(t)) and D AY(DY B/u(t)), with A}, B}, Al, B
being closed linear operators on E and 3; > 0 (cf. [44, Chapter VI] for correspond-
ing examples). It would take too long to go into further details concerning this
topic here.

2.1. Exponentially equicontinuous k-regularized C-resolvent (i, j)-
propagation families for (LI)—(L.2]). Following the method employed in the
papers [551/56] and [22], we introduce the notion of an exponentially equicontinuous
k-regularized C-resolvent propagation family for problem (LI)—(T2) as follows (cf.
the problem (Z3) with Z = (), = u; ;, the other initial values being zeroes, and
then apply the formula [6] (1.23)] for the Laplace transform of Caputo derivatives
of the ot order).

DEFINITION 2.3. Suppose that the function k(t) satisfies (P1), as well as that
1<i<n-1,0<j<m—1and R;;(t): D(A;) — E is a linear mapping
(t = 0). Let the operator C € L(E) be injective. Then the operator family
(Ri,;(t))i>0 is said to be an exponentially equicontinuous k-regularized C-resolvent
(4, )-propagation family for problem (LI)-(T2) iff there exists w > max(0, abs(k))
such that the following holds:

(i) The mapping ¢t — R; ;(t)x, t > 0 is continuous for every fixed element x €
D(A;).
(i) The family {e"“*R; ;(t) : t > 0} is equicontinuous, i.e., for every p € ®, there

exist ¢ > 0 and ¢ € ® such that p(e “'R; ;(t)z) < cq(x), x € D(4;), t > 0.
(iii) For every A € C with Re X > w and k(\) # 0, the operator Py is injective,

C(R(A)) € R(Py) and

(o]
(2.4) MmN\ PU C A = / e MR, j(t)zdt, x € D(A).
0

If k(t) = gr41(t) for some r > 0, then it is also said that (R;;(t))e>0 is
an exponentially equicontinuous r-times integrated C-regularized resolvent (i, j)-
propagation family for (LI)-(L2); an exponentially equicontinuous O-times inte-
grated C-regularized resolvent (4, j)-propagation family for (II)-(T2) is also said
to be an exponentially equicontinuous C-regularized resolvent (i, j)-propagation
family for (CI)—(T2).

Before we state the following important extension of [56, Theorem 3.1], it is
worth noting that we do not use here the condition CA; C A;C, in contrast to
the corresponding definitions from [55,[56] and [22], and that the existence of
an exponentially equicontinuous k-regularized C-resolvent (,0)-propagation fam-
ily for problem (LI)-(I2) implies the existence of an exponentially equicontin-
uous k-regularized C-resolvent (i,j)-propagation family for problem (TI)—(T2)
(j € ND,,_1); if this is the case, we have R;;(t)x = (g; * Rio(-)z)(t), t > 0,
J € N?nﬁl, x € D(A;). Observe also that the uniqueness theorem for Laplace
transform implies that there exists at most one exponentially equicontinuous k-
regularized C-resolvent (4, j)-propagation family for problem (I)—(T2) and that
the assertions of [22] Remark 2.3(iv), Proposition 2.4, Theorem 2.5] can be refor-
mulated in our context.
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THEOREM 2.1. Suppose that 1 <t <n—1,0 < j < m; —1 and there exists
an exponentially equicontinuous k-reqularized C-resolvent (i, j)-propagation family
(Ri,;(t)i>0 for problem (LI)-(T2).

(i) Assume that there exists | € Np_y1 such that the following condition:

(C.1) For every v € N,,_y N {l} and x € D(A;), there exist a number wy > w
and a continuous E-valued function t — f;;.(t;x), t > 0 such that,
for every p € ®, there exists My, > 0 with p(f; j.o(t;x)) < Mpe*t, t >0
(w € N,,_1~A{1}) and that, for every X\ € C with Re A > wy and k(\) # 0,

o0
/ e gt dt = A en It e () A, P O A
0

holds. Then for each vy € D(A;) the function u(t) := R, ;(t)vo, t = 0 is a mild
solution of the integral equation

n—1
(2.5) > Au(Ganr—ay ¥ 1) (1) = (Gan_—asts * k) (E)C Ao, £ =0,
v=1

defined in the same way as in Definition 22(ii).
(i) Let 0 # K C N,_1. If the following conditions hold,
(C.2) For every | € K and x € D(A;), and for every v € Nyp_q1 ~ {l},
there exist a number w;, > w and a continuous E-valued function
t— giji0(t;x), t = 0 such that, for every p € ®, there exists M, ., > 0
with p(gi ji0(t;2)) < My et ¢ 20 (1€ K, v € Ny_q ~{l}) and
that, for every A € C with Re X > wy, and k(\) # 0,

/ e Mg juo(ta)dt = \d T enmitev T (A PN C A
0

(C.3) For everyl € K, there exist a number w; > w and a continuous function
hi: [0,00) — C satisfying (P1) and

hi(A) = E(A)AY =7 ReA > wj,

then for each vy € D(A;) the function u(t) = R; ;(t)ve, t > 0 satisfies that
the mappings t — Aju(t), t = 0 are well-defined, continuous and that for each
p € ® there exist My, > 0 and wo > w with p(Aju(t) — hi(t)CAjvg) < Mye“t,
t >0 (1 € K). Furthermore, for everyt > 0,

(2.6) Z(Qan,l—az « Ayu)(t) + Z Ail(gan 1 —a; ¥ u)(t)

ek lEN,, _1\K
- (ganflfaﬂr]' * k) (t)CAiUO'

(iii) Suppose that (C.1) holds. Let vy € 0?2—11 D(A4;), let 0 # K C N,,—1, and let

CA, C A,C for all p € N,_y. If the following condition holds,

(CA4) For every |l € K and for every v € N,,_1 \ {i}, there exist a number
wip > w and a continuous function hy,: [0,00) — E satisfying that, for
every p € ®, there exists My, > 0 with p(hy,(t)) < My ,e* !, ¢ >0
and hyy(A) = k(A)A* =173 4, P C Ayvg, Re A > wi, k() # 0,
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then the function u(t) = R, j(t)vo, t > 0 satisfies that the mappings t — Aju(t),

t > 0 are well-defined, continuous and that for each p € ® there exist M, > 0

and wy > w with p(Aju(t) — (gj * k)(t)CAg) < Mpe*ot, t > 0 (1 € K).

Furthermore, for every t > 0, (Z8) holds.

(iv) Suppose that CA, C A,C, p € N,_1 and k(t) satisfies (P2), as well as that

n =3 or that n > 4 and the following condition holds:

(C.5) For every p € ® and | € N,y \ {i}, there exist numbers A\, ;,0,; > 0,
a seminorm qp; € ® and a function hy: (Apg,00) — (0,00) such that
p(P/\_chl:L') < [gpi(2) + gpi(Ax)]hpi(X), X > A1, ¢ € D(4;), and
limy 400 eiAgl’vlhp’l(A) =0.

Then the function u(t) = R; ;(t)vo, t > 0 is a unique mild solution of integral
equation (ZA), provided that vo € D(A;) and the assumptions of (i) hold. Fur-
thermore, the function u(t) = R; j(t)vo, t > 0 is a unique function satisfying
that the mapping t — Aju(t), t > 0 is well-defined, continuous (I € K) and
that (Z8) holds, provided that vo € D(A;) and the assumptions of (ii) hold,
resp. vg € ﬂ::ll D(A;) and the assumptions of (iil) hold.

PROOF. Let vy € D(A;). Due to the condition (C.1) and Lemma [[L2 we have
that the function ¢t — A, (ga, 1—a, * Rij(-)vo)(t), t > 0 is well-defined, continuous
and that for each p € ® there exist M, > 0 and w' > w with p(A4,(ga, ;-a, *

Rij(-)uo)(1) < Mpe”, ¢ > 0 (v € Nyoy ~ {1}); furthermore,
/0 €M Ay (Gan—s—ay * Rij (Joo) (D)dt = k(AN namT¥eeman-1 4, PELC Ao,

for any v € N,,_1 ~ {I} and for any A € C with Re A > w’ and k()\) # 0. Using the
identity

(2.7)  k(A)Ai—onmimitar—an ) pELOA g

= k(MA@ —on-17J [CAWO— Z Aovman=1 A, PEYC A |
ﬂ€N7L71\{l}

for any A\ € C with Re A > w’ and k(\) # 0, and Lemma [[2 it readily follows that
the function ¢ — A;(ga,_,—a, * Ri;(-)vo)(t), t > 0 is well-defined, continuous and
that

Ai(Gan_1—ay * Rij(-)v0)(t) = (Jan_1—astj * k)(t)CAjvo

- Z Al(ganflfau * Ri,j(')vo)(t)a t=> 07
Ueanl\{l}

proving that the function u(t) = R; ;(t)vo, t > 0 is a mild solution of integral
equation (ZH). Suppose now that conditions (C.2)—(C.3) hold, as well as that
vo € D(A;) and 0 # K C N,,_;. Clearly, (C.2) implies (C.1) with any [ € K.
Similarly as in the proof of (i), the conditions (C.2)—(C.3) in combination with
equation (Z7), multiplied by A®»-1~%_imply that there exists a sufficiently large
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number w; > w such that

00 00
Al/ eiAtRi’j (t)vo dt = hl()\)CAZ’UO - / eiAt Z gi,j,l,v(t; vo)dt,
0 0

vEN,, _1\K

for any | € K and for any A € C with Re A > w;. Then we can use the assertion (i)
and Lemma to complete the proof of (ii). In order to prove (iii), observe first
that the assumptions vg € ﬂ;:ll D(A;) and CA, C A,C, p € N,,_; imply that

(2.8) PylCOAM T Ajwg)+ > PyIC(A™ Tt Ayg) = Py CPawg = Cug,
'UEanl\{i}

provided Re A > w and k(\) # 0. Making use of ([24) and (Z8), we obtain that,
for any such value of complex parameter \, the following holds:

A / e MRy j(t)vo dt = NTR(N) A P EC (A =1 Aug)
0

= )\_]ING()\)AI |:C’U0 — Z Aa“_an71P;10A@UQ .
7JEN-,Lfl\{’L-}

Keeping in mind the last equation, as well as condition (C.4) and Lemma [[.2] the
proof of (iii) follows instantly. We will prove the uniqueness of solutions in (iv) only
in the case that vg € D(A;) and the assumptions of (i) hold. Let ¢t — wu(t), t > 0
be a mild solution of integral equation (23] with vy = 0. Convoluting the function
u(-) with ge(-), for a sufficiently large number ¢ > 0, we may assume without of
generality that, for every v € N,,_1, the mapping ¢ — A,u(t), t > 0 is well-defined
and continuous. Set, for every ¢t > 0 and ¢ > 0, vy ¢(A) = (gc * e*)(t) — A~Cet?,
A>0; v 0(A) ;=0 (t >0, A>0). Then the mapping ¢ — v ¢(A) is continuous in
t > 0, for any fixed numbers ¢ > 0 and A > 0, and by [54] Lemma 1.5.5, p. 23],
there exists M > 1 such that the mapping A — v, ¢(A), A > 0 satisfies

(2.9) |orc W S M[Q+)TANTA+A)+ 7N, A>0,6>0, ¢>0.

Keeping in mind that CA, C A,C, p € N,,_1, we have that, for every ¢t > 0 and
A >0,

+ t
)\ai_an—l/ e)\(t—s)AiCu(s)ds-i-/ Ut—s,anfl_al()\)AiCu(s)ds
0 0
t
= C’/ A (Gon 1 —ap * Aju)(s)ds
0

=(-C) > /O A (Gan 1 —a, * Ayu)(s)ds

7JEN-,Lfl\{’L-}

t t
= Y [Aav—an—l/ e”\(t_s)AUCu(s)ds—i—/ Vt—s.00m 1 —eovg (N) Ay Cu(s)ds |
0 0

’UGanl\{i}
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which clearly implies that, for every A > w, 0 > 0 and ¢t > 0, the following holds:
(2.10)

t
)\ai—anfl—j]%()\)e_kg / e)\(t_s) CU(S)dS
0

t
= —)\a"*a"”*jlzz()\)eﬂ\”PA_lc/ Vies,an_1—a; (A)Aiu(s)ds
0

t
e TPV E P;lc/ Vt— s 01—y (A) Apu(s)ds.
vEN, _1~{i} 0
By ([24) and (2I0), we obtain that, for every A > w, ¢ > 0 and t > 0, the following
holds:

¢
e*)“’/ M9 Cu(s)ds
0

M\on—1tji—aip—Ac

X T [T [ e o ) s

t
—e % P;chy/vtfs,an,l—av()\)u(s)d&
0

Ueanl\{i}

For the estimation of the first addend on the right-hand side of the above equality,
we can use the fact that there exist numbers og > 0 and M’ > 1 such that
7A0’0
e

ey
cf. the proof of [22] Theorem 2.8]. Keeping in mind (Z9) and (ZII), it can be
simply proved that, for every o > og and for every p € ®, we have

(2.12)

T il t Nu(r)dr)ds) =0
Jim (T [ R [ v i) ds) =0
If n > 4, then condition (C.5) in combination with the previous equality and ([29)
shows that, for every p € ®, there exists a sufficiently large number o, > 0 such
that limy 100 e *7p((e* * Cu)(t)) = 0, t > 0; the same holds in the case that
n = 3 because then we can use, instead of condition (C.5), equation (Z8) and the

arguments already seen in proving equation (ZIZ), to conclude that

lim p(e_’\" Z PlOA, /t Vt—s,0m_1—aun ()\)v(s)ds) =0,
0

A—~+o0
'UEanl\{’L'}

(2.11) <M, A>w+l;

for any 0 > o9 and t > 0. In such a way, we obtain that for each p € ®
the following holds: limy oo fg A== Cy(s)ds = 0, t > 0, 0 > 0,. By the
dominated convergence theorem, it readily follows that for each p € ® we have:
limy 400 p(fot_a ert=5=9)Cu(s)ds) = 0, t > o > 7,. Therefore,

t
lim M=) Cu(s)ds =0, t>0.
A—=+o0 Jo
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Since C' is injective, we can apply [20, Lemma 2.1.33(iii)] (cf. [38, Lemma 1.4.4,
p. 100] for the Banach space case) to complete the proof. Il

The uniqueness of solutions of integral equation (Z3]), resp. (2.6), can be proved
even in the case of non-existence of an exponentially equicontinuous k-regularized
C-resolvent (i, j)-propagation family for problem ([I)-(T2). Strictly speaking, the
proof of Theorem 2] implies the following uniqueness type theorem for degenerate
multi-term problems (cf. [I0, Theorem 3.1] for a pioneering result on the uniqueness
of degenerate first order equations):

THEOREM 2.2. Suppose that CA, C A,C for all p € N1, V € N1 and
the requirements in (C.5) hold for every seminorm p € ® and for every number
l € N,_1. Then there exists at most one mild solution t — u(t), t = 0 of integral
equation (ZH) with vg = 0, resp. there exists at most one continuous E-valued
function t — u(t), t > 0 satisfying that the mapping t — Au(t), t = 0 is well-
defined, continuous (I € K) and that (Z8) holds with vo = 0. In particular, there
exists at most one V-mild solution of problem [Z3) and there exists at most one

strong solution of problem (LI)-(L2).

REMARK 2.2. Suppose again that the general assumptions of Theorem 2]
hold, ie., that 1 <7< n—1,0 < j < m; — 1 and there exists an exponentially
equicontinuous k-regularized C-resolvent (i, j)-propagation family (R; ;(t)):>o for
problem (CI)-(T2).

(i) Suppose that k(t) satisfies (P2) and that, for every I € N,,_; \ {i}, there
exists j; € Nomlq such that there exists an exponentially equicontinuous k-
regularized C-resovent (I, j;)-propagation family for problem (I){L2 By the
proof of Theorem 2I[(iv), we have that condition (C.5) automatically holds.

(ii) The uniqueness of solutions of non-degenerate integral equations has been
recently considered in [30]. It ought to be observed that we must impose the
additional condition C A4, C A4,C, p € N%_, in the formulation of Theorem 3.2
in [30] in order for its proof to work.

(iii) Let ) # K C N,,_1. Suppose that vo € D(A;) and conditions (C.2)—(C.3) hold,
or that vy € ﬂ?;ll D(4;), CA, C A,C for all p € N,,_q, and the conditions
(C.1) and (C.4) hold. Let u(t) be the solution of (Z8l), satisfying the proper-
ties stated above. Consider now equation (23] and the notion introduced in
Definition with indexes 4, j replaced by #’, 5. Then the following holds:

(a) Ifi e N,_1 NZ, k(t) =1, Uy = 0 (0 < j/ < my — 1), Uqr 51 = CAZ'U(),
provided ¢ = ¢ and j° = j, and uy j = 0, otherwise, then u(t) is a
(Np—1 ~\ K)-mild solution of (Z3) with f(¢) = 0.

(b) Ifi € Z, k’(t) =1, Ujr g1 = 0 (il € N,_1, jl S N?ni/71)7 Ujr = Cuy,
provided j' = j, uy = 0, otherwise, and CA; C A;C, then u(t) is a
(Np—1 ~ K)-mild solution of (Z3) with f(¢) = 0, provided that for each
i'e{seI~{i}:ms—12=j} onehas A;yCvy =0.

(iv) Making use of [54, Theorem 1.1.9], Lemma [[22] and the formula [6] (1.23)], we
can clarify some sufficent conditions for the existence of terms
ApDy"u(t) and Dy” Apu(t) (p € N,—1). Unfortunately, it is very hard to
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verify these conditions in practical situations because we do not know the
precise values of elements R; j(0)z, R; ;(0)z,... (z € D(4;)).

The notion of an exponentially equicontinuous (equicontinuous), analytic k-
regularized C-resolvent (i,j)-propagation family (R; ;(t))t>0 for problem (II])-
(T2 is introduced in the following definition.

DEFINITION 2.4. Suppose that 1 <i<n—-1,0<j<m—-1,0<a<mw
and there exists an exponentially equicontinuous k-regularized C-resolvent (3, j)-
propagation family (R; ;(t))¢>o0 for problem (LI)-(T2)). Suppose, further, that the
function k(t) satisfies (P1), as well as that C' € L(F) is an injective mapping. Then
it is said that (R;;(t))t>0 is an exponentially equicontinuous (equicontinuous),
analytic k-regularized C-resolvent (i, j)-propagation family (R; ;(t)):>o for problem
(CI)—(@T2), of angle «, iff the following holds:

(i) For every z € D(A;), the mapping ¢t — R; ;(t)z, t > 0 can be analytically
extended to the sector X, ; since no confusion seems likely, we shall denote the
extension by the same symbol.

(ii) For every x € D(A;) and § € (0, ), one has lim._,o .ex, Rij(2)r = R; ;(0)x.

(ili) For every 3 € (0,«), there exists wg > max(0,abs(k)) (wg = 0) such that the
family {e"“#*R; j(2) : z € ¥g} is equicontinuous, i.e., for every p € ®, there

exist ¢ > 0 and ¢ € ® such that p(e “#*R,; ;(2)x) < cq(x), x € D(4;), z € L.

The proof of following theorem can be given by using the arguments given in
that of [24] Theorem 3.7].

THEOREM 2.3. Assume that the function k(t) satisfies (P1), 1 < i < n —1,
0<j<m—1, w > max(0,abs(k)), o € (0,7/2] and the operator C € L(E)
is injective. Assume, further, that for every A € C with Re A > w and ]NG()\) # 0,
we have that the operator Py is injective and C(R(A;)) C R(Py). Let for each
x € D(A;) there is an analytic function q,: w + Yz ta — E such that

Gz (\) = \* 71\ PT C A, Red > w, k(X) # 0.

Suppose that, for every § € (0,a) and p € ®, there exist cp 3 > 0 and rpg € ®
such that p((A — w)qz(N)) < ¢pprpp(7), T € D(A;), N € w+ X4 (x/2) and that, for
every x € D(A;), there exists the limit limy_ 100 Agz(N\) in E. Then there exists
an exponentially equicontinuous k-regqularized C-resolvent (i, j)-propagation family
(Ri;(t)¢=0 for problem (LI)-(L2), of angle o, and for each € (0, ) the family
{e7¥*R; j(2) : z € ¥} is equicontinuous.

Differential properties of (a, k)-regularized C-resolvent families have been in-
vestigated in [22] Theorems 3.4 and 3.5]; these assertions can be simply reformu-
lated for exponentially equicontinuous (analytic) k-regularized C-resolvent (3, j)-
propagation families in locally convex spaces. As the following theorem shows, this
is also the case with the assertion of [22] Theorem 3.3].

THEOREM 2.4. Suppose that 1 < i <n—1,0<j<m—1,0<v<1,
0 < j < my; — 1, and there exists an exponentially equicontinuous k-regularized
C-resolvent (1, j)-propagation family (R; ;(t))t>o for problem [LI)-(L2) satisfying
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that the family {e~“'R; ;(t) : t > 0} is equicontinuous for some w > max(0, abs(k)).
Assume that k(t) satisfies (P1) and there exists a scalar-valued continuous kernel
k~(t) on [0,00), satisfying (P1), and a positive real number n > 0 such that

ky(A) = N THHT0E(N), A > .

Then there exists an exponentially equicontinuous k-regularized C-resolvent (i,7')-
propagation family (R; ;o ~(t))e>0 for problem (LI)-(L2), with oy replaced by o
(i € Np—1), and (R; j ~(t))e>0 is given by R; j ~(0) :== R; ;(0),

Riyj/yry(t)l‘ = / ti’Y(I)y(Sti’y)Riyj(S)l‘ dS, x € D(Az), t > 0.
0

Furthermore, the family {e‘wl/vtRm»/,,y (t) : t = 0} is equicontinuous and, for every
¢ > 0, the equicontinuity of the family {e=“!(1 + t°)" R, ;(t) : t > 0}, resp.
{e=*%CR; j(t) : t = 0}, implies the equicontinuity of the family

e T A+ )T A+ w0 T R i (1) 8> 0),
resp. {e=" (1 + Wt TR, b (t) 1t > 0},

)

and the following holds:

(i) The mapping t — R; j (t)x, t > 0 admits an analytic extension to the sector
Emin((%fl)%ﬂr) fOT’ all €T € D(Az)

(i) If w=0and ¢ € (O,min((% — 1)%,7)), then the family {R;j (z) : z €
Emin((%—l)%,w)—e} is equicontinuous and limz_>07zegmin((lil)%m)ig Ry ~(2)x
= R; jo 4(0)z for all x € D(A;).

(ili) Ifw>0ande € (O,min((% —1)%, %)), then there exists § . > 0 such that the
family {e=®v=Re=R, . (2):z € Emin((%*l)%,%),e} is equicontinuous. More-

over, lim,_,o ,ex R j ~(2)x = R; j yx for all x € D(A4;).

min(( -1 F, 5)—<

REMARK 2.3. Using the proof of [6, Theorem 3.1] and an elementary argu-
mentation, it can be simply verified that any of conditions (C.1)—(C.5) is invariant
under the action of subordination principle described in Theorem [Z4]

Before illustrating our abstract results from this subsection by some examples,
we would like to observe that the analysis carried out in [40, Theorem 4.1, p. 101],
[22] Theorem 2.6(i)] and Theorem 2] can be used in the study of the following
degenerate integral equation:

D o Apu)t)+ > Ajlagxu)(t) = (), t=0,

Jjex JEN,_1~\K
where ) # K C N,,_1, f € C([0,00) : E), and the functions ay(t),...,an—1(¢)
satisfy certain properties. For the sake of brevity and better exposition, we shall
only refer the reader to [29] Theorem 4.4] for the corresponding result in the case
of non-degenerate equations.
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EXAMPLE 2.1. (cf. also [29, Example 5.1(i)]) Suppose that ¢; € C\0 (1 <1 <
n — 1), as well as that A and B are closed linear operators on E, and A; = ¢;B for
1 <1 <n—1. We consider the following degenerate multi-term problem:
n—1
(2.13) D{" Bu(t) + »_ aD{ Bu(t) = Df Au(t), t>0,
=1
equipped with the initial conditions of the form (LZ). Here 0 < a1 < -+ < an,
0 < a<ay,and
n—1
Py=> X" B-X"""A+B, AeC~{0}.
=1

(i) (a) Suppose 0 < 6 < 2,0 > 1, 2(#6_0‘)7%>0,0<j< [an,] — 1, and
there exists an exponentially equicontinuous (o — 1)-times integrated C-resolvent
propagation family (R(t));>o for problem (I4)), with a(t) = gs(t). Put o' :=
max(1,1—j+ (an —a)(c—1)67') and § := min (%, 2(#5_&) —Z). Then, for every
sufficiently small number € > 0, there exists w. > 0 such that C(R(B)) C R(P»)
for all A € w. +Xz5_. and that the family {|)\|57TU(1 +[NF)(AB—=A)"'CBz: X e

We +Yzs5-e, z € D(B)} is equicontinuous. Noting also that

n—1
T
arg ()\a"a + Z cl)\ala) ~ (a, —a)arg()), X — oo, arg()) < ;
— ap —
our choice of # implies that, for every sufficiently small number € > 0, there exists
w; > 0 such that, for every A\ € w. + Xz 9., one has

n—1

\on e Z aX“ ™ € w, + Tzs_e.
=1

Put now, for every z € D(B) and A € w. + ¥z 19—,
4:(\) == A7~ PTCBu.

Then ¢, : w. + Xz 19— — E is an analytic function and, for every g € (0,6) and
p € ®, there exist ¢y g > 0 and 7, 3 € ® such that p((A — w.)gz(N)) < ¢p p7p,8(T),
r € D(B), A € w.+ ¥z 9. By the proof of [5, Proposition 4.1.3, p. 248], we have
that limpe 5100 N 7T (VB — A)"'CBx = R; j(0)xz, x € D(B), which simply
implies that, for every z € D(B), there exists the limit limy_, ;o Agz(A) in E.
Therefore, Theorem 23] implies that there exists an exponentially equicontinuous,
analytic (¢’ —1)-times integrated C-resolvent (n, j)-propagation family (R, ;(t))t>0
for problem (ZI3), of angle 6 (with the clear meaning).

(b) Suppose 0 <0 <2,021,0<j < Jan|—1,7€(0,5] andm—g > 0.

(an*a)
Z féffl; — %). Arguing similarly as in (a), one can

prove the following: Suppose that for each € € (0,

Put 01 := ¢’ and 6; := min(

jus

5 1) there exists w. > 0 such
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that for each x € D(B) there exists an analytic function ¢, : we + DENT
satisfying that

@A) =N"(NB-A)"'CBx, \€w.+Sz4q—, v € D(B),

and that for each p € ® there exist ¢, > 0 and ¢, € ® so that

()
(g (V) < cpli B A€Ewe+Xz iy e, z€D(B).

Then the existence of limit limpge 100 A 7THANB — A)"'CBx in E, for all
x € D(B), implies that there exists an exponentially equicontinuous, analytic
(o1 — 1)-times integrated C-resolvent (n,j)-propagation family (R, ;(t))i>0 for
problem (ZI3), of angle 6y; if there is an element € D(B) such that the limit
limRe y 100 A’ TN B — A)~"'CBx does not exist in E, then the above holds
with any number o3 > ;. For the purpose of illustration of obtained results, as-
sume now that n € N and ¢A4], 1 <! < n are commuting generators of bounded
Co-groups on a Banach space E. Put A’ := (A],...,A]); we refer the reader
to [57] and [22] Section 4] for the definition of a closable operator P(A’), where
P(z) is a complex polynomial in n variables, and for more details about functional
calculus for commuting generators of bounded Cy-groups (if F = LP(R™) for some
p € [1,00), then the obvious choice is A; := —i0/dz;, with maximal distibutional
domain). Suppose 0 < § < 2, w > 0, P;(x) and P(z) are non-zero complex polyno-
mials, N1 = dg(P1(x)), No = dg(P(x)), B> % (Iﬁi:(rﬁ?)) (resp. f > n|%—% (ﬁﬁl}%},
it E = LP(R™) for some 1 < p < 00), Pa(z) # 0, z € R™ and

(2.14) xseuﬂgl Re ((]]Z:EQ ) 1/5) <w.
Set
. s Pr(x) 2=5/2( g’
(2.15) Rs(t) : (Eé(t Pg(m)>(1+|:c| ) )(A), t>0.

By [22], Theorem 4.3], we know that (Rs(t))i>0 € L(E) is a global exponentially
bounded (gs, Rs(0))-regularized resolvent family for problem (4] with B = P, (A’),
A = Pi(A’) and a(t) = gs(t). By the conclusion in (a), it readily follows that there
exists an exponentially equicontinuous, analytic C-resolvent (n, j)-propagation fam-
ily (Rn,j(t))¢>0 for problem (ZI3), of angle # = min(7, 2(#5_&) — % ). Since condi-
tion (ii.1) given in the formulation of [22] Theorem 2.8] holds, with a(t) = gs(t) and
k(t) = 1, it is not diificult to prove, with the help of our previous consideration and
the results concerning the Laplace transform of analytic vector-valued functions
(see e.g. [24] Section 3]) that conditions (C.1) and (C.5) hold for (ZI3), as well
as that condition (C.4) holds for (ZI3) provided that a,—1 < «; we need the last
condition because the inclusion )\anfl’o‘"’lAP/\_lcx € LT — FE has to be satisfied

(x € E), it is also worth noting that we do not need the condition a,_; < « for
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the existence of solutions of the integral equation
n—1
Bu(t) + Z ci(goy,—ay * Bu)(t) = A(ga, —a xu)(t) + CBvg, t >0,
1=1
cf. (Z8). It is also worth noting that we can refine the results on C-wellposednes
of equation (ZI3)) by using the estimates quoted in [22] Remark 4.4(ii)] and that
we can similarly consider equation (ZI3) in E;-type spaces (cf. [22] Remark 4.5]).

(ii) (cf. [29, Example 5.1(i)-(b)] and [22] Example 3.8] for more details) Let
s>1,0< 7 < Jan] — 1, kap(t) == L7 (exp(—aX))(t), t =0 (a > 0, b € (0,1)),
Hf H

<)

={rec=p,1; Ifl = su
A= —d/ds, D(A'):={f € E; f eE, f(0) = 0}.

Let Pi(z) = valo ag, 1zl z € C, an,,1 # 0 be a complex non-zero polynomial, and
let Py(z) = va ai2?', z € C, an,2 # 0 be a complex non-zero polynomial so
that Ny = dg(P1) > 1+ dg(P2) = 1+ Ny (we leave to the interested reader the
analysis of the case N1 < Ny, in which we always have the existence of integrated
solution resolvent (n, j)-propagation families for problem ([2I3])). Set A := P;(A’)
and B := Py(A’). Using the consideration given in [22] Example 3.8], we can prove
that there exist numbers b > 0 and ¢ > 0 such that

(2.16) I(AB — A)~1| = O (PN M7 @ reln /0y oy e o

and that, for every complex non-zero polynomial P(z) with dg(P) < Ni, there
exists ¢ > 0 such that
(2.17) H()\B B A)_IP(A')fH < CHf||eb‘/\|1/(N17N2)s+C|M1/(N17N2),
for all A € C and f € D(P(A’)) (observe that the above estimates can be used
in proving the existence of convoluted solutions of fractional analogs of equation
A = A)uy = aA — BA? (o, 8 > 0, X € R), in contrast with the assertions of
[22] Theorems 4.2 and 4.3] which can be applied only in the case that A > 0; as
observed by G. A. Sviridyuk, this equation is important in evolution modeling of
some problems appearing in the theory of liquid filtration, see e.g. [9, p.6]). Let
6 € (0,7/2], ¥ = (a, — @)/(N1 — N2) and let b < w/(m + 20). Owing to (214,
[2I17) and Theorem [Z3] we obtain that there is a sufficiently large number a’ > 0
such that there exists an exponentially equicontinuous, analytic k. p-regularized
I-resolvent (n,j)-propagation family (R, ;(t)):>o for problem (ZI3]), of angle 0,
satisfying conditions (C.1)—(C.5). Denote, as before, T} pu(t) = BD{'u(t), ¢ > 0
ifl e N, and oy > 0, T} gu(t) = D" Bu(t), t > 0if I € Ny, Tp pu(t) = ADu(t),
t > 01if a > 0, and Tp pu(t) = DY Au(t), t > 0. Let Tyu(t) be either T; ru(t) or
ru(t) (I € NO Then it can be easily seen that for each x € D(B) the function
u(t) =R, (t)ac t > 0 is a unique strong solution of the problem

Tou(t) + Y eTiu(t) = Tou(t) + (5075 % gjsm,—an) (1), 20,
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with all initial values chosen to be zeroes. Observe, finally, that the analysis con-
tained in [29] Example 5.4] can be used for the construction of hypoanalytic ex-
ponentially equicontinuous k-regularized I-resolvent (n, j)-propagation families for
the problem

D R(AND )+ YT DAt =0, >0,

leK leN,, _1\K
where Py (z),. .., P,—1(z) are complex non-zero polynomials satysfying certain prop-
erties, and X C N,,_1.

2.2. Exponentially equicontinuous (a,k)-regularized C-resolvent
families generated by A, Bj; exponentially equicontinuous (k; C)-regular-
ized resolvent (i, j)-propagation families for (L.I)—(L.2). In this subsection,
we shall mainly consider the C-wellposedness of problem (DFP), with A and B
being closed linear operators on E. Set pp(x) := p(x) + p(Bx), x € D(B), p € ®.
Then the calibration (pp)pece induces the Hausdorff sequentially complete locally
convex topology on D(B). We shall denote this space simply by [D(B)].

Following the consideration given in [Il, Section 2], we introduce the following
definition.

DEFINITION 2.5. Suppose that the functions a(t) and k(t) satisfy (P1), as well
as that R(t) € L(E,[D(B)]) for all t > 0. Let C € L(FE) be injective, and let
CA C AC and CB C BC. Then the operator family (R(t)):>0 is said to be
an exponentially equicontinuous (a, k)-regularized C-resolvent family generated by
A, B iff there exists w > max (0, abs(a), abs(k)) such that the following holds:

(i) The mappings t — R(t)x, t > 0 and t — BR(t)z, t > 0 are continuous
for every fixed element x € F.

(i) The family {e"“*R(t) : ¢t > 0} C L(E, [D(B)]) is equicontinuous, i.e., for
every p € ®, there exist ¢ > 0 and g € ® such that

ple” R(t)z) + ple™'BR(t)x) < cq(z), € E, t >0,

(iii) For every A € C with Re A > w and k()\) # 0, the operator B — a(\)A is
injective, R(C') C R(B — a(A\)A) and

EO)(B —a(\)A)Cx = /OOO e MR(t)xdt, z€E.

If k(t) = gr41(t) for some r > 0, then it is also said that (R(f)):>0 is an ex-
ponentially equicontinuous r-times integrated (a,C)-regularized resolvent family
generated by A, B; an exponentially equicontinuous 0-times integrated (a,C)-
regularized resolvent family generated by A, B is also said to be an exponentially
equicontinuous (a, C)-regularized resolvent family generated by A, B.

Before going any further, it should be noticed that we have already constructed
some examples of (gq, k)-regularized C-resolvent families generated by A, B in
Example 21J(ii).

REMARK 2.4. Suppose that the functions a(t) and k(t) satisfy (P1), as well as
that CA C AC and CB C BC.
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(i) It is clear that an exponentially equicontinuous (a, k)-regularized C-resolvent
family generated by A, B, if exists, must be unique.

(ii) If for each A € C with ReX > w and k(\) # 0 the operator B commutes
with (B — a(A\)A)~'C, then the operator family (BR(t));>0 is an exponen-
tially equicontinuous (a, k)-regularized C-resolvent family for (L), and the
condition (ii.1) stated in the formulation of [22] Theorem 2.8] holds. Further-
more, for each ¢ > 0 the operator BR(t) can be continuously extended from
D(B) to the whole space E.

(ili) Assume that (R(¢))¢>0 is an exponentially equicontinuous (a, k)-regularized C-
resolvent family for (I4) and that there exists a strongly continuous operator
family (R(t));>0 C L(E) such that R(t)z = R(t)z, t > 0, z € D(B) (the last
condition automatically follows from the previous one if E' is complete and B is
densely defined; cf. [22, Remark 2.3(iv)]). If B~! € L(F) and BR(t) C R(t)B
t > 0, then (R(t)B~1):>0 is an exponentially equicontinuous (a, k)-regularized
C-resolvent family generated by A, B.

The proof of the following theorem can be deduced by using slight modifications
of the proofs of [1, Proposition 2.1, Lemma 2.2] and the fact that the assertion
of [21] Lemma 2.4] continues to hold in SCLCSs.

THEOREM 2.5. Let (R(t))i>0 be an exponentially equicontinuous (a, k)-regular-
ized C-resolvent family generated by A, B, and let abs(|a]) < co. Then the following
holds:

(i) For every x € E and for every A € C with Re A > w and lNc()\) # 0, we have

E\B(B - a(\)A) " Cx = /Ooo e MBR(t)x dt.

(i) R(t)Bz = k(t)Cz + [ a(t — s)R(s)A ds, t >0, z € D(A)N D(B).
(iii) fg a(t — s)R(s)xds € D(A)ND(B), t >0,z € E.
(iv) BR() (tC:c+Af0 t—s) (s)xds, t >0, x € E.
v) R(t) ( (4)ND(B)) € D(A ) D(B), t > 0.
(vi) B(B—a(\)A)"1CAxz = A(B—a(\)A 0Bz for every x € D(A)ND(B) and

pynz\_/

for every A € C with Re\ > w and
x € D(A)N D(B).

(vii) Suppose that the function k(t) is differentiable at a point to > 0 and that
a € AC1c([0,00)). If X € C satisfies ReX > w and k(\) # 0, then for every
j € Ny, z € C and for every complex polynomial P(-), we have

(\) # 0; AR(t)Bx = BR(t)Az, t > 0,

d o ;
(FlB-ama o -PeYROB])

— (B -aa) o - PO (5

t=to

R(t )B:L')
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(viii) Let x € D(A) N D(B). Then the function t — u(t), t > 0, defined by u(t) :=
R(t)Bz, t > 0 satisfies u € C([0,00) : [D(A)]) N C([0,00) : [D(B)]) and

0.

WV

Bu(t) = k(t)CBx + /t a(t — s)Au(s)ds, t
0

REMARK 2.5. (i) Suppose that 2 € D(A)ND(B), a > 0 and there exists an ex-
ponentially equicontinuous (g, C)-regularized resolvent family (R(t)):>0 generated
by A, B. Using the identity R(t)Bx = C:E+fg ga(t—s)R(s)Ax ds, t > 0, it readily
follows that the mapping ¢t — R(t)Bx, t > 0 is (m — 1)-times continuously differ-
entiable on [0, 00), where m = [«a]. Furthermore, it can be easily verified that the
Caputo derivative D$ R(t) Bz is well defined as well as that DY R(t) Bz = R(t)Ax,
t > 0. Keeping in mind Remark Z2{(ii) and Proposition ZB(vi), we get that the
function u(t) := R(t) Bz, t > 0 is a unique solution of the following Cauchy problem:

u € C([0,00) : [D(A)]) N C([0,00) : [D(B)]) N C™7H([0,00) : E),
BDju(t) = Au(t), t=>=0,
u(0) = Cz; u90)=0, 1<j<m—1.

In Theorem below, we extend this result to the class of exponentially equi-
continuous (gq, gai+1)-regularized C-resolvent families generated by A, B (I€N).

(if) Now we would like to illustrate the conclusion deduced in the first part of
this remark to degenerate fractional equations associated with the abstract differ-
ential operators [2057]. For the sake of simplicity, we shall only consider the equa-
tions of order o € (0, 2); cf. [22] Subsection 4.1] for further information concerning
the case o = 2. Assume that n € N and 74;, 1 < j < n are commuting generators
of bounded Cy-groups on a Banach space E. Suppose again that 0 < a < 2,
w > 0, Pi(x) and Py(z) are non-zero complex polynomials, Ny = dg(Pi(x)),

= dg(Py(w)), B > 3L (resp. B > n|i — IS it B = LP(RY)
for some 1 < p < 00), Py(z) # 0, x € R™ and that ([QZEI) holds with ¢ replaced by
a. Define (Rq(t))i>0 as in (Z15)), with § replaced by a; C' = R, (0). Then we know
that (Ra(t))i>0 € L(FE) is a global exponentially bounded (gq, Rq(0))-regularized
resolvent family for the problem

(P {D?PQ(A)U() Py (A)ult

(t),
u(0) = Cx; uW(0)=0, 1<j<[a]—-1;

cf. Definition [T with a(t) = go(t) and k(t) = 1. Furthermore, the analysis con-
tained in [22] Remark 4.4(i)] implies that there exists an exponentially bounded,

strongly continuous operator family (Gq (t)):>0 such that G, (t)z = PQ(A)ilRa (t)z,
t>0,2 € Eand A (A*B - A)"'Cx = [T e MGq(t)zdt for any x € E and
A > 0 sufficiently large. Hence, (G4 (t))i>0 is an exponentially equicontinuous
(9o, C)-regularized resolvent family generated by P;(A), P>(A), so that for each
f € D(P1(A)) N D(P2(A)), the function u(t) := Ry (t)x, t > 0 is a unique solution
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of the following Cauchy problem:
u € C([0,00) : [D(P1(A))]) N C([0,00) : [D(P(A)))),
(P)r : S Po(A)D%u(t) = P(A)u(t), t=0,
w(0) =Cz; u(0)=0, 1<j<[a]—-1.

The consideration is quite similar in the case that the requirements of [22, Theorem
4.3] hold (cf. also [22] Remark 4.4(ii)] and [22] Remark 4.5], which enables us to
consider the wellposedness of problem (P) in Ej-type spaces [54]).

We shall employ the following auxiliary lemma in the proof of Theorem
mentioned above.

LEMMA 2.1. (cf. [20, Corollary 2.1.20]) Suppose a« > 0,1 € N, z € C, A is a
subgenerator of an exponentially equicontinuous (gu, gint+1)-regularized C-resolvent
family (S1,0(t))i0 on E, z— A is injective, R(C) C R((z— A)') and (2 — A)_IC €
L(E), ..., (z—A)7!C € L(E). Set, for everyx € E and t >0,

aj

Sa(t)z = (—1)'S1.a(t)z + 2(1)%1 (;) =i [z*l (ﬁ) « sl,a(-)x} (t)

a—1

l
+ ;(_1)l—j£—1 (m) .

Then (Sa(t))i=0 is an ezponentially equicontinuous (ga,(z — A)~'C)-regularized
resolvent family with a subgenerator A.

Now we state the following important extension of [I, Theorem 2.2] (cf. the
forthcoming monograph [26] for more details about applications of Theorem [2.0] in
the study of analytical solutions to fractional Barenblatt—Zheltov—Kochina equation
in finite domains).

THEOREM 2.6. Suppose that o > 0,1 € N, z € C, there exists an exponentially
equicontinuous (o, Jia+1)-reqularized C-resolvent family (S).q(t))i>0 generated by
A, B, the operator zB— A is injective and x € D(A)ND(B)ND(((zB—A)~'B)'C).
Define

aj

1= S8 S0 () (o) sl

a—1

1
+ L (s ) OB - A7 By Cr, >0,

Then the function u(t) is a unique solution of the problem (DFP)p with f(t) =0
and the initial value x replaced by ((zB—A)~'B)!Cx (we will designate this problem
by (DFP)L; in the sequel).

PROOF. The uniqueness of solutions follows similarly as in Remark 25(i) and
we shall only prove that the function u(t) is a solution of the problem (DFP) Ll
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1y . aj
Denote z; = ((2B — A) 1B)]C’:E (j € NY), Fj,(t) = L~ (W)(t), t >0

o= 1

function Fj;(¢) is continuous on (0 00), locally integrable on [0, 00) and exponen-
tially bounded on [1,00) (0 < j < I — 1), while the function G;;(t) is continuous
and exponentially bounded on [0,00) (1 < j < I); cf. [20]. Set m := [a]. By
Theorem [25(ii), we have that the mapping t — S; o(¢t)Bx, t > 0 is (m — 1)-times
continuously differentiable and

am— 1

dtm—1
hence (dw St,a(t)Bx)i=o

t— [Fj; % Sio()Bz](t), t >
as that

t
———851,0(t) Bz = gait2-m(t)Cx —|—/ Gat1-m(t — 8)Sia(s)Axds, > 0;
0

< j < m—1. This simply implies that the mapping
is (m — 1)-times continuously differentiable as well

dmfl m—1

i P50+ 115210 = (Foa * s

provided 0 < j < [ — 1; hence, (%[ijl * S1a()Bz](t))i=0 = 0,0 < p<m—1

0<j<i— 1). Now it is not dlfﬁcult to prove that
D{S1o(t)Br = gia+1-a(t)Cx + S o(t) Az, t>=0,
Dy [Fji * Sia(-)Bz](t) = giat1-a(t)Cx + Sia(t)Az, t 20 (0<j<1-1).

Suppose, for the time being, that the assumptions of Lemma [Z.1] hold. Since for
each z € D(A) the function v(t) := S, (t)z, t > 0 is a unique solution of the problem

D¢o(t) = Av(t), t=0,

Z1 e Bz | (1), =0,

we may conclude from the above (by plugging [ = 1,2,... successively in Lemma
[2.1) that for each j € N; the function G;;(t) is (m — 1)-times continuously differ-
entiable on [0,00) as well as that (dthj,z(t))t=0 =0,1<p<m—-101<j<I
and that the Caputo derivative DG ;(t) is well defined (1 < j < ). Since
G11(t) = Eqo(2t*), t > 0, it readily follows that the function u(t) satisfies u(0) = x;
and ¢ (0) =0, 1 < j < m — 1. It remains to be proved that BD§ = Au(t), t > 0.
Carrying out a straightforward computation, it can be easily seen that this equality
holds iff

-1
(D gats1-a0BCs + 17 () s gl (OB Ca
=0
l l
+) (-D)"IDG (1) Bry =Y (1) G () Az, =0
> 2
iff
-1

7l ,
(0 gars1-a0BC + 3 (=17 (L) E 4 gl )BC
=0
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+

J

(—1)Z_than,l(t)Bl‘j = Z(—l)l_jGjJ(t)[ZBIj - B.I?j_l], t > 0.

l l
=1 j=1

This is true because the coefficients of Bz, for every fixed number j € N?, on both
sides of previous equality are equal (cf. also the proof of [20, Theorem 2.1.19]). O

Suppose that the operator B is injective, z € D(AB™!), a > 0 and there ex-
ists an exponentially equicontinuous (g, C')-regularized resolvent family (R(t))¢>o
generated by A, B. Then it can be easily checked that the function u(t) := R(t)z,
t > 0 is a unique solution of problem (DFP); with f(¢) = 0 and the initial value
x replaced by CB~'x. We leave to the interested reader the problem of transfer-
ring this conclusion, as well as the other ones from [1, Remark 2.4], to degenerate
fractional equations whose solutions are goverened by (ga, gai+1)-regularized C-
resolvent families generated by A, B (I € N).

Assume now that n € NN {1}, 0 < a1 < -+ < an-1, and Ay,..., Ap_1
are closed linear operators on E. In the analysis of existence and uniqueness of
integral equations associated with the problem (LI)-(T2)), we can also use the
notion of an exponentially equicontinuous (analytic) (k;C)-regularized resolvent
(i, j)-propagation family.

DEFINITION 2.6. (cf. Definition [Z3] and Definition [Z4]) Suppose that the func-
tion k(t) satisfies (P1), as well as that 1 < ¢ < n—1,0 < j < m; —1 and
R; j(t) € L(E,[D(A;)]) for all t > 0. Let the operator C' € L(E) be injective.

(i) Then the operator family (R; ;(t)):>0 is said to be an exponentially equi-
continuous (k; C)-regularized resolvent (7, j)-propagation family for problem (II)—
([T2) iff there exists w > max(0, abs(k)) such that the following holds:

(a) The mappings ¢t +— R, j(t)z, t > 0 and ¢ — A;R; ;(t)x, t > 0 are continuous

for every fixed element x € F.

(b) The family {e"“'R; ;(t) : t = 0} C L(E,[D(4;)]) is equicontinuous, i.e., for
every p € ®, there exist ¢ > 0 and g € ® such that

p(e*“’tRiyj (t)x) +p(e*‘*’tAz-Ri7j (t)x) <cq(z), z€E, t=0.

(c) For every A € C with ReA > w and k(\) # 0, the operator P is injective,
R(C) C R(Py) and

A IR\ P O :/ e MR, j(t)xdt, x€E.
0

(ii) Let (R; ;(t))t>0 be an exponentially equicontinuous (k; C)-regularized re-
solvent (i, j)-propagation family for problem ([I)-(LZ). Then it is said that
(Ri,;(t))i>0 is an exponentially equicontinuous (equicontinuous), analytic (k;C)-
regularized resolvent (i, j)-propagation family for problem (CI)-(T2), of angle «,
iff the following holds:

(a) For every x € E, the mappings t — R, ;(t)x, t > 0 and t — A;R; j(t)z, t > 0
can be analytically extended to the sector ¥, ; since no confusion seems likely,
we shall denote these extensions by the same symbols.
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(b) For every z € E and B € (0, ), one has lim, ,o.¢cx, Rij(2)r = R; ;(0)x and

1imzﬁo’ze2ﬁ AiRi,j (Z)QL' = AiRi,j (O)l‘

(c) For every f € (0,a), there exists wg > max(0,abs(k)) (ws = 0) such that

the family {e"“#*R; ;(z) : z € ¥} C L(E, [D(A;)]) is equicontinuous, i.e., for
every p € ®, there exist ¢ > 0 and g € ® such that

p(e™ %R, j(z)x) + ple P AR, ;(2)x) < cq(z), =z €E, z € Xg.

Exponentially equicontinuous (analytic) (k; C')-regularized resolvent (i, j)-prop-

agation families yield results very similar to those obtained by k-regularized C-

re.

solvent (i, j)-propagation families. Without going into a deeper analysis, we

shall only observe that the assertions of Theorem [2.1i)—(iii), Remark 22(i), (iii),
Theorem 23] and Theorem 2.4 can be restated for exponentially equicontinuous
(k; C)-regularized resolvent (i, j)-propagation families. Details can be left to the
interested reader.
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