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DECOMPOSITIONS OF 2 × 2 MATRICES

OVER LOCAL RINGS

Huanyin Chen, Sait Halicioglu, and Handan Kose

Abstract. An element a of a ring R is called perfectly clean if there exists an
idempotent e ∈ comm2(a) such that a − e ∈ U(R). A ring R is perfectly clean
in case every element in R is perfectly clean. In this paper, we completely
determine when every 2 × 2 matrix and triangular matrix over local rings are
perfectly clean. These give more explicit characterizations of strongly clean
matrices over local rings. We also obtain several criteria for a triangular matrix
to be perfectly J-clean. For instance, it is proved that for a commutative local
ring R, every triangular matrix is perfectly J-clean in Tn(R) if and only if R

is strongly J-clean.

1. Introduction

The commutant and double commutant of an element a in a ring R are defined
by comm(a) = {x ∈ R | xa = ax}, comm2(a) = {x ∈ R | xy = yx for all y ∈
comm(a)}, respectively. An element a ∈ R is strongly clean provided that there
exists an idempotent e ∈ comm(a) such that a − e ∈ U(R). A ring R is called
strongly clean in the case that every element in R is strongly clean. Strongly clean
matrix rings and triangular matrix rings over local rings have been extensively
studied by many authors (cf. [1, 2, 5, 6] and [12, 13]. An element a ∈ R is
quasipolar provided that there exists an idempotent e ∈ comm2(a) such that a+e ∈
U(R) and ae ∈ Rqnil, where Rqnil = {x ∈ R | 1 + xr ∈ U(R) for any r ∈ comm(x)}.
A ring R is called quasipolar if every element in R is quasipolar. As is well known,
a ring R is quasipolar if and only if for any a ∈ R there exists a b ∈ comm2(a) such
that b = bab and b − b2a ∈ Rqnil. This concept has evolved from Banach algebra.
In fact, for a Banach algebra R,

a ∈ Rqnil ⇔ lim
n→∞

‖an‖
1

n = 0.

It is shown that every quasipolar ring is strongly clean. Recently, quasipolar 2 × 2
matrix rings and triangular matrix rings over local rings were also studied from
different point of views (cf. [7, 9, 11]).
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The motivation for this article is to introduce a medium class between strongly
clean rings and quasipolar rings, and then explore more explicit decompositions
of 2 × 2 matrices over a local ring. An element a of a ring R is called perfectly
clean if there exists an idempotent e ∈ comm2(a) such that a − e ∈ U(R). A
ring R is perfectly clean in the case every element in R is perfectly clean. We
completely determine when every 2×2 matrix and triangular matrix over local rings
are perfectly clean. These also give more explicit characterizations of strong clean
matrices over local rings, and enhance many known results, e.g., [5, Theorem 8],
[11, Theorem 2.8] and [12, Theorem 7]. Replaced U(R) by J(R), we introduce
perfectly J-clean rings as a subclass of perfectly clean rings. Furthermore, we show
that strong J-cleanness for triangular matrices over a local ring can be enhanced
to such stronger properties. These also generalize the corresponding properties of
J-quasipolarity, e.g., [8, Theorem 4.9].

We write U(R) and J(R) for the set of all invertible elements and the Jacobson
radical of R; Mn(R) and Tn(R) stand for the rings of all n × n matrices and
triangular matrices over a ring R.

2. Perfect rings

Clearly, an abelian exchange ring is perfectly clean. Every quasipolar ring
is perfectly clean. For instance, every strongly π-regular ring. In fact, we have
{quasipolar rings} ( {perfectly clean rings} ( {strongly clean rings}. In this
section, we explore the properties of perfect rings, which will be used in the sequel.
We begin with

Theorem 2.1. Let R be a ring. Then the following are equivalent:

(1) R is perfectly clean.

(2) For any a ∈ R, there exists an x ∈ comm2(a) such that x = xax and

1 − x ∈ (1 − a)R ∩ R(1 − a).

Proof. (1) ⇒ (2) For any a ∈ R, there exists an idempotent e ∈ comm2(a)
such that u := a−e ∈ U(R). Set x = u−1(1−e). Let y ∈ comm(a). Then ay = ya.
As uy = (a − e)y = y(a − e) = yu, we get u−1y = yu−1. Thus, xy = u−1(1 − e)y =
u−1y(1 − e) = yu−1(1 − e) = yx. This implies that x ∈ comm2(a). Further,
xax = u−1(1 − e)(u + e)u−1(1 − e) = u−1(1 − e) = x. Clearly, u = (1 − e) − (1 − a),
and so 1 − u−1(1 − e) = u−1(1 − a). This implies that 1 − x ∈ R(1 − a). Likewise,
1 − x ∈ (1 − a)R as (1 − e)u−1 = u−1(1 − e). Therefore 1 − x ∈ (1 − a)R ∩ R(1 − a),
as required.

(2) ⇒ (1) For any a ∈ R, there exists an x ∈ comm2(a) such that x = xax and
1 − x ∈ (1 − a)R ∩ R(1 − a). Write e = 1 − ax. If y ∈ comm(a), then ay = ya, and
so axy = ayx = yax. This shows that ey = ye; hence, e ∈ comm2(a). In addition,
ex = xe = 0. Write 1 − x = (1 − a)s = t(1 − a) for some s, t ∈ R. Then

(a − e)(x − es) = ax − aes + es = ax + (1 − a)es

= ax + e(1 − a)s = ax + e(1 − x) = ax + e = 1.

Likewise, (x − te)(a − e) = 1. Therefore a − e ∈ U(R), as desired. �
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Corollary 2.1. Let R be a ring. Then the following are equivalent:

(1) R is perfectly clean.

(2) For any a ∈ R, there exists an idempotent e ∈ comm2(a) such that

eae ∈ U(eRe) and (1 − e)(1 − a)(1 − e) ∈ U
(
(1 − e)R(1 − e)

)
.

Proof. (1) ⇒ (2) For any a ∈ R, it follows from Theorem 2.1 that there
exists an x ∈ comm2(a) such that x = xax and 1 − x ∈ (1 − a)R ∩ R(1 − a). Write
1 − x = (1 − a)s = t(1 − a) for some s, t ∈ R. Set e = ax. For any y ∈ comm(a),
we have ay = ya, and so ey = (ax)y = a(yx) = (ay)x = y(ax) = ye. Hence,
e2 = e ∈ comm2(a). Clearly, (eae)(exe) = (exe)(eae) = e; hence, eae ∈ U(eRe).
Furthermore, 1−e = (1−x)+(1−a)x = (1−a)(s+x). This shows that (1−e)(1−
a)(1−e)(1−x)(1−e) = 1−e. Likewise, (1−e)(1−x)(1−e)(1−e)(1−a)(1−e) = 1−e.
Therefore (1 − e)(1 − a)(1 − e) ∈ U

(
(1 − e)R(1 − e)

)
.

(2) ⇒ (1) For any a ∈ R, we have an idempotent e ∈ comm2(a) such that
eae ∈ U(eRe) and (1 − e)(1 − a)(1 − e) ∈ U

(
(1 − e)R(1 − e)

)
. Hence, a − (1 − e) =(

eae − (1 − e)(1 − a)(1 − e)
)

∈ U(R). Set p = 1 − e. Then a − p ∈ U(R) with

p ∈ comm2(a), as desired. �

Recall that a ring R is strongly nil clean provide that every element in R is the
sum of an idempotent and a nilpotent element that commutate (cf. [4] and [10]).

Theorem 2.2. Let R be a ring. Then R is strongly nil clean if and only if

(1) R is perfectly clean, (2) N(R) = {x ∈ R | 1 − x ∈ U(R)}.

Proof. Let R be strongly nil clean. For any a ∈ R, we see that a−a2 ∈ N(R).

Write (a − a2)n = 0. Let f(t) =
∑n

i=0

(2n
i

)
t2n−i(1 − t)i ∈ Z[t]. Then we have

f(t) ≡ 0 (mod tn). Clearly,

f(t) +

2n∑

i=n+1

(
2n

i

)
t2n−i(1 − t)i = (t + (1 − t))n = 1;

hence, f(t) ≡ 1 (mod (1−t)n). This shows that f(t)(1−f(t)) ≡ 0 (mod tn(1−t)n).
Let e = f(a). Then e ∈ R is an idempotent. For any x ∈ comm(a), we see that
xa = ax, and so xe = xf(a) = f(a)x = ex. Thus, e ∈ comm2(a). Furthermore,
a − e = a − a2n + (a − a2)g(a) = (a − a2)

(
1 + a + a2 + · · · + a2n−2 + g(a)

)
∈ N(R),

where g(t) ∈ Z[t]. Thus, a = (1 − e) + (2e − 1 + a − e) with 1 − e ∈ comm2(a) and
2e − 1 + a − e ∈ U(R). Therefore, R is perfectly clean.

Clearly, N(R) ⊆ {x ∈ R | 1 − x ∈ U(R)}. If 1 − x ∈ U(R), then x = e + w with
e ∈ comm(x) and w ∈ N(R). Hence, 1 − e = (1 − x) + w ∈ U(R). This implies
that 1 − e = 1, and so x = w ∈ N(R). Therefore N(R) = {x ∈ R | 1 − x ∈ U(R)}.

Conversely, assume that (1) and (2) hold. For any a ∈ R, there exist an
idempotent e ∈ comm2(a) and a unit u ∈ R such that −a = e − u. Hence,
a = −e + u = (1 − e) − (1 − u). By hypothesis, 1 − u ∈ N(R). Accordingly, R is
strongly nil clean. �

Corollary 2.2. Let R be a ring. Then R is strongly nil clean if and only if

(1) R is quasipolar; (2) N(R) = {x ∈ R | 1 − x ∈ U(R)}.
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Proof. Suppose that R is strongly nil clean. Then (2) holds by Theorem 2.2.
For any a ∈ R, as in the proof of Theorem 2.2, a = e + w with e ∈ comm2(a) and
w ∈ N(R). Hence, a = (1−e)+(2e−1+w) where 2e−1+w ∈ U(R). Furthermore,
(1 − e)a = (1 − e)w ∈ N(R) ⊆ Rqnil. Therefore R is quasipolar.

Conversely, assume that (1) and (2) hold. Then R is perfectly clean. Accord-
ingly, we complete the proof by Theorem 2.2. �

Lemma 2.1. Let R be a ring. Then the following are equivalent:

(1) R is perfectly clean.

(2) For each a ∈ R there exists an idempotent e ∈ comm2(a)
such that a − e and a + e are invertible.

Proof. (1) ⇒ (2) Let a ∈ R. Then a2 ∈ R is perfectly clean. Thus, we can
find an idempotent e ∈ comm2(a2) such that a2 − e ∈ U(R). Since a · a2 = a2 · a,
we see that ae = ea. Hence, a2 − e = (a − e)(a + e), and therefore we conclude that
a − e, a + e ∈ U(R).

(2) ⇒ (1) is trivial. �

Theorem 2.3. Let R be perfectly clean. Then for any A ∈ Mn(R) there exist

U, V ∈ GLn(R) such that 2A = U + V .

Proof. We prove the result by induction on n. For any a ∈ R, there exists an
idempotent e ∈ comm2(a) such that u := a − e, v := a + e ∈ U(R), by Lemma 2.1.
Hence, 2a = u + v, and so the result holds for n = 1. Assume that the result
holds for n 6 k (k > 1). Let n = k + 1, and let A ∈ Mn(R). Write A =

(
x α
β X

)
,

where x ∈ R, α ∈ M1×k(R), β ∈ Mk×1(R) and X ∈ Mk(R). In view of Lemma 2.1,
we have a u ∈ U(R) such that 2x − u = v ∈ U(R). By hypothesis, we have a
U ∈ GLk(R) such that 2

(
X − 2βv−1α

)
− U = V ∈ GLk(R). Hence

2A −

(
u 0
0 U

)
=

(
v 2α

2β V + 4βv−1α

)
.

It is easy to verify that
(

v 2α
2β V + 4βv−1α

)
=

(
1

2βv−1 Ik

) (
v 2α
0 V

)
∈ GLn(R).

By induction, we complete the proof. �

Corollary 2.3. Let R be a quasipolar ring. If 1
2 ∈ R, then every n×n matrix

over R is the sum of two invertible matrices.

Proof. As every quasipolar ring is perfectly clean, the proof follows by The-
orem 2.3. �

As a consequence, we derive the following known fact: Let R be a strongly
π-regular ring with 1

2 ∈ R. Then every n × n matrix over R is the sum of two
invertible matrices.
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3. Matrices and triangular matrices

Recall that a ring R is local if it has only one maximal right ideal. A ring R
is local if and only if for any a ∈ R either a or 1 − a is invertible. Necessary and
sufficient conditions under which 2 × 2 matrices over a local ring are attractive. In
this section, we extend these known results on strongly clean matrices to perfect
cleanness.

Lemma 3.1. Let R be a ring, and u ∈ U(R). Then the following are equivalent:

(1) a ∈ R is perfectly clean. (2) uau−1 ∈ R is perfectly clean.

Proof. (1) ⇒ (2) By hypothesis, there exists an idempotent e ∈ comm2(a)
such that a−e ∈ U(R). Hence, uau−1−ueu−1 ∈ U(R). For any x ∈ comm(uau−1),
we see that x(uau−1) = (uau−1)x, and so (u−1xu)a = a(u−1xu). Thus, (u−1xu)e =
e(u−1xu). Hence x(ueu−1) = (ueu−1)x. We conclude that ueu−1 ∈ comm2(uau−1),
as required.

(2) ⇒ (1) is symmetric. �

A ring is weakly cobleached provided that for any a ∈ J(R), b ∈ 1 + J(R),
la − rb and lb − ra are both injective. For instance, every commutative local ring,
every local ring with nil Jacobson radical.

Theorem 3.1. Let R be a weakly cobleached local ring. Then the following are

equivalent:

(1) M2(R) is perfectly clean. (2) M2(R) is strongly clean.

(3) For any A ∈ M2(R), A ∈ GL2(R), or I2 − A ∈ GL2(R),
or A is similar to a diagonal matrix.

Proof. (1) ⇒ (2) is trivial.

(2) ⇒ (3) is obtained by [13, Theorem 7].

(3) ⇒ (1) For any A ∈ M2(R), A ∈ GL2(R), or I2 − A ∈ GL2(R), or A is
similar to a diagonal matrix. If A or I2 − A ∈ GL2(R), then A is perfectly clean.
Assume now that A is similar to a diagonal matrix with A, I2 − A /∈ GL2(R). We
may assume that A is similar to

(
λ 0
0 µ

)
, where λ ∈ U(R), µ ∈ J(R). If λ ∈ 1+U(R),

then
(

λ 0
0 µ

)
− I2 ∈ GL2(R); hence, it is perfectly clean. In view of Lemma 3.1, A is

perfectly clean. Thus, we assume that λ ∈ 1 + J(R). By Lemma 3.1, it will suffice
to show that

(
λ 0
0 µ

)
∈ GL2(R) is perfectly clean. Clearly,

(
λ 0
0 µ

)
=

(
0 0
0 1

)
+

(
λ 0
0 µ − 1

)
,

where
(

λ 0
0 µ−1

)
∈ GL2(R).

We show that the idempotent
(

0 0
0 1

)
∈ comm2

((
λ 0
0 µ

))
. For any

(
x s
t y

)
∈

comm
((

λ 0
0 µ

))
, one has λs = sµ and µt = tλ; hence, s = t = 0. This implies

(
x s
t y

) (
0 0
0 1

)
=

(
0 0
0 y

)
=

(
0 0
0 1

) (
x s
t y

)
.

Therefore
(

0 0
0 1

)
∈ comm2

((
λ 0
0 µ

))
, hence the result. �
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Corollary 3.1. Let R be a commutative local ring. Then the following are

equivalent:

(1) M2(R) is perfectly clean. (2) M2(R) is strongly clean.

(3) For any A ∈ M2(R), A ∈ GL2(R), or I2 − A ∈ GL2(R),
or A is similar to a diagonal matrix.

Proof. It is a consequence of Theorem 3.1 as every commutative local ring is
weakly cobleached. �

Let p be a prime. We use Ẑp to denote the ring of all p-adic integers. In view

of [6, Theorem 2.4], M2
(
Ẑp

)
is strongly clean, and therefore M2

(
Ẑp

)
is perfectly

clean, by Corollary 3.1.

Theorem 3.2. Let R and S be local rings. Then the following are equivalent:

(1)
(

R V
0 S

)
is perfectly clean.

(2) For any a ∈ J(R), b ∈ 1 + J(S), v ∈ V , there exists a unique x ∈ V such

that ax − xb = v.

Proof. (1) ⇒ (2) Let a ∈ 1 + J(R), b ∈ J(S) and v ∈ V . Set A =
(

a −v
0 b

)
. By

hypothesis, we can find an idempotent E ∈ comm2(A) such that A − E ∈
(

R V
0 S

)

is invertible. Clearly, E =
(

0 x
0 1

)
for some x ∈ V . Thus, ax − xb = v. Suppose that

ay − yb = v for a y ∈ V . Then

A

(
0 y
0 1

)
=

(
0 y
0 1

)
A,

and so
(

0 y
0 1

)
∈ comm(A). This implies that

E

(
0 y
0 1

)
=

(
0 y
0 1

)
E;

hence, x = y. Therefore there exists a unique x ∈ V such that ax − xb = v, as
desired.

(2) ⇒ (1) Let T =
(

R V
0 S

)
, and let A =

(
a v
0 b

)
∈

(
R V
0 S

)
.

Case I. a ∈ J(R), b ∈ J(S). Then A −
( 1R 0

0 1S

)
∈ U(T ); hence, A is perfectly

clean.
Case II. a ∈ U(R), b ∈ U(S). Then A − 0 ∈ U(T ); hence, A is perfectly clean.
Case III. a ∈ U(R), b ∈ J(S). (i) a ∈ 1+U(R), b ∈ J(S). Then A−

( 1R 0
0 1S

)
∈ T

is invertible; hence, A ∈ T is perfectly clean. (ii) a ∈ 1 + J(R), b ∈ J(S). Then we
can find a t ∈ V such that at − tb = −v. Let

(
x s
0 y

)
∈ comm(A). Then

A

(
x s
0 y

)
=

(
x s
0 y

)
A,

and so ax = xa, by = yb, and as − sb = xv − vy. Hence, we check that

a(xt − ty + s) − (xt − ty + s)b = x(at − tb) − (at − tb)y + (as − sb)

= −xv + vy + (as − sb)

= 0.
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By hypothesis, xt − ty = −s, and so we get
(

0 t
0 1

) (
x s
0 y

)
=

(
0 ty
0 y

)
=

(
0 xt + s
0 y

)
=

(
x s
0 y

) (
0 t
0 1

)
.

We infer that (
0 t
0 1

)2

−

(
0 t
0 1

)
∈ comm2(A).

Furthermore, A −
(

0 t
0 1

)
∈ U(T ). Therefore A is perfectly clean.

Case IV. a ∈ J(R), b ∈ U(S) Then A is perfectly clean, as in the preceding
discussion. �

A ring R is uniquely weakly bleached provided that for any a ∈ J(R), b ∈
1 + J(R), la − rb and lb − ra are both isomorphisms.

Corollary 3.2. Let R be local. Then the following are equivalent:

(1) T2(R) is perfectly clean. (2) R is uniquely weakly bleached.

Proof. It is clear by Theorem 3.2. �

For instance, if R is a commutative local ring or a local ring with nil Jacobson
radical, then T2(R) is perfectly clean.

4. Perfectly J-clean rings

An element a ∈ R is said to be perfectly J-clean provided that there exists an
idempotent e ∈ comm2(a) such that a − e ∈ J(R). A ring R is perfectly J-clean if
every element in R is perfectly J-clean.

Theorem 4.1. Let R be a ring. Then R is perfectly J-clean if and only if

(1) R is quasipolar. (2) R/J(R) is Boolean.

Proof. Suppose that R is perfectly J-clean. Let a ∈ R is perfectly J-clean.
Then there exists an idempotent e ∈ comm2(a) such that w := a−e ∈ J(R). Hence,
a − (1 − e) = 2e − 1 + w ∈ U(R). Additionally, (1 − e)a = (1 − e)w ∈ J(R) ⊆ Rqnil.
This implies that a ∈ R is quasipolar. Furthermore, a − a2 = (e + w) − (e + w)2 ∈
J(R), and then R/J(R) is Boolean.

Conversely, assume that (1) and (2) hold. Let a ∈ R. Then there exists an
idempotent e ∈ comm2(a) such that u := a − e ∈ U(R). Moreover, R/J(R) is
Boolean, and so a − a2 = (e + u) − (e + u)2 = u(1 − 2e − u) ∈ J(R). This shows
that 1 − 2e − u ∈ J(R), whence a − (1 − e) = (e + u) − (1 − e) = 2e − 1 + u ∈ J(R).
Therefore R is perfectly J-clean. �

Corollary 4.1. Let R be a ring. Then the following are equivalent:

(1) R is perfectly J-clean.

(2) R is perfectly clean, and R/J(R) is Boolean.

(3) R is quasipolar, and R is strongly J-clean.
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Proof. (1) ⇒ (2) is obvious by Theorem 4.1, as every quasipolar ring is
perfectly clean.

(2) ⇒ (1) For any a ∈ R there exists an idempotent p ∈ comm2(a) such that
u := a − p ∈ U(R). As R/J(R) is Boolean, we have ū = ū2; hence, u ∈ 1 + J(R).
Furthermore, 2 ∈ J(R). Accordingly, a = p + u = (1 − p) + (2p − 1 + u) with
1 − p ∈ comm2(a) and 2p − 1 + u ∈ J(R), as desired.

(1) ⇒ (3) Suppose R is perfectly J-clean. Then R is strongly J-clean. By the
preceding discussion, R is quasipolar.

(3) ⇒ (1) Since R is strongly J-clean, R/J(R) is Boolean. Therefore the proof
is complete by the discussion above. �

Example 4.1. Let R = T2(Z2n ) (n ∈ N). Then T2(R) is perfectly J-clean.

Proof. As R is finite, it is periodic. This shows that R is strongly π-regular.
Hence, T2(R) is quasipolar, by [9, Theorem 2.6]. As J

(
Z2n

)
= 2Z2n , we see that

R/J(R) ∼= Z2 is Boolean. Hence, T2(R)/J
(
T2(R)

)
is Boolean. Therefore the result

follows by Theorem 4.1. �

Recall that a ring R is uniquely strongly clean provided that for any a ∈ R
there exists a unique idempotent e ∈ comm(a) such that a − e ∈ U(R).

Proposition 4.1. Let R be a ring. Then R is perfectly J-clean if and only if

(1) R is perfectly clean, (2) R is uniquely strongly clean.

Proof. Suppose R is perfectly J-clean. Then R is perfectly clean. Hence, R
is strongly clean. Let a ∈ R. Write a = e + u = f + v with e = e2 ∈ comm2(a),
f = f2 ∈ R, u ∈ J(R), v ∈ U(R), ea = ae and fa = af . Then f ∈ comm(a), and
so ef = fe. Thus, e − f = v − u ∈ U(R) and (e − f)(e + f − 1) = 0. This implies
that f = 1 − e, and therefore R is uniquely strongly clean.

Conversely, assume that (1) and (2) hold. Then R/J(R) is Boolean. Therefore
we complete the proof by Corollary 4.1. �

Corollary 4.2. A ring R is uniquely clean if and only if R is abelian perfectly

J-clean.

Proof. As every uniquely clean ring is abelian (cf. [4, Corollary 16.4.16]), it
is clear by Proposition 4.1. �

Theorem 4.2. Let R be a ring. Then the following are equivalent:

(1) R is perfectly J-clean.

(2) For any a ∈ R, there exists a unique idempotent e ∈ comm2(a)
such that a − e ∈ J(R).

Proof. (1) ⇒ (2) For any a ∈ R, there exists an idempotent e ∈ comm2(a)
such that a−e ∈ J(R). Assume that a−f ∈ J(R) for an idempotent f ∈ comm2(a).
Clearly, e ∈ comm2(a) ⊆ comm(a). As f ∈ comm2(a), we see that ef = fe. Thus,
(e−f)3 = e−f , and so (e−f)

(
1−(e−f)2

)
= 0. But e−f = (a−f)−(a−e) ∈ J(R),

as a − f, a − e ∈ J(R). Hence, e = f , as desired.
(2) ⇒ (1) is trivial. �
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Recall that a ring R is strongly J-clean provided that for any a ∈ R there exists
an idempotent e ∈ comm(a) such that a − e ∈ J(R) (cf. [3, 4]).

Corollary 4.3. A ring R is perfectly J-clean if and only if

(1) R is quasipolar, (2) R is strongly J-clean.

Proof. Suppose R is perfectly J-clean. Then R is strongly J-clean. For any
a ∈ R, there exists an idempotent p ∈ comm2(a) such that w := a − p ∈ J(R).
Hence, a = (1 − p) + (2p − 1 + w) with 1 − p ∈ comm2(a) and 2p − 1 + w ∈ U(R).
Furthermore, (1 − p)a = (1 − p)w ∈ J(R) ⊆ Rqnil. Therefore, R is quasipolar.

Conversely, assume that (1) and (2) hold. Since R is quasipolar, it is perfectly
clean. By virtue of [4, Proposition 16.4.15], R/J(R) is Boolean. Therefore the
proof is complete by Corollary 4.1. �

Following Cui and Chen [8], a ring R is called J-quasipolar provided that for
any element a ∈ R there exists an e ∈ comm2(a) such that a + e ∈ J(R). We
further show that the two concepts coincide. But this is not the case for a single
element. That is,

Proposition 4.2. A ring R is perfectly J-clean if and only if for any element

a ∈ R there exists an e ∈ comm2(a) such that a + e ∈ J(R).

Proof. Let R be perfectly J-clean. Then R/J(R) is Boolean, by Theorem 4.1.
Hence, 2̄2 = 2̄, i.e., 2 ∈ J(R). For any a ∈ R, there exists an idempotent e ∈
comm2(a) such that a − e ∈ J(R). This implies that a + e = (a − e) + 2e ∈ J(R).
The converse is similar by [8, Corollary 2.3]. �

Example 4.2. Let R = Z3. Note that J(R) = 0. Since 1̄ − 1̄ = 0̄ ∈ J(R), 1̄ is
perfectly J-clean, but we can not find an idempotent e ∈ R such that 1̄ + e ∈ J(R),
because 1̄ + 0̄ /∈ J(R) and 1̄ + 1̄ = 2̄ /∈ J(R).

Further, though 2̄ + 1̄ = 0̄ ∈ J(R), we can not find an idempotent e ∈ R such
that 2̄ − e ∈ J(R), because 2̄ − 0̄ = 2̄ /∈ J(R) and 2̄ − 1̄ = 1̄ /∈ J(R).

Lemma 4.1. Let R be a ring. Then a ∈ R is perfectly J-clean if and only if

(1) a ∈ R is quasipolar, (2) a − a2 ∈ J(R).

Proof. Suppose that a ∈ R is perfectly J-clean. Then there exists an idempo-
tent e ∈ comm2(a) such that w := a − e ∈ J(R). Hence, a − (1 − e) = 2e − 1 + w ∈
U(R). Additionally, (1 − e)a = (1 − e)w ∈ J(R) ⊆ Rqnil. This implies that a ∈ R
is quasipolar. Furthermore, (e + w) − (e + w)2 = −(2e − 1 + w)w ∈ J(R).

Conversely, assume that (1) and (2) hold. Then there exists an idempotent
e ∈ comm2(−a) such that (−a) + e ∈ U(R). Set u := a − e. Then a − a2 =
(e + u) − (e + u)2 = u(1 − 2e − u) ∈ J(R); hence, 1 − 2e − u ∈ J(R). This shows
that a− (1−e) = (e+u)− (1−e) = 2e−1+u ∈ J(R). Therefore a ∈ R is perfectly
J-clean. �

Theorem 4.3. Let R be a commutative ring, and let A ∈ Tn(R). If 2 ∈ J(R),
then the following are equivalent:

(1) A ∈ Tn(R) is perfectly J-clean. (2) Each Aii ∈ Tn(R) is perfectly J-clean.
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Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (1) Clearly, the result holds for n = 1. Suppose that the result holds

for n − 1 (n > 2). Let A =
( a11 α

0 A1

)
∈ Tn(R) where a11 ∈ R, α ∈ M1×(n−1)(R)

and A1 ∈ Tn−1(R). Then we have an idempotent e11 ∈ R such that w11 :=
a11 − e11 ∈ J(R). By hypothesis, we have an idempotent E1 ∈ Tn−1(R) such that
W1 := A1 − E1 ∈ J

(
Tn−1(R)

)
and E1 ∈ comm2(A1). As 2 ∈ J(R),

W1 +
(
1 − 2e11 − w11

)
In−1 ∈ In−1 + J

(
Tn−1(R)

)
⊆ U

(
Tn−1(R)

)
.

Let E =
(

e11 β
0 E1

)
, where β = α(E1 − e11In−1)(W1 + (1 − 2e11 − w11)In−1)−1. Then

A − E ∈ J
(
Tn(R)

)
. As

e11β + βE1 = β(E1 + e11In−1)

= α(E1 − e11In−1)(E1 + e11In−1)(W1 + (1 − 2e11 − w11)In−1)−1 = β,

we see that E = E2.
For any X =

( x11 γ
0 X1

)
∈ comm(A), we have x11α + γA1 = a11γ + αX1; hence,

α(X1 − x11In−1) = γ(A1 − a11In−1).

As E1 ∈ comm2(A1), we get

γ(A1 − a11In−1)(E1 − e11In−1)

= α(X1 − x11In−1)(E1 − e11In−1)

= α(E1 − e11In−1)(X1 − x11In−1)

= β(W1 + (1 − 2e11 − w11)In−1)(X1 − x11In−1)

= β(X1 − x11In−1)(W1 + (1 − 2e11 − w11)In−1).

Furthermore,

γ(A1 − a11In−1)(E1 − e11In−1)

= γ(E1 − e11In−1)(E1 + W1 − (e11 + w11)In−1)

= γ(E1 − e11In−1)(E1 + e11In−1 + (W1 − 2e11 − w11)In−1)

= γ
(
E1 − e11In−1 + (E1 − e11In−1)(W1 − 2e11 − w11)In−1)

= γ(E1 − e11In−1)(W1 + (1 − 2e11 − w11)In−1).

It follows from W1 + (1 − 2e11 − w11)In−1 ∈ U
(
Tn−1(R)

)
that γ(E1 − e11In−1) =

β(X1 − x11In−1). Hence, e11γ + βX1 = x11β + γE1, and so EX = XE. This
implies that E ∈ comm2(A). By induction, A ∈ Tn(R) is perfectly J-clean for all
n ∈ N. �

Corollary 4.4. Let R be a commutative ring. Then the following are equiv-

alent:

(1) R is strongly J-clean.

(2) Tn(R) is perfectly J-clean for all n ∈ N.

(3) Tn(R) is perfectly J-clean for some n ∈ N.
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Proof. (1) ⇒ (2) As R is strongly J-clean, R/J(R) is Boolean. Hence, 2 ∈
J(R). For any n ∈ N, Tn(R) is perfectly J-clean by Theorem 4.3.

(2) ⇒ (3) ⇒ (1) These are clear by Theorem 4.3. �

Let R be Boolean. As a consequence of Corollary 4.4, Tn(R) is perfectly J-clean
for all n ∈ N.

Lemma 4.2. Let R be a ring, and u ∈ U(R). Then the following are equivalent:

(1) a ∈ R is perfectly J-clean. (2) uau−1 ∈ R is perfectly J-clean.

Proof. (1) ⇒ (2) As in the proof of Lemma 3.1, uau−1 ∈ R is quasipolar.

Furthermore, uau−1 −
(
uau−1

)2
= u(a − a2)u−1 ∈ J(R). As in the proof of

Theorem 4.1, uau−1 ∈ R is perfectly J-clean.
(2) ⇒ (1) is symmetric. �

We end this paper by showing that strong J-cleanness of 2 × 2 matrix ring over
a commutative local ring can be enhanced to perfect J-cleanness.

Theorem 4.4. Let R be a commutative local ring, and let A ∈ M2(R). Then

the following are equivalent:

(1) A is perfectly J-clean. (2) A is strongly J-clean.

(3) A ∈ J
(
M2(R)

)
, or I2 − A ∈ J

(
M2(R)

)
, or the equation

x2 − tr(A)x + det(A) = 0 has a root in J(R) and a root in 1 + J(R).

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3) is proved by [4, Theorem 16.4.31].
(3) ⇒ (1) If A ∈ J

(
M2(R)

)
or I2 − A ∈ J(M2(R)), then A is perfectly J-clean.

Otherwise, it follows from [4, Theorem 16.4.31 and Proposition 16.4.26] that there
exists a U ∈ GL2(R) such that

UAU−1 =

(
α

β

)
=

(
0

1

)
+

(
α

β − 1

)
,

where α ∈ J(R), β ∈ 1 + J(R). For any X ∈ comm(UAU−1), we have X
(

α
β

)
=(

α
β

)
X ; hence, βX12 = αX12. This implies that X12 = 0. Likewise, X21 = 0.

Thus,

X

(
0

1

)
=

(
0

1

)
X,

and so
(

0
1

)
∈ comm2(UAU−1). As a result, UAU−1 is perfectly J-clean, and then

so is A by Lemma 4.2. �

Corollary 4.5. Let R be a commutative local ring. Then the following are

equivalent:

(1) M2(R) is perfectly clean.

(2) For any A ∈ M2(R), A ∈ GL2(R), or I2 − A ∈ GL2(R),
or A ∈ M2(R) is perfectly J-clean.

Proof. (1) ⇒ (2) is proved by Theorem 3.1, [4, Corollary 16.4.33] and Theo-
rem 4.4.

(2) ⇒ (1) is obvious. �
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