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A NEW FORMULA FOR THE BERNOULLI NUMBERS

OF THE SECOND KIND IN TERMS OF THE STIRLING

NUMBERS OF THE FIRST KIND

Feng Qi

Abstract. We find an explicit formula for computing the Bernoulli numbers
of the second kind in terms of the signed Stirling numbers of the first kind.

1. Main result

It is well known that the signed Stirling numbers of the first kind s(n, k) for
n > k > 1 may be generated by

[ln(1 + x)]k

k!
=

∞
∑

n=k

s(n, k)
xn

n!
, |x| < 1

and that the Bernoulli numbers of the second kind bn for n > 0 may be generated
by x

ln(1+x) =
∑

∞

n=0 bnxn. In combinatorics, the signed Stirling number of the first

kind s(n, k) may be defined such that the number of permutations of n elements
which contain exactly k permutation cycles is the nonnegative number |s(n, k)| =
(−1)n−ks(n, k). The Bernoulli numbers of the second kind bn are also called the
Cauchy numbers of the first kind, see [20,27] and closely related references therein.

In [14], the following formula for computing the Bernoulli numbers of the sec-
ond kind in terms of the signed Stirling numbers of the first kind was derived:

bn =
1

n!

n
∑

k=0

s(n, k)

k + 1
.

Our main aim is to find a new and explicit formula for computing the Bernoulli
numbers of the second kind in terms of the signed Stirling numbers of the first kind.
The main result of this paper may be stated as the following theorem.
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Theorem 1.1. For n > 2, the Bernoulli numbers of the second kind bn may

be computed in terms of the signed Stirling numbers of the first kind s(n, k) by

(1.1) bn =
1

n!

n−1
∑

k=1

(−1)k s(n − 1, k)

(k + 1)(k + 2)
.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on some results elementarily and inductively
obtained in [22]. These results can be recited as follows.

(1) Corollary 2.3 in [22] states that the signed Stirling numbers of the first kind
s(n, k) for 1 6 k 6 n may be computed by

(2.1) s(n, k) = (−1)n−k(n − 1)!

n−1
∑

l1=1

1

l1

l1−1
∑

l2=1

1

l2
· · ·

lk−3−1
∑

lk−2=1

1

lk−2

lk−2−1
∑

lk−1=1

1

lk−1
.

This formula may be reformulated as

(−1)n−k s(n, k)

(n − 1)!
=

n−1
∑

m=k−1

1

m

[

(−1)m−(k−1) s(m, k − 1)

(m − 1)!

]

.

(2) Corollary 2.4 in [22] reads that for 1 6 k 6 n the signed Stirling numbers
of the first kind s(n, k) satisfy the recursion

(2.2) s(n + 1, k) = s(n, k − 1) − ns(n, k).

This is a recovery of the triangular relation for s(n, k).
(3) Theorem 3.1 in [22] tells that the Bernoulli numbers of the second kind bn

for n > 2 may be computed by

(2.3) bn = (−1)n 1

n!

(

1

n + 1
+

n
∑

k=2

an,k − nan−1,k

k!

)

,

where

(2.4) an,2 = (n − 1)!

and, for n + 1 > k > 3,

(2.5) an,k = (k − 1)!(n − 1)!

n−1
∑

l1=1

1

l1

l1−1
∑

l2=1

1

l2
· · ·

lk−4−1
∑

lk−3=1

1

lk−3

lk−3−1
∑

lk−2=1

1

lk−2
.

Observing expressions (2.1) and (2.5), we obtain

(2.6) an,k = (−1)n+k−1(k − 1)!s(n, k − 1), n + 1 > k > 2.

See [22, (2.18)] and [23, (6.7)]. By this and recursion (2.2), it follows that

an,k − nan−1,k = (−1)n+k−1(k − 1)![s(n, k − 1) + ns(n − 1, k − 1)]

= (−1)n+k−1(k − 1)![s(n − 1, k − 1) + s(n − 1, k − 2)].
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Substituting this into (2.3) reveals that

bn =
(−1)n

n!

(

1

n + 1
+

n
∑

k=2

(−1)n+k−1[s(n − 1, k − 1) + s(n − 1, k − 2)]

k

)

=
(−1)n

(n + 1)!
+

1

n!

n
∑

k=2

(−1)k−1[s(n − 1, k − 1) + s(n − 1, k − 2)]

k

=
(−1)n

(n + 1)!
+

1

n!

[

n
∑

k=2

(−1)k−1s(n − 1, k − 1)

k
+

n
∑

k=2

(−1)k−1s(n − 1, k − 2)

k

]

=
(−1)n

(n + 1)!
+

1

n!

[

n
∑

k=2

(−1)k−1s(n − 1, k − 1)

k
+

n−1
∑

k=1

(−1)ks(n − 1, k − 1)

k + 1

]

=
(−1)n

(n + 1)!
+

1

n!

(−1)n−1

n
+

1

n!

n−1
∑

k=2

(−1)k−1s(n − 1, k − 1)
(1

k
−

1

k + 1

)

=
1

n!
(−1)n−1

( 1

n
−

1

n + 1

)

+
1

n!

n−1
∑

k=2

(−1)k−1s(n − 1, k − 1)
( 1

k
−

1

k + 1

)

=
1

n!

n
∑

k=2

(−1)k−1s(n − 1, k − 1)
(1

k
−

1

k + 1

)

=
1

n!

n
∑

k=2

(−1)k−1 s(n − 1, k − 1)

k(k + 1)
.

Notice that in the above argument, we use the convention s(n, 0) = 0 for n ∈ N

and the fact s(n, n) = 1 for n > 0. The proof of the formula (1.1) in Theorem 1.1
is complete.

3. Remarks

In this section, we show some new findings by several remarks.

Remark 3.1. The idea in Theorem 1.1 and its proof ever implicitly thrilled
through in [23, Remark 6.7].

Remark 3.2. Making use of relation (2.6) in [22, Theorem 2.1] leads to

( 1

ln x

)(n)
=

1

xn

n
∑

k=1

(−1)kk!s(n, k)
( 1

ln x

)k+1
, n ∈ N.

This recovers the first formula in [13, Lemma 2].
By the way, the formulas (3.4) and (3.5) in [22, Corollary 3.1] recover the

second formula in [13, Lemma 2].

Remark 3.3. In [22, Remark 2.2], it was conjectured that the sequence an,k

for n ∈ N and 2 6 k 6 n + 1 is increasing with respect to n while it is unimodal
with respect to k for given n > 4. This conjecture may be partially confirmed as
follows.
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From (2.5), the increasing monotonicity of the sequence an,k with respect to n

follows straightforwardly.
It is clear that the sequence (k − 1)! is increasing with k and the sequence

n−1
∑

l1=1

1

l1

l1−1
∑

l2=1

1

l2
· · ·

lk−4−1
∑

lk−3=1

1

lk−3

lk−3−1
∑

lk−2=1

1

lk−2

is decreasing with k. Since an,n+1 = n!, see the equation (2.4) or [22, (2.8)], we
obtain that

(3.1) an,2 < an,n+1, n > 2.

In [23, Theorem 2.1], the integral representation

(3.2) s(n, k) =

(

n

k

)

lim
x→0

dn−k

dxn−k

{[
∫

∞

0

(
∫ 1

1/e

txu−1dt

)

e−udu

]k}

was created for 1 6 k 6 n. Hence,

s(n, n − 1) = n lim
x→0

d

dx

{[
∫

∞

0

(
∫ 1

1/e

txu−1dt

)

e−udu

]n−1}

= n(n − 1) lim
x→0

[
∫

∞

0

(
∫ 1

1/e

txu−1dt

)

e−udu

]n−2

× lim
x→0

[
∫

∞

0

(
∫ 1

1/e

txu−1 ln t dt

)

ue−udu

]

= n(n − 1)

[
∫

∞

0

(
∫ 1

1/e

1

t
dt

)

e−udu

]n−2 ∫

∞

0

(
∫ 1

1/e

ln t

t
dt

)

ue−udu

= −
1

2
n(n − 1).

As a result, by (2.6), it follows that an,n = −(n − 1)!s(n, n − 1) = n−1
2 n! > an,n+1,

n > 3. Combining this with (3.1) shows that the sequence an,k for given n > 4 has
at least one maximum with respect to 2 < k < n + 1.

Remark 3.4. By integral representation (3.2) and direct computation, we can
recover that

s(n, 1) =

(

n

1

)

lim
x→0

dn−1

dxn−1

∫

∞

0

(
∫ 1

1/e

txu−1dt

)

e−udu

= n lim
x→0

∫

∞

0

[
∫ 1

1/e

txu−1(ln t)n−1dt

]

un−1e−udu

= n

∫

∞

0

[
∫ 1

1/e

(ln t)n−1

t
dt

]

un−1e−udu

= (−1)n+1
∫

∞

0
un−1e−udu

= (−1)n+1(n − 1)!
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and

s(n, 2) =

(

n

2

)

lim
x→0

dn−2

dxn−2

{[
∫

∞

0

(
∫ 1

1/e

txu−1dt

)

e−udu

]2}

=

(

n

2

)

lim
x→0

n−2
∑

k=0

(

n − 2

k

)
∫

∞

0

[
∫ 1

1/e

txu−1(ln t)kdt

]

uke−udu

×

∫

∞

0

[
∫ 1

1/e

txu−1(ln t)n−k−2dt

]

un−k−2e−udu

=

(

n

2

) n−2
∑

k=0

(

n − 2

k

)
∫

∞

0

[
∫ 1

1/e

(ln t)k

t
dt

]

uke−udu

×

∫

∞

0

[
∫ 1

1/e

(ln t)n−k−2

t
dt

]

un−k−2e−udu

= (−1)n

(

n

2

) n−2
∑

k=0

(

n − 2

k

)

k!

k + 1

(n − k − 2)!

n − k − 1

= (−1)n(n − 2)!

(

n

2

) n−2
∑

k=0

1

(k + 1)(n − k − 1)

= (−1)n n!

2

n−2
∑

k=0

1

(k + 1)(n − k − 1)

= (−1)n (n − 1)!

2

n−2
∑

k=0

( 1

k + 1
+

1

n − k − 1

)

= (−1)n(n − 1)!H(n − 1),

where H(n) =
∑n

k=1
1
k is the n-th harmonic number. Consequently, we find a

relation

(3.3) s(n, 2) = (−1)n(n − 1)!H(n − 1), n ∈ N

or, equivalently,

(3.4) H(n) =
(−1)n+1s(n + 1, 2)

n!
, n ∈ N

between the n-th harmonic number H(n) and the signed Stirling numbers of the first
kind s(n, 2). Relation (3.3), or say, (3.4), may also be deduced by considering (2.5)
and (2.6).

We point out that relation (3.3), or say, (3.4) recovers [2, p. 275, (6.58)].
For more information on the n-th harmonic numbers H(n), please refer to

[1,9,10,12,24,26] and closely related references therein.

Remark 3.5. For more information on some new results for the Bernoulli
numbers, the Cauchy numbers, and the Stirling numbers of the first and second
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kinds, please refer to [3–8, 11, 15–18, 20–23, 25, 27] and closely related references
therein.

Remark 3.6. This paper is a slightly revised and corrected version of the
preprint [19].
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