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POLYNOMIAL INEQUALITIES IN LAVRENTIEV
REGIONS WITH INTERIOR AND EXTERIOR ZERO
ANGLES IN THE WEIGHTED LEBESGUE SPACE

F. G. Abdullayev and N. P. Ozkartepe

ABSTRACT. We study estimation of the modulus of algebraic polynomials in
the bounded and unbounded regions with piecewise-quasismooth boundary,
having interior and exterior zero angles, in the weighted Lebesgue space.

1. Introduction and main results

Let C be a complex plane, C := CU{c0}; G C C be a bounded Jordan region,
with 0 € G and the boundary L := 0G be a simple closed rectifiable Jordan curve,
Q:=C~G=extL; A:={w:|w| > 1}. Let w = ®(z) be the univalent conformal
mapping of 2 onto the A normalized by ®(c0) = 0o, lim,_, (I)(ZZ) > 0. Fort > 1,
let us set Ly :={z: |®(2)| =t}, L1 = L, G :=int Ly,  := ext L;. For z € C and
S C Cletd(z,S):=dist(z,5) =inf{|( — z| : ( € S}. Let h(z) be a weight function
defined in G, for some fixed Ry > 1 and let g, denote the class of arbitrary
algebraic polynomials P, (z) of degree at most n € N := {1,2,...}. For any p >0
we denote

» 1/p
1Bally = 1Pallcym = (| BEIPaEPIE]) T, 0 <p < oo

1Palloo = I1Pnll e p) := max [Pa(z)l, - p = oo

Here, we investigate the following two problems: for a given region G, find
estimates of the following types, for the points z € G and z € 2, respectively:

(1.1) [Pl
(1.2) [P (2)]

where v, := v,,(G, h,p) — oo and 7, := 9, (G, h,p, z) — o0 in general, as n — oo,
depending on the geometrical properties of the region G and weight function h.

< const vy || Pyl p,
< const 7, || Pal|p| ()",
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210 ABDULLAYEV AND OZKARTEPE

Inequalities analogously to (LI)) in the literature are often found under the
“Nikol’skii-type inequality”. One of the first results analogous to (IIJ), in the case
h(z)=1for L ={z:|z| =1} and 0 < p < oo was found by Jackson [12] as follows:

2m ] 1/p
max |P,(2)) <202 ([ (pute)pas)
z|= 0

Another classical results similar to (IZI]) belong to Szegd and Zigmund [21].
Suetin [23], [24] investigated this problem with a sufficiently smooth Jordan curve
and some special weight function. The estimate of type (LI)) for 0 < p < o0
when L is a rectifiable Jordan curve, was investigated by Mamedhanov [14,[15],
Nikol’skii [L7, pp. 122-133], Pritsker [19] (h(z) = 1), Andrievskii [10, Theorem 6],
authors [7] (h(z) # 1) and others. More general and detailed references regarding
the Nikol’skii type inequality, we can find in Milovanovic et al. [16], Sect. 5.3].

Results analogous to ([2) for some different norms and unbounded regions
were obtained in [22], [2H7] and others.

In this work, we study problems (I1]) and (I2]) for some general regions having
interior and exterior cusps, and finally, we obtain the estimate for |P,(z)| in the
whole complex plane, depending on the given region G and weight function h.

We give the necessary definitions and notations for the formulation of the main
results.

Following [18 p.163], we say that a bounded Jordan curve L is A-quasismooth
or Lavrentiev curve, if for every pair z1, zo € L, where I(z1, z2) denote the shorter
subarc of L, joining z; € L and z3 € L and |I(z1, 22)| is the linear measure (length)
of l(z1, z2), there exists a constant A := A(L) > 1, such that

|l(21722)| <A|21—22|, 21,22 e L.

In this case, the inner region int L of a Lavrentiev curve L is called a Lavrentiev
region. Any subarc of a A-quasismooth curve is called a A\-quasismooth arc. We
denote this class of curves and arcs as @QS(A) and say that a Jordan region G €
QS(N), if 9G € QS(\), A > 1. Furthermore, we denote that L(or G) € @S, if
L(or G) € QS(\) for some A\ > 1.

We say that a bounded Jordan curve or arc L is locally \-quasismooth at the
point z € L, if there exists a closed subarc £ C L containig z, such that every open
subarc of the ¢ containing z is the A-quasismooth.

Now, we shall define a new class of regions with piecewise quasismooth bound-
ary, which may have at the boundary points finite number of interior and exterior
cusps.

For any j = 1,2,... and sufficiently small e; > 0, we denote by f;, g; :
[0,e1] — R twice continuously differentiable functions such that f;(0) = g;(0) =0
and fj(k)(x) >0, g§k)(x) >0, forz>0and k=0,1,2.

Note that, throughout this paper, c, co,c1,co, ... are positive and g, €1, €9, ...
are sufficiently small positive constants (generally, different in different relations),
which depend on G in general.

DEFINITION 1.1. We say that a Jordan region G € PQS(A; fi,95), A > 1,
fi=fi(x),i=1,my, g; =gj(x), j=m1 +1,m, if L :=90G = U?:o L; is the union
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of the finite number of A-quasismooth arcs L;, connecting at the points {z; }}”:O €L,
and such that L is a locally A-quasismooth arc at the zo € L\ {z;}7L; and, in the
(x,y) local coordinate system with its origin at the z;, 1 < j < m, the following
conditions are satisfied

a) for every z; € L, j =1,mq, mi < m,

{Z=w+iyr IZI e, ly| > ean} C O
b) for every z; € L, j = mq + 1,m,

{z=2+iy:|z| <es, c3gj(z) <y <esgi(z), 0<r <esz} CQ,
<

)
{z=a+iy:|z| <es, |yl = es3r, 0< 2 <e3} CG,

for some constants —oo < ¢; < ca < 00, —00 < 3 < ¢4 < 00, & > 0,1 =1,4.

It is clear from Definition [[1] that each region G € PQS(X; fi, g;) may have
my interior and m —m; exterior zero angles (with respect to G). If a region G does
not have interior zero angles (m; = 0) (exterior zero angles (my = m)), then it is
written as G € PQS(X;0,g;) (G € PQS(X; fi,0)). If a domain G does not have
such angles (m = 0), then G is bounded by a A-quasismooth circle and in this case
we set PQS(A,0,0) = QS(A).

Let {z;}7L; be a fixed system of distinct points on the curve L located in the
positive dlrectlon. Consider a so-called generalized Jacobi weight function h(z)
being defined by

(1.3) hz):=[]lz =zl z¢€Gn,

for some Rg > 1, where v; > —1forall j =1,2,...,m

Here and in further, for any k > 0 and m > k, the notation 7 = k, m denotes
i=kk+1,.

Throughout thls work, we will assume that the points {z;}72, € L defined in
(C3) and Definition [[1] are identical. Without loss of generality, we assume that
the points {2;}72, are ordered in the positive direction on the curve L such that,
G may have interior zero angles at the points {z; }3”211 and exterior zero angles at
the points {z;}72,, 11, and w; 1= ®(z;).

Now we can state our new results.

THEOREM 1.1. Letp > 0; G € PQS(); fi, i), for some X > 1, fi(x) = cjattei,
a; =0, =1,m1, and gi(x) = c;x* P B > 0,7 =my + 1,m; h(z) defined as in
[@3). Then, for any v; > —1, i = 1,m, and P, € @,, n € N, there exists
a1 = c1(G,p, A\, v, Bi) > 0 such that

m
(Fi+1)
(1.4) 1P, Hoo\cl(zn””p + Y nlERES )||Pn||,,,

i=mq+1
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. —0
where =21~ Lavesin}), 1 < 1 <2,71:= {5 fon 70
; 1 q .

Vi n
We note that, if p =1 (i.e. A = 1), then the terms n(mE S in the second

i i 41 1
sum of (I4) for any ~; > —1, i = my + 1, m, can be replaced by (n™5 " lnn)?».

Now, for simplicity of our presentations, we assume that i =1,2; m; =1, m =
2; i.e., our region G may have one interior zero (or it does not exist) angle having
“fi-touching" with fi(x) = Ciz't® oy > 0, at the point z; and exterior zero
angle having” go-touching" with go(z) = Coz'tP2, By > 0, at the point zo, for some
constants —oo < C := Cy(c1,c2) < 400, —00 < Cy := Cz(c3,¢4) < +00, where
the constants c;, i = 1,4 are taken from Definition [T} In this case, combining the
terms related to the interior and exterior corners, we obtain the following

THEOREM 1.2. Let p > 0; G € PQS(X; f1,92), for some X > 1, fi(z) =
Ciz' T, a; > 0, and go(x) = Cox'™P2, By > 0; h(2) defined as in ([L3) for
m = 2. Then, for any v; > —1, i = 1,2, and P, € @,, n € N, there exists
co = ca(G,p, A\, 71,72, B2) > 0 such that

(1.5) [Prlloe < c2An || Pall, ,
where A, is defined by
(1.6)
nv max{ﬂ;“}, —1<v <0, —1<v <0, pu>1,
Y2 B
n(FR s 0<m < (g +1)E-1, 32>0, p>1,
A(y1+1) o u
AnI: n P ; 712(1+52+1)E_17 72>0; /j/>17
1
(™ M )7, 0<y < (2 +1)E -1, >0, p=1,
A(y1+1) o 1
n.r 71>(l+52+1)ﬁ_1’ Y2 > 0, n=1.

Assume that the region G has only exterior zero angles g;(z) = c;z' 5, 8; > 0,
it =1,m (i.e., my = 0). In this case, from Theorem [[T| we obtain

COROLLARY 1.1. Let p > 0; G € PQS(\;0,g;), for some A > 1, gi(z) =
cixttPi B >0, i=T,m; h(z) defined as in (IL3). Then, for any P, € p,, n €N,
there exists c3 = c3(G, p, A\, vi, Bi) > 0 such that

m T n
(1.7 1Pl < ca Sl )8 )
=1

and consequently,

(1.8) 1Pulloe < csn ) 5| P,

where 3™ = max{0;7; : ¢ = I, m}, Bmin := min{B; : i = 1, m}.

Now, for these regions, we will state our new results corresponding to the second
problem, i.e., pointwise estimations for |P,(z)| for the points z € Q.
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THEOREM 1.3. Let p > 0; G € PQS(X\; fi, g:), for some A > 1, fi(z) =
Ciz't, a; 20,41 = T,my, and g;(z) = Cix'™P, B > 0, i = my + 1 m; h(z)
defined as in (L3). Then, for any v; > =1, i = 1,m, and P, € p,, n € N, there
exists ¢y = c4(G,p, A\, vi, B:) > 0 such that

|n+1 my ;
(1.9) |P,(2)] < c4d2/p D ZB L+ Z Py, z€Q,

t=mi+1
where

(i =R .

n P ? Zf’}/’b > ]-;

B 1= (1nn)%, if v =1, for alli=1,m;,

1) Zf —1< Vi < 1,
vi—1

nmua Zf,YZ > 17

n2 = (lnn)%, if v =1, for alli=mi+1,m.

1, Zf*1<’)’1<1,

Theorem [T3lis local, that is, each term in the sum on the right-hand side shows
the growth of |P,(z)|, depending on the behavior of the weight function h(z) and
the boundary L in the neighborhood of a single point {z;} € L for any j = 1, m.

Comparing the terms in the sum for each point {z;}, j = 1,m, and using the
above notations, we can obtain the following result of global character (for the
simplicity, we assume that i = 1,2; m; = 1, my = 2).

THEOREM 14. Let p > 0; G € PQS(X; f1,92), for some A > 1, fi(x) =
Crz'ter oy >0, and go(x) = Cox' P2, By > 0; h(2) defined as in (L3) for m = 2.
Then, for any~y; = 1,2, and P,, € pn, n € N, there exists cs = c5(G, p, A, v, B2) > 0
such that

|[®(2)["*!

(1.10) [Pn(2)] < S @In(2 L)

n’ HPan, z €9,

where

2=l ), vo—1 p
nrO+B) " 1 <y < +1, v >1,

(-1 11+52 a
(1.11) By,={ ™ 7, M2 Lai+L Yo > 1,
(11’177,)5, "= ]-; Y2 = 1;
1, -l<m <1, 1<y <l

Therefore, combining estimations (I4) with (L9), we obtain an estimate on
the growth of |P,(z)| in the whole complex plane.
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COROLLARY 1.2. Under the conditions and notations of Theorems[LI and[L3],
we have

mi m
Zn”“;*” + 3 n (s L eg,
i=mi+1
L IREIER e NPl
Ty Z L+ Z B.,), z€Q,

d2/p(2 L) 1=mi1+1

where cg = c6(G,p, A, Vi, Bi) > 0 constant, independent of z and n.
In particular, in the case i = 1,2; m; = 1, m = 2, from Corollary [[L2 we have
COROLLARY 1.3. Let p > 0; G € PQS(X; f1,92), for some A = 1, fi(z) =
Crz'ter, oy > 0, and go(x) = Cox'tP2, By > 0; h(2) defined as in (L) for
m = 2. Then, for any v;, 7 = 1,2, and P, € p,, n € N, there exists c; =
c7(G,p, A\, 75, B2) > 0 such that

Ay, z € G,
P,(2) <c n+1 N Pallp,
P <ert oGt eI
d?/r(z,L)

where A, and B,, are taken from (L8) and (LII]), respectively.

REMARK 1.1. We note that, according to the well-known Bernstein—Walsh
Lemma [27], estimations (L4)-(L8]) are also true in Gr with another constant for
some R =1+ =. Therefore, if we choose

R:=sup{R>1:|P, le@n < allPallc@ts
then estimations (I9)-(LI0) will be significant for z € Q.

The sharpness of estimations ([)—(TI2) for some special cases can be dis-
cussed by comparing them with the following results.

REMARK 1.2. For any n € N and ¢ = 1, 2, there exist polynomials Pr(f) € ©n
and regions G* C C, such that

1PV = esn? | PVl 1,

‘P(Q)(Z)| 209‘@ z)| HP(Q)HE2 2); Vze F e C~\ G2,

Where cs = cg(G) > 0, cg = co(G?) > 0 are constants, independent of z and n,
=0G, i=1,2.

2. Some auxiliary results

For a > 0 and b > 0, we use the notation “a < b” (order inequality), if a < ¢b
and “a =< b” are equivalent to c1a < b < cga for some constants ¢, ¢, co (independent
of a and b) respectively.

Since, any quasismooth curve is quasiconformal, then in the proofs of many
facts we use some properties of quasiconformal curves. Therefore, we give the
corresponding definition of the quasiconformal curves.
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DErFINITION 2.1. [13] p.97], [20] The Jordan arc (or curve) L is called K-
quasiconformal (K > 1), if there is a K-quasiconformal mapping f of the region
D D L such that f(L) is a line segment (or circle).

Let F(L) denote the set of all sense preserving plane homeomorphisms f of
the region D D L such that f(L) is a line segment (or circle) and let define Kp, :=
inf{K(f) : f € F(L)}, where K(f) is the maximal dilatation of such a mapping
f. L is a quasiconformal curve, if K < oo, and L is a K-quasiconformal curve, if
K < K.

Let B := {w : Jw| < 1}, z = ¢(w) be the univalent conformal mapping of B
onto the G normalized by 1(0) = 0, ¥/(0) > 0 and let ¢ := L. For 0 <t < 1, let

Ly :={z: |p(z)] =t}.
LeEmMA 2.1. [1] Let L be a K-quasiconformal curve, z1 € L, zo,23 € QN {z:
|z — 21| 2 d(z1,Lry)}; wj = ®(25), j =1,2,3. Then
a) The statements |z1—z2| =X |z1—23| and |lwy—ws| = |w1—ws3| are equivalent.
So are |z1 — z2| <X |21 — 23] and |w1 — wa| X |wy — ws].
b) If |21 — 22| <X |21 — 23], then

w1 — w3 ¢

€ zZ1 — % wy, — W,
<‘ 3‘< 3

wy —w2l T lzy =22l T Twy —we

where e <1, ¢ > 1, 0<rg <1 are constants, depending on G.
LEMMA 2.2. [25], [26] Let G € QS(X) for some A > 1. Then
|V (wr) — ¥(wa)| = |wr —wal”,
for all wy,wy € ', where p = 2(1 — %arcsin %)
For ¥’ the following is true (see, for example, [9] Th.2.8]):
d(¥(r),L
(2.1) |0/ (7)| =< 7(|T|()’1 )

Let {z;}7L; be a fixed system of the points on L and the weight function h(z)
defined as ([3)).

LEMMA 2.3. Let L be a rectifiable Jordan curve; h(z) as defined in (I3)). Then,
for arbitrary P,(z) € pn, any R > 1 and n € N, we have

14y

? | Pallz,(h,r)y, P>0,

(2.2) 1Pl (hnmy < R™
where v* = max{0; vk, k = 1, m}.
REMARK 2.1. In the case of h(z) = 1, estimate (2.2) has been proved in [11].

3. Proof of theorems
PRrOOF OF THEOREM [I1l Let G € PQS(X; fi, gi), for some A\ > 1, fi(z) =
't a; > 0,4 =T1,my, and gi(z) = c;z' TP, B; > 0,4 = my + 1,m, be given.
For some R > 1, let w = pgr(z) be the univalent conformal mapping of G onto
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the B normalized by ¢r(0) = 0, ¢/3(0) > 0 and let {¢;}, 1 < j < m < n, be zeros
of P,(z) lying on Gg. Let

m

B o " or(2) — or(()
Bma(z) = [1 B = [0 =0

j:
denote a Blashke function with respect to zeros {(;}, 1 < j < m < n, of P,(2).
For any p > 0 and z € G let us set

Pn p/2
To(z) = [&} .
B, r(2)
The Cauchy integral representation for the region Gy gives

dg

T(z) = %/LRT,L(C)CZ, 2 €Gn
{ Pu(2) ]p/z < L/ Pu©) [ lde] L/ puo 1%
B, r(2) S 2w S | Bnr(Q 1C—2] T 2wy, " ¢ — 2|’
since |Bm,r(¢)] = 1, for ¢ € Lr. Multiplying the numerator and determinator of
the integrand by h'/2 (¢), according to the Holder inequality, we obtain

Then
v/

P.(z) P 1 / 1/2 |d¢| 1/2
-~ Sao h(Q)| P (C)[PdC X 7 :
o e[ owmoma) (. D)
1

= %Jn,l X Jn,Q;
where

— p/2 e |d(] 1/2

Jn,l T HPanp(h,LR)’ Jn72 T ( L H;nzl |< _ Zj|yj|< _ z|2) )

Let z € L. Then, since |B,, r(%)| < 1 for z € L, from Lemma 23 we have
(3.1) 1P| = (Tt - Tn2)®? 2 | Pallp - (Jn2)*.

To estimate the integral J,, », we introduce:

w; = D(z;), @, = argw;, Lﬁ =LrNQY, j=1,m,

where
o =U(A)), A= {t:Rew:R>1, L’L;(pl <0< %;ﬂp?}’
A = {t=Re": R>1, 7@’”*;% <0< @m;%}
A= {t=Re":R>1, %’%wkk%}, for j =2m — 1.
Then, we get

N o m _ |dd|
(3.2) (Jn.2) ;/UR Hj:l ¢ = 2 |7]¢ — 22
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= _— = J!
— o7 _ 2 n,2»
ZM/ NIy
where

X d S
5 e [ L tm
L

(e R (e
since the points {z;} € L are distinct. It remains to estimate the integrals ‘]riz,2 for
each ¢t =1, m.

For simplicity of our next calculations, we assume that: i = 1,2; m; = 1,
m=2;2 =—1,2 =1 (-1,1) CG; R =1+ =2, and let the local co-ordinate
axis in Definition [[.T] be parallel to OX and OY in the OXY co-ordinate system;
L =L"UL", where LT := {2 € L:Imz >0}, L~ := {2 € L : Imz < 0}.
Let w® := {w = ¢ : § = &322} 2+ ¢ Y(w*) and L’ be arcs, connecting the
points 2+, z;, 2~ € L; L»* := L' N L*, i = 1,2. Let 2 be taken as an arbitrary
point on LT (or on L~ subject to the chosen direction). For simplicity, without
loss of generality, we assume that 29 = 2% (29 = 2z7). Analogously, we introduce:
Lr=LLULp, Wherg Ly ={2€Lr:Imz>0}, Ly :={z€ L :Imz < 0}.
Let wh = {w = Re? : 6 = %}, 2E € U(wk). We set: 2z, r € Lg, such
tllat dip = |zz — z;,r| and ¢t e L*, sjttlch that d(Z%R,LQ NnL%) = d(zzR,Li);
zi ={C€ L' [(—2i| =cid(zi,LRr)}, 2 p = {C € L : |( = z;,r| = cid(zi,r, LR)},
wfR = @(zfpb). Let LiR, i = 1,2, denote arcs, connecting the points ZE, Zi R,
zp € Lg, Lléi = L’é N Lﬁ and Zf’[R(sz, zﬁ) denote arcs, connecting the points
ziiR with zﬁ, respectively and |liiR| = mes lf[R(ziiR, z;tf), i =1,2. We denote:

Ei::}; L= {C S Lé}ii : |C — Zl| < cidi,R}7
it it + it JEIW
Eyp:i={CeLly radir <IC—a| <|Fgl}, Fii=®ER);
EyFi={¢ce L ¢ — 2| < cidir),
Byt i={Ce L' ieidin <|C -zl <|IFgl}, FPF=0(E)), d,j=12
Taking into consideration these designations, from ([B.3]), we have
2

2
‘ |dC| 7,4 7, —
Ba= 3 [ S g+ ).
2 Z BiRUE ¢ =z |C — 2 [ (EjR) ( j,R)]

i,j=1 ,7=1

So, we need to evaluate the integrals J(E;;) and J(E;;L) for each 7,5 =1, 2.
Let

(3.4) |Palloo =: |Pu(2))|, 2 € L=L'UL?

There are two possible cases: the point 2’ may lie on L' or L2.
1) Suppose first that 2’ € L'. Consider the individual cases.
(1.1) If 2/ € BV U Ey™®, then

_ d
J(EyE) + J(Eyg) = /E ad

vruply [C— a1 mC - 2

/|2
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</ 9
= Jertupty min{|¢ — 215 ¢ — 2/}

cdi,r ds 1

< / <

- 92 — 1’
di,r st d’ly,llzii_

for 1 > 0, and

) €_21|(_’71)|dcl B cdi,r ds 1
J(E1,+)+J(E17 ) :/ |— j (Cdl,R)( ’Yl) <2 j ’
LR Y Jergost, G s 50T dlg

for -1 <1 <0
(1.2) If 2’ € E}'E, then

_ g
J(EyE) + J(Eyy) = |
2.R 2,R Bl AUEL; |C — 21| |¢ — 2|2
. / |d¢]
= Jostom - min{IC = 21 S — 2T
el ds 1
=< — = T 10
- /cdl,R smtz = d?,lgl
for 1 > 0 and
1+ 1,— ¢ — 21| )dg|
J(Eyr) + J(Ey)R) :/1+ - C=22
E}fUEL,
|d(¢| 13 Rl ds - 1
= Jorrom = =2 = S &~ dim
EypUEy o cdi,r LE
for —1 <1 < 0;
(1.3) If 2/ € EX*, then
_ g
JEYE) + J(BYp) = / |
2,R 2,R BruEly 1€ — 2 ¢ =2
1 |d¢| L[l ds 1
= = T2 S 2 =
T Jesionss TP = @ s @ = 5
for v; > 0, and
1+ 1,— ¢ — 21| EMdg|
J(EQ,R)JrJ(EQ,R):/H -
By RUE R
|| al ds L1
= Jorsonr= =2 = S &~ dik
EyfpUEy o cdi,r LR

for —1 < 1 < 0. Combining cases (1.1)—(1.3), we obtain
2

1
1, 1,— _
(3.5) Z [J(Erm) +J(EjR)] < T
i=1
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According to Lemma [Z2] and [8] p.10], from (B3], we have

n~" if ¢y =0;
3.6 dip >
(36) LR = {n‘Q if ap # 0,

and, consequently, from (&3] and (B0), we get

2 2(n+1)  if 0;
(3.7) STUED) +I(ER)] 5{” i e £0;
1=1

7/7//1‘(')'1"1‘1)7 lf al = 0

2) Now, suppose that 2’ € L?. In this case, replacing the variable 7 = ®((),
according to (2I0), we have

o /() |dr)
) " Z /F [0 (7) — @ (wn) [ W) — W (w2

= >0 D) + T (Em)).

ij=1

(2.1) If 2/ € EX*, then

, o [W'(7)]|d7]
(3.9) J(FL;)H(Flg)—/Fi,;UFi,R (W (r) — W(ws) 2 [¥(r) — T(w)[2

) -
/ d(¥(r), L)|dr|
Frpurzy, [V(T) = W(wz) 2|0 (r) = W(w)*(jr| = 1)
/ |d7|
=n -
F2 [W(T) = U(wa) |72 |¥(7) — U (w')|
/ |d7|
+n —,
p TO(T) — W) P2 (W (7) — W]
for all 72 > —1. The last two integrals are evaluated identically. Therefore, we

evaluate one of them, say the first. When 7 € Ff}'{ for the |¥(r) — T (w')|, we
obtain

X

[0(r) — U(w)| = max{|¥(r) — U(ws)|; [¥(T) — 235}
= 0 (r) — W(ws)| = [W(r) — 25 [T
Then, from [B3), we get

24 |dr| |dr| |dr]
J(FLR)f”/Q —_+ﬁ”/ — @ SN
w [U(r) — 23 [T Fi [(r) — 2 |72 Fik T —wy [T

1,R
o+l
n 1Tz /‘ ’Yi'giu > 1
< ’Y2+1 —
S qnlan, 15, M 1
n, Ll <1,

1+32
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if 9 > 0, and

: (W () — W(ws)|72)|dr|
J(Fﬁ;{)jn/2 p——
Fa [U(r) = 2y [T

"
1+85 K
] mTEm
jn/ ————— X {nhn, =1,
F I - wf [ -
n, m < 1,
if —1 < 2 <0, and so, in this case we get
n?ﬁZ;u ’Y2+1‘u > 1,
2,4 2,— Lo
(3.10) J(FED) + J(Fog) < {ninn, Yiaiﬂ =1
Yo+
™ 1152'u <L
(2.2) If 2’ € E3*, then
_ L)|dr|
TE) + ) = | .
L) TSR oo TO() — W(wn) P20 (7) — W () (7] — 1)

= n/ |dr|
= F12,§UF12,’1; |‘I’(T) — \I/(w2)|’)’2|\1/(7—) _ ‘I/(w’)|’

for all v > —1. When 7 € Ff;{ for the |¥(7) — ¥ (w’)|, we obtain |¥(7) — U (w’)| =

(3.11)

|¥(7) — 25 | and, analogously to the previous case, we get

dr| |dT]
J(FHE) < n/ | < n/
( 1,R P2 [T (1) — U (wo) 2| W(T) — 2| F2E | W(r) — Z+|11—2;32+1
(125 + )
(312) j n/ |d7-|’Y2 j n 2 9 (1+52 + 1) 1
o o wp (R \mhan, (5 D=1,
if 79 > 0, and
U — (=72) |4 d
(3.13) J(Ff;{) jn/ |W(7) (wa)| |dT| jn/ |dT|
’ F2 W(T) - 25| 2t [U() — 27|
nt, p>1,
jn/ |d7T|+j nlan, p=1,
FAp T —wy |
1R n, p< 1,

if =1 < 2 < 0. So, in this case, from BII)-@EI3), we have

n(ll—2ﬁ2+1)#a <1+ﬂ2 +1),LL ]-;

3.14 J(F>H) + J(F27) <
(3.14) (Frg)+J(FiR) nlnn, (2 1)p=1.

(2.3) If 2’ € EP™, then
/ W' ()] |dr]
Frtupzy [W(T) = W(ws) 20 (7) — U (w)P?

(3.15)  J(Fyp)+J(Fog) =
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i jdr|

: /FF [0 (r) — W (ws) [ [ () — ¥ (w)]
i dr|

= /F [9(7) — (o) [ () — ()]

d
+n / jar] e
r2 TO(r) — W (wg) P2 |0 (7) — ()]
for 79 > 0. The last two integrals are evaluated in the same way. Let us evaluate

the first integral.
For 7 € Fg; and 2’ € EX®, we have

(B (7) — @ (w')] = [¥(7) - 25|

1 1 Iz
() = W) = o = [z — 2 (1)
n

|dT| I |dT]
J(F2’+)jn/ < nTFo S bl
Bl 2 [W(r) = 25 2 (7) — 2z | 2 [T —wg |

2

n1+g2#+ﬂ7 H> 1,
2 1

nTf nn, u=1,

and so, for 72 > 0 we obtain
2 +u
2,+ 2,— n1+52“ ) > 17
) ’ <
J(Fy ) +J(Fyp) = {nll—%z““ Inn, pu=1

For —1 < 9 < 0 we get

+ - I(‘) I(w?)|( V2)|;[/(7)||d7|
( ) ( B ) ( : ) FlRuFy g

[¥(r) — U (w)?
: dr] . jdr]
: /F 00— vw)] /F W(r) — 2]

m
< n/ |dT|+ <) w>1,
F2E T —wy M nlnn, p=1.

Then, in this case, we have

2,+ 2,— n[lz%2+1]#7 w>1,
(3.17) J(Fyp) +J(FyR) 2 PR
7 ’ nTE M nn, p=1.

(2.4) If 2/ € E3F, then for 75 > 0

[ (r)lldr| n jdr]
/F W) — W (un) =¥ (r) — PP = 37y /F [B(r) — )]
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v 17_2_’_1 u
(3.18) < nﬁﬁﬂ/ LHH < {”[ 1] . ou>1,
F.

2
ot |1 — 2=+l _
o IT—w nT+5 Inn, wp=1,

and

o () ldr] n r
JFr) = /F [B(7) = W(wa) |29 (r) — W@~ dp /F [B(7) — W)

< n11%2u+!/ _ nll’ézwl/ _ldr|
B F2p V() = W(w)| ol U

n[ljry—?h—i_l}u’ w> ]_’

PN

(3.19) < {

_2 1
nTFEF  nn, p=1.

The case of 2/ € E3~ is absolutely identical to the case 2/ € Ey". If =1 <
v2 < 0, then

T) — Wo (=72) "(r T
(3.20) J(E2E) = /F [(7) |§<(T>)|q/(wf|;l|/2( )lldr]

/ |dr| nt,  op>1,
<n | e S
F2p V() = W) 7 | nlan, p=1,

T) — Wo (=72) "(r T
(3.21) J(FE) = /F o |§(<T) Mw(w/l;;( )llar]

/ |dr| nt,  op>1,

=n — 5

Ry [ (r) — ¥(w)] nlnn, p=1,
Combining relations BX)-@2ZI), for m; =1, mo =1, and any p > 0, we get

20 if 0; H >1
(3.22) Sl g2, <4 e A0 et >
' ’ n* if ap = 0; nlnn, p=1,

for each —1 < ;3 <0 and —1 < 7 <

(3.23) JEo+ T2, it

for each v; > 0 and 2 > 0, where i := and p > 0. Then, from

, if ap #0,
BID-B4), B22) and B23), for all z € L, we obtain
Y2 ©
|P (Z)| < HP H ) nﬂﬂ;Jrl) i n(lﬁﬁ2+1)p; 1% > 1)
n - n 3 1
? (n1+2;32+11nn)p, w=1,
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Tl% InaX{Q,u}7 :[l‘ = 27 aq 7& 0; -1< Y1, V2 < 0,
1= ~

ne, n =W, a1:07 71<71;’72<0;
2 qye ~

n(1+52+1)p7 fi=2, a17é0,0<71<(11ﬁ+1)%71;
2(vi+1) ~ Y2 u

jHPan n P ) :U/:27 0&1750, 71>(1+52+1)§_1;

2y qye

n(TE 0L r=p, a1 =0, 0 <y < 2
“(yi+1) - va

nor ) n=, a1:0771>m;

2 +1 1
(n1+ﬂ‘2 lnn)” p=1 =1 <y,v2,
which completes the proof. O

PROOF OF THEOREM [I.3l Suppose G € PQS(A; fi, g:), forsome A > 1, fi(z) =
it a; > 0,i=T1mi,and g;(v) = c;x' TP B; > 0,7 =my + 1,m; h(z) defined
as in (L3). Let {¢;}, 1 < j < m < n, zeros of P,(z) lying on 2 and let

m T D(2) — B¢
Bu():= 1152 = 11 %@);;)

denote a Blashke function with respect to zeros {(;}, 1 < j < m < n, of P,(2).
For any p > 0 and z € 2, let us set

P (Z) p/2
3.24 G = .
520 =[5
The Cauchy integral representation for the unbounded region 2 gives
1 d¢
2 =—— Q.
(3.25) Gn(2) omi . Gn(¢) (-2 z €

Since | By, (¢)| = 1, for ¢ € L, then, for arbitrary €,0 < € < &1, there exists a circle
|w| =1+ =L, such that for any j = 1, m the following is satisfied:

|B;(¥(w)] >1—e¢.

Then, |Bn,(¢)| > (1 —&)™ = 1, for each ¢ < n~!. On the other hand, |®(¢)| = 1,
for ¢ € L. Therefore, for any z € Q, from 324]) and B25]), we have

p/2 r/

1 P.()
S o | Bu@Qe Q| -4
1

1 p/2 '
<o L PO ) = g A

Similarly to the notations of the previous proof, we have

" gl

(3.26) ‘ Pal2)

B (2)@7+1(2)

27 Anzm PO 1dc].
(327) Y G
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Multiplying the numerator and denominator of the integrand by h'/ 2(¢), after
applying the Holder inequality, we obtain

829 <X ([ nomria) ([ gl )"

; Li H;n:1 ¢ — 2]

(Ni i )1/2'

n,1 " “n,2

I
NERE

1

.
I

According to Lemma 23] for the jfn we get

i r/2 .
(329) n,1 = ||Pn||p , = L1,m.
Then, from (B28) and (329)), we have

(70 \1/2
A 2N PalB? Y0 (i)
i=1
For the integral .J! , we obtain

~ d d
pa) e [,
Li

Li H?:1|C_Zj|% A ¢ — zi|n’

since the points {z;}}]L; are distinct on L. Then, from (Z30), we have

2
(3.31) An < P22 (T o),
P ,
i=1
where
= d - d
(3.32) J’I’17,,2 = / 7' d ) J2,2 = / 7| | ‘
o |¢ =z 2 |¢ — 22|
Taking into consideration the above notations, from (B3] we get
(3.33) Tno = Lo (BY) + Lo(By™) = LT + 105, i=1,2,
where
. _ , dc|
I =1 (EbF ::/ el
n,k n,k( k ) Ei’i |C _ Zi|,yi ) 1, ’

According to (3:26]) and ([B271), it is sufficient to estimate the integrals I:lﬁk: for each
i=1,2and k =1,2. }
Let us start with the evaluation of the integrals J; , from ([B32) and (B.33)

7 q : |dd| Lt | o+
331)  J,= [ AL / el pe
(3:54) w2 /L1 ¢ — z1|m ; gLt ¢ — 2z mi ¥ in2

Given the possible values of v;(—1 <v; < 0,7 >0, i = 1,2), we will consider the
estimates for the ‘]71172 separately.
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Let 71 = 0 and 2 > 0. In this case for the integral j,b, we get

d cdur g di 7" > 1
(3.35) = / __ldg] j/ a5 Jl%es b o
phE [¢— 2™ 0 sm 1 7 <1,

)

1—71
- dc] L g dig’, m>1,
Iy =< — 5 < — <{{Iln+—, 7 =1,
T T G Al T Jedy e ST R
2 cidi r
1, 7 <1

A similar estimate for the integral jﬁQ is

c 1
(3.36) I 7 = / el </2d2’Rﬁ< borts 2>l o
R A T C T S

dl_’m7 Yo > 1,

+
d =1 ds 2R
1721,3:5/ (| j/ < lnd1 L= 1,
’ Eg,i |C — 22|’Y2 . 72 2.R

2da 1, 72 < 1.
Let 71 < 0 and v2 < 0. Then, analogously to (8:35]) and (B.36])
(3.37) < /Eli ¢ — 21| C]d¢| < dS 7Y mes B <1,

oz [ 16— =l "l = i 1

2

and

(3.38) Iy = / . ¢ = 2| |d¢| = dS 7% mes EXE <1,
EY '

n,1

oz = / 1€ 2l T < iz T <
E )

n,2
2

Therefore, in this case, from B31)-(B38), we obtain

In 1-vs
difp +dyfp s Y172 > 1,
(3.39) An 2 [|Pallz,n,n) § (In ) (), m=n=1
L, —1<y,7 <L
Comparing (326), 327) and 339), we have
0
+1
(3.40) |Pu(2)] < CWHP nll e, n )| ()"

where ¢ = ¢(G, p,v;) >0, i =1, p, is the constant independent of n and z, and

1=72

d }p{ +d2R ) 717’72>17
0 — 1 1
B B (k) e () ==t
1, 0<vy,v <1
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According to (3.6]), for the point z1, we get

(3

n~#, if ap = 0;

42 di.r =
) LR = n=2 ifa; #0

For the estimate dz g, let us set zg € Lg, such that da g = |22 — zg|; (¥ € L*,

such that d(zg, L> N LF) := d(zp, LT); 25 = € L?: |¢ — 22| = cada g. Under
these notations, from Lemma [ZI] we obtain

3

43) df = d(zg, L* N L*) < |2p — 25| = dy 1"

Hence, do,gp = (dﬁ)ﬁ On the other hand, according to Lemma and [8]
Corollary 2], we get dﬁ = n~#. Therefore,

il =
(3.44) dogp = NPz,
Comparing (340)—B24), we get
Bn 1
Po(2)] = | Pl p|®(2) "
PA(2)] 3 ey Pl (),
where
(n-Vi y2—1 m
nor +nrOEE Ty, e > ]-7
1
By1:= ¢ (Inn)?, Y1 =72 =1,
1, Y1, Y2 < 1.
Given the above mentioned notation, we complete the proof. Il
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