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UNIFORM DISTRIBUTION MODULO 1 AND
THE UNIVERSALITY OF ZETA-FUNCTIONS
OF CERTAIN CUSP FORMS

Antanas Laurincikas

ABSTRACT. An universality theorem on the approximation of analytic func-
tions by shifts ((s+i7, F) of zeta-functions of normalized Hecke-eigen forms F,
where 7 takes values from the set {k®h: k=0,1,2,...} with fixed 0 < a < 1
and h > 0, is obtained.

1. Introduction

Denote by SL(2,Z) the full modular group, i.e.,
SL(2,Z) ={(%%) : a,b,c,d € Z, ad — bc = 1}.

The function F(z) is called a holomorphic cusp form of weight x for SL(2,Z) if
F(z) is holomorphic in the half-plane Imz > 0, for all (2 %) € SL(2,Z) satisfies the
functional equation

I (az +b

cz+d

and at infinity has the Fourier series expansion F(z) = >"°_, ¢(m)e*™"™*. Assume

additionally that F(z) is a normalized Hecke-eigen form, i.e., is an eigen form of
all Hecke operators

T, F(z) = “12 S OF (“’”b), m e N,

a d>() b(mod d)
ad=m

) = (cz+ )" F(2),

and ¢(1) = 1.
The associated zeta-function (s, F'), s = o +it, is defined, for o > ”T'H, by the

Dirichlet series
oo

o,y =y A,

m=1
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and can be analytically continued to an entire function. Moreover, the function

¢(s, F') can be written, for o > ”T'H, as a product over primes

co.m=T1(-52) (=52

p* p*

where a(p) and S(p) are conjugate complex numbers satisfying a(p) + B(p) = ¢(p).

The zeta-function ((s, F)), as the Riemann zeta-function, Dirichlet L-functions,
and some other zeta and L-functions, is universal in that sense that a wide class
of analytic functions can be approximated by shifts ((s + i7, F') with some real 7.
This was obtained in [6] by using the probabilistic approach and positive density
method. Let D = Dp = {s cC: 5 <0< “TH} Denote by K = Kp the class
of compact subsets of the strip D with connected complements, and by Hy(K),
K € K, the class of continuous non-vanishing functions on K which are analytic in
the interior of K. Let measA stand for the Lebesgue measure of a measurable set
A C R. Then, in [7], the following statement was proved.

THEOREM 1.1. Suppose that K € K and f(s) € Ho(K). Then, for every e > 0,

lim inf 1 meas {T €10,T]: sup |[¢(s+iT, F) — f(s)] < 5} > 0.
T—oo 1 scK

Investigations of universality of zeta-functions of cusp forms were continued in
[8] and [6], where the analogues of Theorem [[I] were obtained for zeta-functions
attached to new forms and for zeta-functions of primitive normalized Hecke-eigen
forms for the Hecke subgroup with character, respectively.

Theorem[ITland its generalizations in [8], [6] are of continuous type because the
shifts 7 in ((s+i7, F') can take arbitrary real values. Also, the discrete universality
of zeta-functions is considered. In this case, 7 takes values from some discrete sets.
The discrete analogue of Theorem [[T] was begun to study in [9], and a general
result was obtained in [11]. Denote by #A the cardinality of the set A.

THEOREM 1.2. Suppose that K € K, f(s) € Ho(K) and h > 0 is an arbitrary
fixed number. Then, for every e > 0,

T inf — #{o <k <N:sup|C(s+ikh, F) — f(s)] < 5} > 0.
N—oo +1 seK

In Theorem [[2] the shift 7 in {(s + i1, F') takes values from the arithmetical
progression {0, h, 2h, ...} with difference h. It is an interesting problem to prove
Theorem when 7 takes values from a more complicated discrete set, and the
present paper is devoted to the case of the set {k*h : k € No = NU{0}}, where

h >0 and 0 < a < 1 are arbitrary fixed numbers.

THEOREM 1.3. Suppose that K € K, f(s) € Hyo(K), and h >0 and 0 < a < 1
are arbitrary fized numbers. Then, for every e > 0,

#{o <k<N:sup|C(s+ikh, F) — f(s)| < 5} >0.

lim inf
N—o0 sEK

+1
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Let H(G) be the space of analytic functions on the region G C C endowed
with the topology of uniform convergence on compacta. In [10], Theorem [Tl
was generalized to composite functions ®(((s, F')) for some classes of operators
® : H(D) — H(D). Similarly, discrete analogues of Theorem for ®(¢(s, F))
were obtained in [11]. Theorem also can be rewritten for composite functions.
We give only one example. For aq,...,a, € C and ®: H(D) — H(D), define

H<I>;1117»»»,ar(D) = {g € H(D) : g(s) # aj, j=1,.. '7T} U {(I)(O)}a
S={g€e H(D): g(s) #0 or g(s)=0}.
THEOREM 1.4. Suppose that ® : H(D) — H(D) is a continuous operator such

that ®(S) D He.a,,....a.(D), and h > 0 and 0 < o« < 1 are arbitrary fived numbers.
Ifr=1,let K e K, f(s) € H(K) and f(s) # a1 on K. Then, for every e > 0,

. 1
(1.1) l}\rfglglof N1

Let K C D be an arbitrary compact subset, and f(s) € Haa,,... 0. (D). Then
inequality (L) holds for any e > 0.

#{o <k <N : sup |B(C(s + ik, F)) — £(s)| < g} > 0.
seK

For example, Theorem [[L4] implies the discrete universality for the functions
e F) sin(((s, F)), cos(C(s, F)), etc.

2. Probabilistic limit theorems

For the proof of Theorem [[L3] we need the weak convergence for
1
CN+1

with explicitly given limit measure. Here the sequel, B(X) denotes the Borel o-field
of the space X.

Let v = {s € C: |s| = 1} be the unit circle on the complex plane, and P be the
set of all prime numbers. Define Q = HpEIF’ vp where v, =~y for all p € P. It is well
known that the torus €2, with the product topology and pointwise multiplication,
is a compact topological Abelian group. Thus, on a measurable space (2, B(f2)),
the probability Haar measure my can be defined, and we have the probability
space (€, B(2),my). Denote by w(p) the projection of an element w € § to the
circle 7p, p € P. Then we have that {w(p) : p € P} is a sequence of independent
random variables defined on the probability space (2, B(£2), mg). On the latter
space, define the H(D)-valued random element ((s,w, F') by

(0 F) =] (1 _ a(p)cg(p))—l(l 7 ﬂ(p)w(p))—l’

peP pé ps
and denote by P the distribution of {(s,w, F), i.e., for A € B(H(D)),
P:(A) =mp(weN: ((s,w,F) € A).

Py (A) #{0<k<N: ((s+ik*h,F)e A}, Ac B(H(D)),

THEOREM 2.1. The measure Py converges weakly to P as N — 0o. Moreover,
the support of P is the set S.



134 LAURINCIKAS

The proof of Theorem [2.1] is based on individual properties of the sequence
{k* : k € Ny}. We recall that a sequence {z;} C R is uniformly distributed
modulo 1 if, for each interval I = [a,b) C [0, 1) of length |I],

1
Jim ];XI({%}) = 1],
where {u} denotes the fractional part of v € R, and x; is the indicator function

of I.

LEMMA 2.1. For an arbitrary fivred a # 0 and 0 < o < 1, the sequence {k“a}
s uniformly distributed modulo 1.

The lemma is Exercise 3.10 of [4].

LEMMA 2.2. Suppose that a sequence {xy} C R is such that, for every a # 0, the
sequence {xpa} is uniformly distributed modulo 1. Then the measure Qn, defined,
for h >0, by

1
A= —
Qn(A) = 577

converges weakly to the Haar measure my as N — oo.

#{O<ESN: (p ™" peP)e A}, AeB(Q),

PrROOF. Let gn(k), k = (kp : p € P) denote the Fourier transform of Qn, i.e.,

QM@:LH@WWWM

where only a finite number of integers k,, are distinct from zero. By the definition
of Qn, we find that

N N
1 —ixphky, _ 1 .
(2.1)  gn(k) = N—HI;)];-[p R = N—_i_lkz%exp{lfﬂkth:kplogp}

It is well known that the set {logp : p € P} is linearly independent over the field
of rational numbers Q. Therefore, the equality Zp kplogp = 0 holds if and only if
k = 0. Clearly,

(2.2) gn(0) = 1.

In the case k # 0, we have that h Zp kplogp # 0. Therefore, by the hypothesis on
the sequence {xy}, the sequence

Ikh
{g Zp: kp logp}
is uniformly distributed modulo 1. Hence, an application of the Weyl criterion

together with (ZI)) shows that limy_,o gn(k) = 0 for k # 0. This and (Z2]) yield
that

(2.3) hmw@:“%f

ESEES
o 1o

N—o00 7é
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Since

1 if k=0,
g(k) = e
0 if k#0,

is the Fourier transform of the Haar measure my, a continuity theorem for prob-
ability measures on compact groups, see, for example, [3], and ([Z3) prove the
lemma. O

Lemma [Z2] for the sequence {k*} with o > 0 and o ¢ N was proved in [2].
For each w € Q, extend the function w(p) from the set P to the set N by

w(m) = H wh(p), meN.
ptim
pHim

Further, we consider two functions

G, F) = 3 Anlm) - s F) = Y M

ms
m=1 m=1

where, for a fixed number o9 > % and m,n € N,

vy (m) = exp { — (m/n)7°}.
Then the series for ¢, (s, F') and (,(s,w, F') are absolutely convergent for o > £.
For A € B(H(D)), define
1
T N+1
Moreover, let the function u, : @ — H(D) be given by Un(w) = Cu(s,w, F), and
let the probability measure P, be defined by P, = mygu, !, i.e., for A € B(H(D)),

P (A) = myu;t(A) = mpg(u; tA).

Pnn(A) #{0 <k < N : (s +iaph, F) € A}

LEMMA 2.3. Under hypotheses of Lemma[Z2, Py, converges weakly to B, as
N — oo.

PROOF. Since the series for (,(s,w, I') is absolutely convergent for o > &, we
have that the function wu,, is a continuous one. Moreover,

U (p~ " p € P) = (s + iaph, F).

Therefore, Py, = Qnu,'. This, Lemma 22 and Theorem 5.1 of [I] prove the
lemma. Il

For the proof of Theorem [[T] a limit theorem for
ef 1
Pr(A) :f?meas {r€0,T): ((s+ir,F) e A}, AeB(H(D)),

as T — oo was applied. For our propose, we need some facts from the proof of the
above limit theorem.
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LEMMA 2.4. The measure QT defined by
A 1 )
Qr(A) = 7 meas {rel0,T): (p"":peP)e A}, AcB(Q),

converges weakly to the Haar measure mg as T — oo.

PROOF. We use the method of Fourier transform and the linear independence
over the field of rational numbers Q for the set {logp: p € P}. O

LEMMA 2.5. The measure pT,n defined by
A 1
Pr,(A) = 7 meas {r€[0,T): ¢u(s+ir,F) e A}, A€ B(H(D)),

converges weakly to P, as T — oo, where P, is defined in Lemma [Z3.

ProOOF. We use Lemma [2.4] and repeat the proof of Lemma [2.3] O

LEMMA 2.6. Pr converges weakly to Pr, and the support of Py is the set S.
Moreover, P¢ coincides with the limit measure P of P, as n — oc.

PrROOF. We apply Lemma [Z.5] the approximation of {(s, F') and {(s,w, F') by
Cn(s, F) and (s, w, F), respectively, and the classical Birkhoff-Khintchine ergodic
theorem. For the investigation of the support, the positive density method is ap-
plied, see [7]. O

Our next aim is to show that the measure Py, as N — oo, also converges
weakly to the limit measure P of P, asn — o0, i.e., that Py converges weakly
to PC'

First we need a discrete version of approximation ((s,F) by (,(s, F). Let
{K; : I € N} C D be a sequence of compact subsets such that D = (J;2, Kj,
K; C Kj4q foralll € N, and if K C D is a compact subset, then K C K for some
I € N. For g1,92 € H(D), set

oo

1 SWPser, l91(s) = ga(s)]
) =Y 27! : :
p(91, g2) Z 1+ sup,e, lg1(s) — g2(s)|

~

=1

Then p is a metric on H (D) which induces its topology of uniform convergence on
compacta.

We also recall the Gallagher lemma which relates continuous and discrete mean
values of certain functions.

LEMMA 2.7. Let Ty and T > § > 0 be real numbers, and T be a finite set in
the interval [To + 2, To + T — £]. Define

Ns(x)= > 1,

teT
[t—z| <o
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and let S(x) be a complex-valued continuous function on [To, T + Ty] having a
continuous derivative on (To, T + Tp). Then

1 2 1 Tor® 2
SN OISO < [ s@P
teT To

To+T To+T 2
H( [ s@pe [ s @Pe)
To To

Proof of the lemma can be found in [13], Lemma 1.4.

LEMMA 2.8. Suppose that o € (0,1) and h > 0 are fized numbers. Then

N

o 1 . .
s kz p(C(s + ik®h, F), Culs + ikh, F)) = 0.

=0
PROOF. It is known that, for fixed o € (&, &),
T
(2.4) / |C(o +it, F)|2dt = O(T).
0

This together with the Cauchy integral formula implies, for the same o, the estimate

(2.5) /O | (o +it, F)|*dt = O(T).

Further, we will apply Lemma 27 For 2 < k < N and sufficiently large N, we
have that

1\ a  ala—1)
a _pa _ pa - _ Lo L« N L) — ko
(k+1)7 =k =k (14 2) ke =k (14 2+ B0
« ala—1) !
= kl—o + 2k2—a teee > 2N1—a'

We take § = 5-%— in Lemma 27 Then estimates (2Z4)), (Z5) and Lemma 7] for

oe (5, ”TH), yield

N N%h
(2.6) > [¢(o+ik“h, F)]* < Nl_“/ (o + it, F|2dt
k 0

=0
i 3 N%h; 3
+ (/ |C(0+it,F)I2dt) (/ |C'(U+it,F)|2dt) < N.
0 0

Let K be a compact subset of the strip D. Then, using (2.6) and contour integra-
tion, we find similarly to the proof of Theorem 4.1 from [5] that

N
. . 1 27,00 - 1.0
lim limsup 1 kg_osup((:(s—i—zk h,F)— (u(s+ik%h, F)) = 0.

n—oo N_yoo N

This and the definition of the metric p prove the lemma. O
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Proor OoF THEOREM [Z1l In view of Lemma [2.6] it suffices to show that Py
converges weakly to P as N — oo, where P is the limit measure of B, asn — oo.

Let On be a random variable defined on a certain probability space (Qo, A, ),
and having the distribution

1
Oy = k%h) = ——, k=0,1,...,N.
M(N ) N+1’ 0)7 )

Define the H(D)-valued random element Xy, by
XN,n = XN,n(S) = Cn(s + ZGN,F)
Then, by Lemmas [Z1] and 23] we have that Xy, converges in distribution to X,

(2.7) Xym —2— X,
N—o00

where X,, is the H (D)-valued random element with the distribution P,, and P,
is the limit measure in Lemma Since the series for (,(s,F) is absolutely
convergent for o > 5, by a standard method it is easy to show that the family
of probability measures {]3" : n € N} is tight, i.e., for every € > 0, there exists a
compact subset K = Kp(e) C D such that P,(K) > 1—¢ for all n € N. Hence,
by the Prokhorov theorem, see Theorem 6.1 in [1], the family {Pn} is relatively
compact. Thus, there exists a sequence {P, } c {P,} such that P, converges
weakly to a certain probability measure P on (H(D), B(H(D))) as r — oo, i.e.,
using a mixed notation of [1],

(2.8) X, 2 P.

T—00
On (90, A, i), define one more H(D)-valued random element
XN = XN(S) = ((S +i9N,F).
Then, by Lemma 2.8, we find that, for every ¢ > 0,

lim limsupu(p(XN,XN,n) > E)
n—00 N0 -

T 1
= l1m l1imsu
A N |

#{0 <k <N : p(C(s +ik™h, F), Cu(s + ik®h, F)) > €}

M=

< lim limsup ——

N0 N_y00 (N+1)5 p(€(8+lk h’F)’Cn(S+Zk h’F)) =0.

k=0
This and relations (27) and (Z.8)) show that all hypotheses of Theorem 4.2 of [1]
are satisfied. Therefore,

XN L) P,
N—oc0
or equivalently, Py converges weakly to Pas N — co. Moreover, the latter relation

shows that the measure P is independent of the sequence {P,, }. Therefore,
X, —— P,

n—oo
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A

i.e., P, converges weakly to Pasn— 0o, thus P=P. Thus, we obtain that Py
converges weakly to the limit measure P of P, as n — oo, and by Lemma 2.6] P
coincides with FP;. The theorem is proved. O

3. Proof of universality theorems

Proor oF THEOREM [[L3]l By the Mergelyan theorem on the approximation
of analytic functions by polynomials [12], there exists a polynomial p(s) such that

(3.1) sup |f(s) — ep(s)‘ <e/2.
seK

Define the set
G = {g € H(D) : sup ‘g(s) — ep(s)‘ < 5/2}.
seK

Then, by Theorem 2, G is an open neighbourhood of the element e”(*) of the
support of the measure Pr. Hence, P;(G) > 0. This, Theorem[ZIland an equivalent
of the weak convergence of probability measures in terms of open sets show that

1
N+1

or, by the definition of GG, we have that

lim inf #{0 <k < N:((s+ik*h,F) e G} > P:(G) >0,
N—o0

o 1 ‘ ,
lﬂlgof]v_i_l#{og E<N: SSE‘C(erzk“h,F)fep(é)‘ < 5/2} > 0.

Combining this with (B1]) proves the theorem. O

Proor oF THEOREM [[.4l It follows from Theorem [Z1] the continuity of the
operator ® and Theorem 5.1 of [1] that the measure
1

(32) N+1

#{0 <k<N:O((s+ik*h, F)) € A}, A€ B(H(D)),
converges weakly to PC(I>_1 as N — oo. Moreover, repeating the proof of Lemma 17
from [10], we obtain that the support of PCCID’l includes the closure of the set
H':D;al »»»»» ar (D)

First suppose that f(s) € He.a,,....a,. (D). Then, by the above remark, f(s) is
an element of the support of P,®~!. Therefore, putting

G ={g € HD): supJg(s) ~ f(s)] <<},

we have that P.® *(G1) > 0. This and the weak convergence of measure (3.2)
prove the theorem in this case.

Now let » = 1. Then, by the Mergelyan theorem, there exists a polynomial
p(s) such that

(3.3) sup |£(s) = p(s)| < e/4.
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Since f(s) # a1 on K, by the Mergelyan theorem again, we can find a polynomial
q(s) such that
(3.4) sulp; |p(s) —h (s)‘ <e/d,

se

where fi(s) = a; +e9(). By the above remark, fi(s) is an element of the support
of the measure P.®~1. Therefore, if

Gz ={g € H(D) : supg(s) ~ fi(s)] < </2},

then P.®1(G2) > 0. Therefore, by the weak convergence of B.2) to P.®~ ! as
N — oo, we find that

1
lim inf —#{o <k <N :tsup |U(C(s + kR, F)) — fa(s)| < 5/2} > 0.
N—oo +1 seK
This together with (B3] and ([B4) prove the theorem in the case r = 1. O
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