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SOME CHARACTERIZATION BASED EXPONENTIALITY

TESTS AND THEIR BAHADUR EFFICIENCIES

Bojana Milošević and Marko Obradović

Abstract. We propose new exponentiality tests based on a recent charac-
terization. We construct integral and Kolmogorov-type statistics, derive their
asymptotics and calculate the Bahadur efficiency against some common alter-
natives. We also obtain a class of locally optimal alternatives for each test. In
case of small samples tests are compared with some common exponentiality
tests.

1. Introduction

Exponential distribution is one of the most exploited distributions thanks to its
numerous applications in queueing theory, reliability theory, survival analysis etc.

Due to its importance on one hand, and to its numerous suitable proper-
ties on the other, the exponential distribution probably has the largest number
of characterizing theorems. Many books and chapters are devoted to this topic,
e.g., [2,3,7,8].

One of the main directions in goodness-of-fit testing in recent times have be-
come tests based on characterizations. Such tests for exponential distribution are
studied in papers [1, 4, 12, 16, 17], among others. In particular, the Bahadur effi-
ciency of such tests has been considered in, e.g., [14,21,26,28].

The characterization we present here is the special case of the characterization
from [19].

Let X0, X1, X2 be independent and identically distributed non-negative random

variables from the distribution whose density f(x) has the Maclaurin expansion for

x > 0. If

(1.1) X0 + min{X1, X2} d
= max{X1, X2}

then f(x) = λe−λx for some λ > 0.
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Let X1, X2, . . . , Xn be a random sample from non-negative continuous distribu-
tion F . We test the composite hypothesis that F belongs to a family of exponential
distributions E(λ), where λ > 0 is an unknown parameter.

We consider two test statistics, namely integral-type and Kolmogorov-type.
Both of our statistics are invariant with respect to the scale parameter λ (see [15]).
Following (1.1) we define two so-called V -empirical distribution functions:

Gn(t) =
1

n3

n
∑

i=1

n
∑

j=1

n
∑

k=1

I{Xi + min(Xj , Xk) < t},

Hn(t) =
1

n2

n
∑

j=1

n
∑

k=1

I{max(Xj , Xk) < t}.

Our test statistics can now be defined as

In =

∫

∞

0
(Hn(t) −Gn(t)) dFn(t),

Kn = sup
t>0

∣

∣Hn(t) −Gn(t)
∣

∣.

We consider large values of our statistics to be significant.
The rest of the paper is organized as follows. In Section 2 we examine the

asymptotics of integral-type statistic and find Bahadur efficiencies for a choice of
common alternatives. In Section 3 we do the analogous study for the Kolomogorov-
type statistic. Some classes of locally optimal alternatives are determined in Section
4 and a power study is conducted in Section 5.

2. Integral-type statistic In

The statistic In is asymptotically equivalent to U -statistic with symmetric ker-
nel [15]

Ψ(X1, X2, X3, X4) =
1

4!

∑

π(4)

(

I{max(Xi2
, Xi3

) < Xi4
}

−I{Xi1
+ min(Xi2

, Xi3
) < Xi4

}
)

,

where π(m) is the set of all permutations {i1, i2, . . . , im} of set {1, 2, . . . ,m}.
Its projection on X1 under null hypothesis is

ψ(s) = E(Ψ(X1, X2, X3, X4)|X1 = s)

=
1

4

(

P{max(X2, X3) < X4} − P{s+ min(X2, X3) < X4}
)

+
1

2

(

P{max(s,X3) < X4} − P{X2 + min(s,X3) < X4}
)

+
1

4

(

P{max(X3, X4) < s} − P{X2 + min(X3, X4) < s}
)

.

After some calculations we get

ψ(s) =
1

12
− 1

8
e−2s − 1

6
e−s.
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The expected value of this projection is equal to zero, while its variance is

σ2
I = E(ψ2(X1)) =

1

1080
.

Hence this kernel is non-degenerate. Applying Hoeffding’s theorem (see [11]) we
get that the asymptotic distribution of

√
nIn is normal N (0, 2

135 ).

2.1. Local Bahadur efficiency. The asymptotic efficiency is an established
way of measuring the quality of the tests. The Bahadur efficiency has an advantage
that it can also be applied to non-normal test statistics, unlike e.g. its Pitman
counterpart. For asymptotically normal test statistics these efficiencies coincide
(see [6]). The Bahadur efficiency can be expressed as the ratio of the Bahadur
exact slope, function describing the rate of exponential decrease for the attained
level under the alternative, and double Kullback–Leibler distance between null and
alternative distribution. More details on the Bahadur theory can be found in [5,20].

The Bahadur exact slopes are defined as follows. Suppose that the sequence
{Tn} of test statistics under alternative converges in probability to some finite
function b(θ). Suppose also that the following large deviations limit

(2.1) lim
n→∞

n−1 lnPH0
(Tn > t) = −f(t)

exists for any t in an open interval I, on which f is continuous and {b(θ), θ > 0} ⊂ I.
Then the Bahadur exact slope is

(2.2) cT (θ) = 2f(b(θ)).

The exact slopes always satisfy the inequality

(2.3) cT (θ) 6 2K(θ), θ > 0,

where K(θ) is the Kullback–Leibler “distance” between the alternative H1 and the
null hypothesis H0.

In view of (2.3), the local Bahadur efficiency of the sequence of statistics Tn is
naturally defined as

(2.4) eB(T ) = lim
θ→0

cT (θ)

2K(θ)
.

The local Bahadur efficiency is measured for alternative distributions that are
“close” to the null. Therefore we define the following class of alternatives that are
close to exponential.

Let G(·, θ), θ > 0, be a family of distributions with densities g(·, θ), such
that G(·, 0) is exponential, and the regularity conditions from [20, Chapter 6],
and [23, assumptions ND] hold.

Denote h(x) = g′

θ(x, 0). It is obvious that
∫

∞

0 h(x) dx = 0.
We now calculate the Bahadur exact slope for the test statistic In. The func-

tions necessary for its calculations are obtained from the following lemmas.

Lemma 2.1. For statistic In the function fI from (2.1) is analytic for suffi-

ciently small ε > 0 and it holds

fI(ε) =
135

2
ε2 + o(ε2), ε → 0.
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Proof. The kernel Ψ is bounded, centered and non-degenerate. Therefore we
can apply the theorem of large deviations for non-degenerate U -statistics (see [24])
and get the statement of the lemma. �

Lemma 2.2. For a given alternative density g(x; θ) whose distribution belongs

to G, it holds

b(θ) = 4θ

∫

∞

0
ψ(x)h(x) dx + o(θ), θ → 0.

Proof. The proof follows from the general result from [23]. �

The double Kullback–Leibler distance from the densities of the class G to the
class of exponential distributions can be for small θ expressed as (see [25]):

(2.5) 2K(θ) =
(

∫

∞

0
h2(x)exdx−

(

∫

∞

0
xh(x) dx

)2)

· θ2 + o(θ2).

We are going to calculate the local Bahadur efficiency of our test for some
common close alternatives. They are:

• a Makeham distribution with the density

(2.6) g(x; θ) = (1 + θ(1 − e−x)) exp(−x− θ(e−x − 1 + x)), θ ∈ (0, 1), x > 0;

• a Weibull distribution with the density

(2.7) g(x; θ) = e−x1+θ

(1 + θ)xθ , θ ∈ (0, 1), x > 0;

• a gamma distribution with the density

(2.8) g(x; θ) =
xθ

Γ(θ + 1)
e−x, θ ∈ (0, 1), x > 0;

• an exponential mixture with negative weights (EMNW(β)) [13] with den-
sity

(2.9) g(x; θ) = (1 + θ)e−x − βθeβx, θ ∈
(

0,
1

β − 1

]

, x > 0;

• an exponential distribution with resilience parameter (see [18]) with den-
sity

(2.10) g(x; θ) = e−x(1 − e−x)θ(1 + θ), θ ∈ (0, 1), x > 0.

In the following example we present calculation of the local Bahadur efficiency.

Example 2.1. Let the alternative hypothesis be a Makeham distribution with
density function (2.6). The first derivative along θ of its density at θ = 0 is

h(x) = −2e−2x + 2e−x − e−xx.

Using (2.5) we get that the Kullback–Leibler distance is K(θ) = 1
12θ

2 + o(θ2),
θ → 0. Applying Lemma 2.2 we have

bI(θ) = 4θ

∫

∞

0
ψ(x)(−2e−2x + 2e−x − e−xx) dx+ o(θ)

=
1

36
θ + o(θ) ≈ 0.0278θ+ o(θ), θ → 0.
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According to Lemma 2.1 and (2.4) we get that local Bahadur efficiency eB(I) =
0.625.

The calculation procedure for alternatives (2.7)–(2.10) is similar. Therefore we
omit it here and present the efficiencies in Table 1.

3. Kolmogorov-type statistic Kn

For a fixed t > 0 the expression Hn(t)−Gn(t) is a V-statistic with the following
kernel:

Ξ(X1, X2, X3, t) =
1

2!

∑

π(3)

(

I{max(Xi2
, Xi3

) < t}

− I{Xi1
+ min(Xi2

, Xi3
) < t}

)

.

The projection of this family of kernels on X1 under H0 is

ξ(s, t) = E(Ξ(X1, X2, X3, t)|X1 = s)

=
1

3

(

P{max(X2, X3) < t} − P{s+ min(X2, X3) < t}
)

+
2

3

(

P{max(s,X3) < t} − P{X2 + min(s,X3) < t}
)

.

After some calculations we get

ξ(s, t) =
1

3
e−2t − 1

3
+

2

3
te−t +

1

3
I{s < t}(e−2t+2s + 1 − 2e−t(1 − s+ t)).

The variances of these projections σ2
K(t) under H0 are

σ2
K(t) =

4

27
e−4t(−1 + et)3.

The plot of this function is shown in Figure 1.

Figure 1. Plot of the function σ2
K(t),

The supremum is reached for t0 = 1.387, hence

σ2
K = sup

t>0
σ2

K(t) = 0.0156.
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Therefore, our family of kernels Ξ(X1, X2, X3, t) is non-degenerate as defined in
[22]. Using argumentation of Silverman (see [27]) one can show that U -empirical
process ρn(t) =

√
n(Hn(t) − Gn(t)), t > 0, weakly converges in D(0,∞) to a

centered Gaussian process ρ(t) with complicated, but calculable covariance. Thus,
the sequence of our test statistics Kn converges in distribution to the random
variable supt>0 |ρ(t)|. However, we are unable to find its distribution and the
critical values should be determined by using Monte Carlo simulations.

3.1. Local Bahadur efficiency. In this subsection we calculate the local
Bahadur efficiency for statistic Kn. Similarly to the case of integral-type statistic
we determine the large deviation function f and the limit in probability bK(θ) in
the following lemmas.

Lemma 3.1. For statistic Kn the function fK from (2.1) is analytic for suffi-

ciently small ε > 0 and it holds

fK(ε) =
1

18σ2
K

ε2 + o(ε2) ≈ 3.56ε2 + o(ε2), ε → 0.

Proof. The family of kernels {Ξ4(X1, X2, X3, t), t > 0} is centered and
bounded in the sense described in [22]. Applying the large deviation theorem
for the supremum of the family of non-degenerate U -and V -statistics (see [22]), we
get the statement of the lemma. �

Lemma 3.2. For a given alternative density g(x; θ) whose distribution belongs

to G holds

bK(θ) = 3θ sup
t>0

∣

∣

∣

∣

∫

∞

0
ξ(x; t)h(x) dx

∣

∣

∣

∣

+ o(θ), θ → 0.

Proof. Using Glivenko–Cantelli theorem for U -statistics (see [9]) we get that
the statistic Kn uniformly converges to

bK(θ) = sup
t>0

∣

∣Pθ{max{X1, X2} < t} − Pθ{X1 + min{X2, X3} < t}
∣

∣

= sup
t>0

∣

∣

∣

∣

(1 − e−t)2 −
∫ t

0

∫ t−x

0
g(x; θ)2(1 −G(y; θ))g(y; θ) dy dx

∣

∣

∣

∣

.

Denote

a(t; θ) = (1 − e−t)2 −
∫ t

0

∫ t−x

0
g(x; θ)2(1 −G(y; θ))g(y; θ) dy dx.

After some calculations we get that its derivative along θ at θ = 0 is

a′

θ(t; 0) = 3

∫

∞

0
ξ(x; t)h(x) dx.

Applying Maclaurin’s expansion to the function a(t; θ) we get the statement of
the theorem. �

In the next example we calculate the local Bahadur efficiency in the same man-
ner as we did for integral-type statistic. As before the case of Makeham alternative
is presented while for the others the values of efficiencies are given in Table 1.
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Example 3.1. Let the alternative hypothesis be Makeham distribution with
density function (2.6). Using Lemma 3.2 we have

bK(θ) = sup
t>0

|a(t, θ)| = 3θ

∫

∞

0
ξ(x, t)(−2e−2x + 2e−x − e−xx) dx + o(θ), θ → 0.

The plot of the function function a′

θ(t, 0), is shown in Figure 2.

Figure 2. Plot of the function a′

θ(t, 0)

Supremum of a(t, θ) is reached at t1 = 1.632, thus bK(θ) = 0.063θ+o(θ), θ → 0.
Using Lemma 3.1 and equations (2.2) and (2.4), we get that the local Bahadur
efficiency in the case of statistic Kn is 0.342.

4. Locally optimal alternatives

The problem of locally optimal alternatives, i.e., the alternatives for which the
tests are locally asymptotically optimal in the Bahadur sense, and its importance is
described in [20]. In the following theorem we give some classes of such alternatives
for our two test statistics.

Theorem 4.1. Let g(x; θ) be the density from G that satisfies condition
∫

∞

0
exh2(x) dx < ∞.

Alternative densities

g(x; θ) = e−x + e−xθ(Cψ(x) +D(x− 1)), x > 0, C > 0, D ∈ R,

are for small θ locally asymptotically optimal for the test based on In.

Also, alternative densities

g(x; θ) = e−x + e−xθ(Cξ(x, t0) +D(x − 1)), x > 0, C > 0, D ∈ R,

where t0 = 1.387, are for small θ locally asymptotically optimal for the test based

on Kn.
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Proof. Denote

(4.1) h0(x) = h(x) − (x− 1)e−x

∫

∞

0
h(s)s ds.

It is easy to show that this function satisfies the following equalities.
∫

∞

0
h2

0(x)exdx =

∫

∞

0
exh2(x) dx−

(

∫

∞

0
h(x)xdx

)2
;

∫

∞

0
ψ(x)h0(x) dx =

∫

∞

0
ψ(x)h(x) dx;

∫

∞

0
ξ(x)h0(x) dx =

∫

∞

0
ξ(x)h(x) dx.

The local asymptotic efficiency for the test based on statistic In is

eB
I = lim

θ→0

cI(θ)

2K(θ)
= lim

θ→0

2f(bI(θ))

2K(θ)
= lim

θ→0

2 · 135
2 b2

I(θ)

2K(θ)
= lim

θ→0

b2
I(θ)

16σ2
I 2K(θ)

= lim
θ→0

16θ2
( ∫

∞

0 ψ(x)h(x) dx
)2

+ o(θ2)

16
∫

∞

0 ψ2(x)e−xdx
(

θ2
( ∫

∞

0 exh2(x) dx −
( ∫

∞

0 h(x)xdx
)2)

+ o(θ2)
)

=

( ∫

∞

0 ψ(x)h(x) dx
)2

∫

∞

0 ψ2(x)e−xdx
( ∫

∞

0 exh2(x) dx −
( ∫

∞

0 h(x)xdx
)2)

=

( ∫

∞

0 ψ(x)h0(x) dx
)2

∫

∞

0 ψ2(x)e−xdx
∫

∞

0 h2
0(x)ex dx

.

The alternative is locally optimal if eB
I = 1. From the Cauchy–Schwarz in-

equality we get that this holds if and only if h0(x) = Cψ(x)e−x. Inserting that in
(4.1) we obtain h(x). The densities from the statement of the theorem have the
same h(x), hence the proof of the first part of the theorem is completed.

The local asymptotic efficiency of the test based on statistic Kn is

eK = lim
θ→0

cK(θ)

2K(θ)
= lim

θ→0

2f(bK(θ))

2K(θ)
= lim

θ→0

b2
K(θ)

9σK(t0)22K(θ)

= lim
θ→0

9θ2 supt>0

( ∫

∞

0 ξ(x, t)h(x) dx
)2

+ o(θ2)

9 supt>0

∫

∞

0 ξ2(x, t)e−xdx
(

θ2
( ∫

∞

0 exh2(x) dx −
( ∫

∞

0 h(x)xdx
)2)

+ o(θ2)
)

=
supt>0

( ∫

∞

0 ξ(x, t)h(x) dx
)2

supt>0

∫

∞

0 ξ2(x, t)e−xdx
( ∫

∞

0 exh2(x) dx −
( ∫

∞

0 h(x)xdx
)2)

=
supt>0

( ∫

∞

0 ξ(x, t)h0(x) dx
)2

∫

∞

0 ξ2(x, t)e−xdx
∫

∞

0 h2
0(x)ex dx

.

Once again, using the Cauchy-Schwarz inequality we have that eK = 1 if and
only if h0(x) = Cξ(x, t0)e−x. Inserting that in (4.1) we obtain h(x). The densities
from the statement of the theorem have the same h(x), hence the proof is completed.

�
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5. Discussion

The local Bahadur efficiencies for our test statistics are presented in Table
1. We may notice that the integral type statistic is more efficient than the Kolo-
mogorov type statistic. Comparing with other exponentiality tests based on char-
acterizations (see e.g. [14,28]) we conclude that the In statistic is very efficient and
Kn is reasonably efficient (compared to some other Kolmogorov-type tests based
on characterizations).

Table 1. Local Bahadur efficiency for the statistic In and Kn

Alternative Efficiency In Efficiency Kn

Weibull 0.750 0.277
Makeham 0.625 0.342
Gamma 0.796 0.161

EMNW(3) 0.844 0.400
LM 0.749 0.272

GED 0.420 0.247
Resilience 0.803 0.256

6. Power comparison

In this section we present empirical powers of our tests for sample sizes n = 20
and n = 50 for some common distributions and compare results with other tests
for exponentiality which can be found in [10]. The powers are shown in Tables 2
and 3. The labels used are identical to the ones in [10]. It can be noticed that for
sample size n = 20 in majority of the cases the statistic In is the most powerful,
and reasonably competitive for n = 50. The powers of statistic Kn are satisfactory.
However there are few cases where the powers of both our tests are not suitable.
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