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by
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1. INTRODUCTION. A classic theorem of Egbroff [1911] says that

if f,(x), fa(x),... 1is asequence of Lebesgue measurable functions defined

over a set E having positive finite Lebesgue measure |E| and if

(1.1) lim £, (x) = f(x), x€E,
n-y»o

where f(x) is finite-valued, then the convergence is essentially uniform
over E, that is, to each 6>>0 corresponds a subset £, of E of measure
|E¢| > |E| - 8 such that f,(x) > f(x) uniformly over E,. This useful theorem
was employed by the author [1942, p. 11] to obtain a theorem which,
among other things, led to a simplified proof of a theorem of Iyengar
[1940] on Frullani integrals; see also Agnew [1951]. A function F(
Lebesgue integrable over each finite interval was given, and properties of

the function
. A+tx

(1.2) f(A,x)= fF(t) at

were being obtained. It was known that there is a constant L such that
limgye f(A4, x) = Lx over the set E of x for which - a<x<a, a being
a positive constant. Without further elaboration, it was asserted that by a
theorem of 'Egoroff”, the convergence of f(A,x) is essentially uniform
over E. In treating the same subject, Ostrowski [1949] restated the
theorem of Iyengar and said that the proof ”is difficult and will be given
in another_ publication”. Referring to Iyengar’s use of a theorem of Arzela
and the author’s use of the theorem of Egoroff, Ostrowski said the
following. “lyengar’s proof of his theorem and the simplified proof of it
given by Agnew are, however, still difficult since in both proofs certain
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theorems about nonuniform convergence are used which, although usually
proved only in the case of convergent sequences, have to be used in the

case of continuous approximation. Our proof... makes use of the theorem

of Osgood, but exactly in the form proved by Osgood, that is for the case
of sequences of functions*.

It is certainly true, as the remarks of Ostrowski suggest, that diffi-
culties appear in attempts to generalize the theorem of Egoroff from the
sequence f; (x), fy(x),... to very general classes of functions {4, x).
Some results and references are given in Sections 3, 4, and 5. Meanwhile,
it is our first object to show that the application involving the particular
function f(A,x) in (1.2) does in fact follow almost immediately from the
Egoroff theorem on sequences. The function f(A,x) in (1.2) is continuous
over the whole plane - o0 <{A,x < o0 and the limit Lx is continuous
over —oo <{x <{oo. Hence the functions f,(x) of (2.3) below are con-
tinuous, and our conclusion for the special case is then obtained from the
following theorem which is, as we shall see without omission of details
a corollary of Egoroff’s theorem on sequences.

2. A COROLLARY OF EGOROFF’'S THEOREM. — THEOREM 2.1. Let f(A,x)

be a function defined for A> A, and x in a set E having finite positive
measure |E|. Let

(2.2) lim f(A,x)=f(x), x€E,
A

where f(x) is finite valued. For each integer n> A,, let the function fu (x)
defined by

(2.3) fa (x) -mni-: ;-<S-+Iif(44, x) = ()], x€E,

be measurable over E. Then to each § >0 corresponds a subset E, of E
having measure |E\|>>|E| -8 such that f(A,x) > f(x) uniformly over E,
as A oo, that is, to each €>0 corresponds a number A (e) such that

(2'4) If(A,JC) - f(x){ <8: erir A >A (8)'

To prove this theorem we observe that (2.2) implies that, for each
x€E, lim f,(x)=0. Since f,(x) is, for each n>> A,, a measurable function
of x, it follows from Egoroff’s theorem that f, (x)»0 essentially uniformly
over E. If 8> 0 and we choose a subset E, of E such that |E;| >|E|-8
and |f,(x)]<<e when x€E, aud n>N(e), then (2.4) holds when
A (e) = N(e) + 1. This proves the theorem.
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In applying the Egoroff theorem and its corollary, one has conside-
rable freedom that we did not need for our special application. The set E
may be a Lebesgue measurable set in Euclidean space of any number of
dimensions, and the functions may be regarded either as real valued or
complex valued. While it is essential that the limit function f(x) be finite-
valued, it need not be assumed that the functions f,(x) and f(A, x) are
finite valued. It follows from (1.1) and (2.2) that, for each x€E, f,(x) and
f(A, x) must be finite-valued when n and A are suificiently great. It is a
part of the conclusion of Egoroif’s theorem that if E, is a subset of E
over which the convergence is uniform, then f,(x) and f(A, x) must be
finite-valued over E; when n and A are sufficiently great.

Of course measurability of the function f (A4, x), and measurability of
the functions f, (x) in (2.3), are not necessary in order that f(A,x) con-
verge essentially uniformly over E as A »oo. This is shown by such
trivial examples as that in which g (x) is a bounded nonmeasurable function
over E and f (A, x) = g(x)/A when A =1 and x § E. Whether the functions
are measurable or not, the convergence in (2.2) is essentially uniform
over E if and only if the sequence f,(x) of functions, which are defined
by (2.3) and which may now have values + oo, is such that lim f, (x) =0
essentially uniformly over E.

3. NONMEASURABLE FUNCTIONS fa(x). It has for long time been
standard procedure for books treating the theory of measure to prove the
theorem of Egoroff. Nevertheless it seems to be difficult to find an explicit
statement that the conclusion of Egoroff’s theorem may fail if the func-
tions f,(x) are nonmeasurable. We now give an example. Let E,, E,,
Es,... be a sequence of mutually exclusive nonmeasurable subsets of E
such that for each n=1, 2, 3,... the set E, has lower (or inner) measure
m (E,) = 0 and upper (or outer) measure m (E,) = 1. The classic congruent
nonmeasurable sets constructed by Vitali in 1905 have this property; a
paper of F. B. Jones [1942] is of interest in this connection. For each
n=1,2 3,... let

(3'1) fn (X) = 1’ erm

and f, (x) =0 otherwise. For each x in £ we then have f,(x)# 0 for at
most one n; hence lim, 0 fo(x)=0. But if 6 <1 and E* is a measurable
subset of E such that |f,(x)|<<1 when x€ E* and n=N, then E* and
Ey must be mutually exclusive and hence the measure [E*| of E* musi
be zero. Therefore f(x) does not converge essentially uniformly over E.
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4. MEASURABLE FUNCTIONS f(A, x). An example given by Tolstoff
[1939] shows that the conclusion of Theorem 2.1 will fail to hold if we
delete the hypothesis that the functions f, (x) in (2.3) are measurable and
insert the hypothesis that f(A,x) is a measurable function of the two
variables A and x as well as a measurable function of x for each A and
of A for each x. The following example is somewhat simpler than that of
Tolstoff; the context of the Tolstoff example indicates that (xo€n x) is a
disturbing misprint of (x, e,x). Let E be the interval 0<x<1, and let
E,, E;, Eg,... be the sequence of nonmeasurable subsets of £ introduced
in Section 3. For each n=123,... let f(n+x,x)=1 when x € E,; and
let f(A, x) = 0 otherwise. That f(A,x) is measurable in the three senses
follows from the fact that (i) f(A,x) =0 except for values of A and x
representing coordinates of points on a countable set of line segments in
the (A4, x) plane, (ii) for each A4, f(A,x)#0 for at most one value of x
and (jii) for each x, f(A,x)#0 for at most one value of A. For this
function f (A, x), the functions f, (x) defined by (2.3) are precisely the
elements of the sequence f, (x) treated in section 2. Thus the sequence f, (x)
is not essentially uniformly convergent, and therefore (2.4) cannot hold.

5. GENERALIZATIONS OF THE EGOROFF THEOREM. Without going
into details, we remark that use of Theorem 2.1 should produce very sub-
stantial simplifications of proofs of generalizations of the Egoroff theorem.
Let F denote a class of functions f(A4,x) such that (2.2) and the hypo-
thesis that f&€F imply the hypothesis H of the sentence containing (2.3).
Then a variant of Theorem 2.1 is obtained by replacing H by the hypo-
thesis that f€F. To prove a variant of this type, it is notl necessary to
formulate a proof in which questions of measurability mingle with the
details of a proof modeled after a standard proof of Egoroff’s theorem.

It is much simpler to prove that F has the property noted above and then
use Theorem 2.1.

The trivial case in which F is the class of continuous functions covers
the application described in Section 1. The significantly more general case
in which F is the class of Baire functions associated with Borel measura-
bility (see Banach [1932]) was treated by Tolstoff [1939]. For modifi-
cations of the Egoroff theorem involving functions (and sequences of such
functions) f(A, x) which are continuous functions of A when x is fixed
and measurable functions of x when 4 is fixed, see Stampacchia [1949]
and authors noted there.

(Received 13 May 1953)
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