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PRODUCT OF DIFFERENTIATION

AND COMPOSITION OPERATORS

ON BLOCH TYPE SPACES

Jizhen Zhou and Xiangling Zhu

Abstract. We obtain some simple criteria for the boundedness and com-
pactness of the product of differentiation and composition operator CϕDm on
Bloch type spaces.

1. Introduction

Denote by H(D) the space of all analytic functions on the unit disk D = {z :
|z| < 1} in the complex plane. A function f ∈ H(D) is said to belong to Bloch
type spaces Bα (or called α-Bloch spaces) if ‖f‖Bα = supz∈D |f ′(z)|(1−|z|2)α < ∞,
0 < α < ∞.

A function f ∈ H(D) is said to belong to the little Bloch type space Bα
0 (or the

little α-Bloch space) if lim|z|→1 |f ′(z)|(1 − |z|2)α = 0, 0 < α < ∞. The classical

Bloch space B is just B1. It is clear that Bα is a Banach space with the norm
‖f‖ = |f(0)| + ‖f‖Bα . See [24] for the theory of Bloch type spaces.

Let ϕ be an analytic self-map of D. The composition operator Cϕ is defined by
Cϕ(f) = f ◦ ϕ, f ∈ H(D). The differentiation operator D is defined by Df = f ′,

f ∈ H(D). For a nonnegative integer m ∈ N, we define Dmf = f (m), f ∈ H(D). It
is natural to define the product of differentiation and composition operators CϕDm

by CϕDmf = f (m) ◦ ϕ, f ∈ H(D). A basic problem concerning concrete operators
on various Banach spaces is to relate their operator theoretic properties to the
function theoretic properties of the participating symbols, which attracted a lots of
attention recently (the reader can refer to [1]– [27]).

It is a well-known consequence of the Schwarz–Pick Lemma that the composi-
tion operator is bounded on the Bloch space. See [10,11,18–20,23] for the study
of the compactness of composition operator on the Bloch space.

Product-type operators attracted considerable interest recently. The product
of differentiation and composition operators has been studied, for example, in [2,
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4,7–9,13–17,19,21]. For some other product-type operators acting on Bloch-type
spaces, see, for example [3,5,6,12,22,26,27] and the related references therein.

In [19], Wu and Wulan obtained two nice characterizations for the compactness
of the product of differentiation and composition operators acting on the Bloch
space as follows.

Theorem 1.1. Let ϕ be an analytic self-map of D and m ∈ N. Then the

following statements are equivalent.

(i) CϕDm : B → B is compact.

(ii) limn→∞

∥

∥CϕDm(zn)
∥

∥

B
= 0.

(iii) lim|a|→1

∥

∥CϕDm
(

a−z
1−āz

)∥

∥

B
= 0.

The condition (ii) was extended to the Bloch type spaces by Liang and Zhou
in [9]. Among other results, they proved the following one.

Theorem 1.2. Let 0 < α, β < ∞, m a nonnegative integer, ϕ a self-map of the

unit disk D. Suppose that CϕDm : Bα → Bβ is bounded. Then CϕDm : Bα → Bβ

is compact if and only if limn→∞ nα−1
∥

∥CϕDm(zn)
∥

∥

Bβ = 0.

We will extend condition (iii) in Theorem 1.1 to the Bloch type spaces.
Let X and Y be two Banach spaces. Recall that an operator T : X → Y is

said to be bounded if there exists a constant C > 0 such that ‖T (f)‖Y 6 C‖f‖X .
Moreover, T : X → Y is said to be compact if it takes bounded sets in X to sets
in Y which have compact closure.

In addition, we say that A . B if there exists a constant C such that A 6 CB.
The symbol A ≈ B means that A . B . A.

2. Main results

To prove our main results, we need the following two auxiliary lemmas.

Lemma 2.1. [24] For f ∈ H(D), m ∈ N and α > 0. Then f ∈ Bα if and only

if supz∈D(1 − |z|2)α+m−1|f (m)(z)| < ∞. Moreover,

‖f‖ ≈

m−1
∑

j=0

∣

∣f (j)(0)
∣

∣ + sup
z∈D

(1 − |z|2)α+m−1
∣

∣f (m)(z)
∣

∣.

The following lemma can be proved in a standard way, see e.g. [1, Prop. 3.11].

Lemma 2.2. Let m be a positive integer and 0 < α, β < ∞. Let ϕ be a holo-

morphic self-map of D. Then CϕDm is compact if and only if CϕDm : Bα → Bβ is

bounded and for any bounded sequence {fn} in Bα which converges to zero uniformly

on compact subsets of D, then ‖CϕDmf‖Bβ → 0 as n → ∞.

Since the boundedness of CϕDm : Bα → Bβ implies that ϕ ∈ Bβ, we always
assume that ϕ ∈ Bβ. We are now ready for the main results in this section.

Theorem 2.1. Let 0 < α, β < ∞, m ∈ N and ϕ be a self-map of D such that

ϕ ∈ Bβ. Then the following statements are equivalent.

(i) CϕDm : Bα → Bβ is bounded.
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(ii) CϕDm : Bα
0 → Bβ is bounded.

(iii) supn∈N
nα−1‖CϕDm(zn)‖Bβ < ∞.

(iv) supa∈D

∥

∥CϕDm
( 1−|a|2

(1−āz)α

)
∥

∥

Bβ < ∞.

(v) supz∈D

(1−|z|2)β

(1−|ϕ(z)|2)α+m |ϕ′(z)| < ∞.

Proof. (i)⇒(ii). This implication is obvious because of Bα
0 ⊂ Bα.

(ii)⇒(iii). Assume that ‖CϕDm‖Bα
0

→Bβ <∞. Note that the sequence {nα−1zn}

is bounded in the little α-Bloch space Bα
0 (see, e.g. [23]). There exists a constant

C such that nα−1
∥

∥CϕDm(zn)
∥

∥

Bβ 6 C
∥

∥CϕDm
∥

∥

Bα
0

→Bβ

∥

∥nα−1zn
∥

∥

Bα < ∞, for any

n ∈ N. This implies (iii).

(iii)⇒(iv). Assume that (iii) holds. The MacLaurin expansion of 1−|a|2

(1−āz)α is

given by

1 − |a|2

(1 − āz)α
=

(

1 − |a|2
)

∞
∑

n=0

Γ(n + α)

n!Γ(α)
ānzn.

By Stirling’s formula, we have Γ(n+α)
n!Γ(α) ≈ nα−1, as n → ∞. This gives

∥

∥

∥

∥

CϕDm

(

1 − |a|2

(1 − āz)α

)∥

∥

∥

∥

Bβ

. (1 − |a|2)
∞

∑

n=m+1

nα−1|a|n‖CϕDm(zn)‖Bβ

6 (1 − |a|2)
(

sup
n∈N

nα−1‖Cn
ϕDm(zn)‖Bβ

)

∞
∑

n=m+1

|a|n

6 2 sup
n∈N

nα−1‖Cn
ϕDm(zn)‖Bβ < ∞,

from which the implication follows.

(iv)⇒(v). If (iv) holds, then

(2.1) sup
z∈D

α(α + 1) · · · (α + m)|a|m+1 1 − |a|2

|1 − āϕ(z)|α+m+1 |ϕ′(z)|(1 − |z|2)β < ∞,

for any a ∈ D. If ϕ(z) = 0, then (v) automatically holds since ϕ ∈ Bβ. When
|ϕ(z)| > 0, taking a = ϕ(z) in (2.1) we see that (v) holds.

(v)⇒(i). Assume that (v) holds. For any given f ∈ Bα, by Lemma 2.1 we have

‖CϕDmf‖Bβ = sup
z∈D

(1 − |z|2)β |f (m+1)(ϕ(z))ϕ′(z)|

= sup
z∈D

|f (m+1)(ϕ(z))|(1 − |ϕ(z)|2)α+m (1 − |z|2)β

(1 − |ϕ(z)|2)α+m
|ϕ′(z)|

. ‖f‖Bα sup
z∈D

(1 − |z|2)β

(1 − |ϕ(z)|2)α+m
|ϕ′(z)|.

This implies that CϕDm : Bα → Bβ is bounded. �

Theorem 2.2. Let 0 < α, β < ∞, m ∈ N and ϕ be a self-map of D such that

ϕ ∈ Bβ. Then the following statements are equivalent.
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(i) CϕDm : Bα → Bβ is compact.

(ii) CϕDm : Bα
0 → Bβ is compact.

(iii) limn→∞ nα−1‖CϕDm(zn)‖Bβ = 0.

(iv) lim|a|→1−

∥

∥CϕDm
( 1−|a|2

(1−āz)α

)∥

∥

Bβ = 0.

(v) lim|ϕ(z)|→1−

(1−|z|2)β

(1−|ϕ(z)|2)α+m |ϕ′(z)| = 0.

Proof. (i)⇒(ii). This implication is obvious because of Bα
0 ⊂ Bα.

(ii) ⇒ (iii). Assume that (ii) holds. Note that the sequence {nα−1zn} is
bounded in the little α-Bloch space Bα

0 and converges to 0 uniformly on a compact
subset of D. Lemma 2.2 implies that (iii) holds.

(iii) ⇒ (iv). We now assume that condition (iii) holds. By the argument as in
the proof of Theorem 2.1, we have

∥

∥

∥

∥

CϕDm

(

1 − |a|2

(1 − āz)α

)
∥

∥

∥

∥

Bβ

. (1 − |a|2)

∞
∑

n=m+1

nα−1|a|n‖CϕDm(zn)‖Bβ .

If (iii) holds, then for any given ǫ > 0 there exists a positive integer N(N > m + 1)
such that nα−1‖CϕDm(zn)‖Bβ < ǫ for all n > N . Combining this with (iii) we
obtain

(2.2)

∥

∥

∥

∥

CϕDm

(

1 − |a|2

(1 − āz)α

)
∥

∥

∥

∥

Bβ

. (1 − |a|2)

N
∑

n=m+1

nα−1|a|n‖CϕDm(zn)‖Bβ + 2ǫ.

Since {nα−1‖Cn
ϕDm(zn)‖Bβ } is a bounded sequence, letting |a| → 1 in (2.2) we

obtain the following inequality.
∥

∥

∥

∥

CϕDm

(

1 − |a|2

(1 − āz)α

)∥

∥

∥

∥

Bβ

. 2ǫ, as |a| → 1.

Since ǫ is arbitrary, we conclude that (iv) holds.
(iv) ⇒ (v). If (iv) holds, then for any given ǫ > 0, there is a δ ∈ (0, 1) such that

sup
z∈D

α(α + 1) · · · (α + m)|a|m+1 1 − |a|2

|1 − āϕ(z)|α+m+1 |ϕ′(z)|(1 − |z|2)β < ǫ

whenever δ < |a| < 1. In particular, if w ∈ D satisfies |ϕ(w)| > δ, then we get

sup
z∈D

α(α + 1) · · · (α + m)|ϕ(w)|m+1 1 − |ϕ(w)|2

|1 − ϕ(w)ϕ(z)|α+m+1
|ϕ′(z)|(1 − |z|2)β < ǫ,

which implies that

sup
z∈D

α(α + 1) · · · (α + m)δm+1 1 − |ϕ(w)|2

|1 − ϕ(w)ϕ(z)|α+m+1
|ϕ′(z)|(1 − |z|2)β < ǫ.

Taking z = w in the above inequality, we get

α(α + 1) · · · (α + m)δm+1 (1 − |w|2)β

(1 − |ϕ(w)|2)α+m
|ϕ′(w)| < ǫ

when |ϕ(w)| > δ. This gives that (v) holds.
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(v) ⇒ (i). Assume that (v) holds. For any given ǫ > 0 there exists a δ such
that

(2.3)
(1 − |z|2)β

(1 − |ϕ(z)|2)α+m
|ϕ′(z)| < ǫ,

whenever δ < |ϕ(z)| < 1. This together with the fact that ϕ ∈ Bβ imply (iii).
Hence CϕDm : Bα → Bβ is bounded by Theorem 2.1.

Let (fn)n∈N be a bounded sequence in Bα that converges to 0 uniformly on
compact subsets of D. Then

‖CϕDmfn‖Bβ = sup
z∈D

(1 − |z|2)β |f (m+1)
n (ϕ(z))ϕ′(z)| 6 I1(n) + I2(n),

where

I1(n) = sup
|ϕ(z)|6δ

(1 − |z|2)β |f (m+1)
n (ϕ(z))ϕ′(z)|,

I2(n) = sup
δ<|ϕ(z)|<1

(1 − |z|2)β |f (m+1)
n (ϕ(z))ϕ′(z)|.

It follows easily from Cauchy’s formula that f
(m+1)
n converges to 0 uniformly on a

compact subset of D. Since ϕ ∈ Bβ, we have I1 → 0 as n → ∞.

To estimate I2(n), we note that supz∈D
|f

(m+1)
n (ϕ(z))|(1−|ϕ(z)|2)α+m . ‖f‖Bα

by Lemma 2.1. It follows from (2.3) that

I2(n) . ‖fn‖Bα sup
δ<|ϕ(z)|<1

(1 − |z|2)β

(1 − |ϕ(z)|2)α+m
|ϕ′(z)| . ǫ‖fn‖Bα .

Since ǫ is arbitrary, we obtain limn→∞ ‖CϕDmfn‖Bβ = 0. This shows that CϕDm

from Bα to Bβ is compact by Lemma 2.2. �

Remark 2.1. When we take some special value for m, α and β in Theorems
2.1 and 2.2, we can get many results, which have appeared in [4,9,11,19–21]. We
omit the details.
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