
PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE

Nouvelle série, tome 98(112) (2015), 53�69 DOI: 10.2298/PIM140602004B

FINSLER-TYPE ESTIMATORS FOR

THE CANCER CELL POPULATION DYNAMICS
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Abstrat. We introdue a Finslerian model related to the lassial Gar-

ner dynamial system, whih models the aner ell population growth. The

Finsler struture is determined by the energy of the deformation �eld�the

di�erene of the �elds, whih desribe the redued and the proper biologial

models.

It is shown that a ertain loally-Minkowski anisotropi Randers stru-

ture, obtained by means of statistial �tting, is able to provide a Zermelo-type

drift of the overall aner ell population growth, whih ours due to signif-

iant hanges within the anerous proess. The geometri bakground, the

appliative advantages and perspetive openings of the onstruted geometri

struture are disussed.

1. The Garner aner ell population model

It is a known fat that the subpopulations of abnormal ells responsible for the

aner disease ontain the so alled aner stem ells (CSCs) [15℄. In this ontext,

it is very important to desribe hanges in the aner population, whih ontains

three types of ells, [11, 13℄: proliferating, quiesent (resting) and dead ones, their

abundane being determinant in the prognosti of the anerous disease.

The evolution of the aner ells population was �rstly modeled in 1995 by

means of Solyanik's dynamial system, whih is based on the following assumptions:

aner population onsists of proliferating and quiesent ells, proliferating ells an

lose the division feature and transit to the quiesent ones, and quiesent ells an

beome proliferating or die.

The states of the Solyanik model are desribed by the amount x̃ of proliferating

ells and the amount ỹ of quiesent ells, whih satisfy the di�erential system

˙̃x = bx̃− P x̃+Qỹ

˙̃y = −dỹ + P x̃−Qỹ,
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Figure 1. Transitions between ell lasses in the Solyanik and Garner

aner evolution models

where b is the rate of ell division of the proliferating ells, d is the rate of ell

death of the quiesent ells, Q and P desribe the intensity of ell transition from

the quiesent to proliferating ells and onverse, with all the involved parameters

reonsidered on a daily basis (see Fig. 1).

Solyanik's model [16℄ was further improved by Garner et al. in [12℄ by regarding

the parameters P,Q as dependent on x̃ and ỹ, via

P = c(x̃+ aỹ), Q = Āx̃/(1 + B̄x̃2),

where a measures the relative nutrient uptake by resting vs. proliferating anerous

ells; c gives the magnitude of the rate of ell transition from the proliferating to

the resting state; Ā is the initial rate of Q inrease at small x̃; Ā/B̄ is the rate of

Q derease for large x̃.
The Garner model desribes the evolution of the saled ell populations x = c

b
x̃,

y = ca
b
ỹ by means of the dynamial system

(1.1)

ẋ = x− x(x + y) +
hxy

1 + kx2

ẏ = −ry + ax(x+ y)− hxy

1 + kx2
,

where r = d/b is the ratio between the death rate of quiesent ells and the birth

rate of proliferating ells; h = Ā/(ac) represents a growth fator that preferentially

shifts ells from quiesent to proliferating state; k = B̄ · (b/c)2 represents a mild

moderating e�et.

The assoiated nulllines, equilibrium points, the appropriate versal deforma-

tion and the stati bifuration diagram of the Garner system were studied in [3, 4℄.

2. The Finsler struture and related tensor Hilbert spaes

A real Finsler struture (M,F ) onsists of a real n-dimensional C∞
manifold

M , and a mapping alled Finsler fundamental funtion de�ned as follows [8, 9, 10℄:

Definition 2.1. A real salar funtion F : TM → [0,∞) is alled a Finsler

fundamental funtion if it satis�es the following properties:

(1) F is smooth on the slit tangent spae TM r {0} = {(x, y) | x ∈ M, y ∈
TxM, y 6= 0} and is ontinuous on the image of the null setion of the

tangent bundle (TM, π,M);
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(2) F is positively 1-homogeneous in the diretional argument, i.e.,

F (x, λy) = λF (x, y), ∀λ > 0;

(3) the smooth maps gij : TM r {0} → R, i, j ∈ 1, n given by

(2.1) gij =
1

2

∂2F 2

∂yi∂yj
,

form the symmetri positive de�nite matrix, [g] = (gij)i,j∈1,n, and are the

omponents

1

of the Finsler metri tensor �eld g = gijdx
i ⊗ dxj

.

Also, in the ase when [g] is not positive de�nite, but non-degenerate, and with

onstant signature, then (M,F ) is alled pseudo-Finsler struture [5℄.

In our ase, we shall onsider extensions of this de�nition, by assuming that

the domain of F is a strit subset of TM , and that the operations within the �bres

are feasible.

A geometri objet, whih is spei� for Finsler strutures and re�ets the

obstrution of the Finsler metri tensor to beoming a Riemannian one is the Cartan

tensor �eld, whose omponents are [6℄

Cijk :=
1

2

∂gij(x, y)

∂yk
=

1

4

∂3F 2(x, y)

∂yi∂yj∂yk
.

Both the Finsler metri gij and the Cartan tensor �eld Cijk, whih depend

on the tangent spae oordinates (x, y), belong to Hilbert spaes of (bounded and

ontinuous) d-tensor �elds of the orresponding type, (0, 2) and (0, 3), respetively
[8, 14℄.

The salar produt whih provides the Hilbert struture generally ats on a

pair of two (0,m)-tensors A and B by means of the formula

〈A,B〉g = Ai1...imgi1j1 . . . gimjmBi1...im .

This naturally indues the norm, the projetion of A onto B, and the angle

between the two tensors as follows:

‖A‖g =
√

〈A,A〉, prB A =
〈A,B〉
〈B,B〉B, ∢(A,B) = arccos

〈A,B〉
‖A‖ · ‖B‖ .

We note that all these geometri objets generally depend on the �xed Finsler

metri g and on the tangent spae loal oordinates (x, y).
For m = 2, the tensor �elds are represented by square matries A and B

respetively, and for gij = δij (i.e., Finsler spae of Eulidean type), we have

(2.2) 〈A,B〉δ = Trace(A ·Bt),

where ( )t is the transposition operator.

We shall further onsider three types of Finsler strutures: Randers, Eulidean

and of 4-th root type.

1

The omponents gij of the fundamental metri tensor �eld (??) and the omponents gij of

its dual tensor �eld de�ned by gisgsj = δij , will be further used to lower and respetively to raise

indies of tensors, for onstruting geometri objets spei� to the Finsler struture.
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The Randers struture has the fundamental funtion of the form FR = α+ β,
where α =

√

aij(x)yiyj , with the Riemannian metri aij(x) and bi(x) are the oe�-

ients of the 1-form β = bi(x)y
i
. The Eulidean struture appears as a speial ase,

for aij = const., and bi = 0, FE =
√

aijyiyj , while a 4-th root Finsler struture

has the general form FQ = 4

√

aijkℓ(x)yiyjykyℓ, where aijkℓ are the omponents of

a (0, 4)-tensor �eld on the base manifold M2

.

We shall determine by statistial �tting over a ertain model-related 2-dimens-

ional subdomain three suh metris of the form

FR(y) =
√

δijyiyj + biy
i =

√

(y1)2 + (y2)2 + b1y
1 + b2y

2,(2.3)

FE(y) =
√

c1 ·(y1)2 + c2 ·y1y2 + c3 ·(y2)2,(2.4)

FQ(y) =
4

√

q1 ·(y1)4 + q2 ·(y1)3y2 + q3 ·(y1)2(y2)2 + q4 ·y1(y2)3 + q5 ·(y2)4,(2.5)

where the oe�ients b1,2, c1,2,3 and q1,2,3,4,5 are real onstants providing the lo-

ally Minkowski harater of the three Finsler strutures. Eah of the strutures

respetively provides the orresponding Finsler metri tensor �elds: gR, gE and gQ.
We shall further analyze the way these strutures relate and their properties

related to the model, by examining their Cartan tensors, and by estimating their

shift from the assoiated onformally Eulidean projetion.

Exept for the Eulidean ase (2.4), where the Cartan tensor is identially zero,

the Randers and the 4-th root ases provide a nontrivial Cartan tensor, whose

squared Frobenius norm is a diretion-dependent salar funtion provided by the

transvetion

3 ‖C‖2g = Cijkg
irgjsgktCrst.

Proposition 2.1. The following assertions hold

4

:

(1) The Finsler metri produed by (2.3) has the following onformally Eulidean

projetion

(2.6) prδgR =
1

2

(

2 +
3(b1ẋ+ b2ẏ)
√

ẋ2 + ẏ2
+ b21 + b22

)

δ.

(2) The Finsler metri produed by (2.4) has the onstant onformally Eulidean

fator, i.e., the onformally �at projetion is

(2.7) prδ gE =
1

2
(c1 + c3)δ.

(3) The Finsler metri produed by (2.5) has the following onformally Eulidean

projetion

(2.8) prδ gQ =
p

16F 6
Q

δ,

2

We assume FQ de�ned on the subdomain of TM whih ensures the positivity of the root

argument; as well, we note that FQ is a pseudo-Finsler norm, whose smoothness is ensured on a

strit subdomain of the slit tangent spae.

3

In [10℄, an alternative of norm for the Cartan tensor is presented, whih results in a numerial

value.

4

Hereby we denote by δ the anoni metri for the Eulidean 2-dimensional ase, and use the

notation y = (y1, y2) = (ẋ, ẏ).
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where p is the following polynomial in the omponents of the tangent vetor

y = (y1, y2) = (ẋ, ẏ):

p = (8q21 + 4q1q3 − q22)ẋ
6 + (12q1q4 + 12q1q2)ẋ

5ẏ(2.9)

+ (12q1q3 + 6q2q4 + 24q1q5 + 3q22)ẋ
4ẏ2

+ (16q1q4 + 4q2q3 + 16q2q5 + 4q3q4)ẋ
3ẏ3

+ (12q3q5 + 3q24 + 24q1q5 + 6q2q4)ẋ
2ẏ4

+ (12q4q5 + 12q2q5)ẋẏ
5 + (4q3q5 + 8q25 − q24)ẏ

6.

Proof. A straightforward alulation produes the omponents of Finsler met-

ri tensor �elds in the all three ases:

gR11 = − β

α3
ẋ2 +

2

α
b1ẋ+

F

α
+ b21,

gR12 = − β

α3
ẋẏ +

b2
α
ẋ+

b1
α
ẏ + b1b2,

gR22 = − β

α3
ẏ2 +

2

α
b2ẏ +

F

α
+ b22;

gE11 = c1, gE12 =
1

2
c2, gE22 = c3;

gQ11 =
1

8F 6

(

8q21ẋ
6 + 12q1q2ẋ

5ẏ + (3q22 + 12q1q3)ẋ
4ẏ2

+ (4q2q3 + 16q1q4)ẋ
3ẏ3 + (24q1q5 + 6q2q4)ẋ

2ẏ4

+ 12q2q5ẋẏ
5 + (4q3q5 − q24)ẏ

6
)

gQ12 =
1

8F 6

(

2q1q2ẋ
6 + 3q22ẋ

5ẏ + 6(q2q3 − q1q4)ẋ
4ẏ2 + (2q2q4 + 4q23 − 16q1q5)ẋ

3ẏ3

+ 6(q3q4 − q2q5)ẋ
2ẏ4 + 3q24ẋẏ

5 + 2q4q5ẏ
6
)

gQ22 =
1

8F 6

(

(4q1q3 − q22)ẋ
6 + 12q1q4ẋ

5ẏ + (24q1q5 + 6q2q4)ẋ
4ẏ2

+ (16q2q5 + 4q3q4)ẋ
3ẏ3 + (12q3q5 + 3q24)ẋ

2ẏ4 + 12q4q5ẋẏ
5 + 8q25 ẏ

6
)

.

Inner produt (2.2) of g and δ redues to the trae and 〈δ, δ〉 = 2, hene

summation

1
2 (g11+g22) gives the onformal fators at (2.6), (2.7) and (2.8). �

Proposition 2.2. In the Hilbert spae of (0, 2)-type Finsler tensors, the fol-

lowing deviation angles our:

(1) The Finsler-Randers metri produed by (2.3) deviates from its onformally

Eulidean approximation by the angle

(2.10) θR = aros

√

1

2
+

(A+ 1)(A2 − 4A+ 1)

(2 + 3A+B)2 − 2(A+ 1)(A2 − 4A+ 1)
,

where the following abbreviations are used: A = (b1ẋ + b2ẏ)/
√

ẋ2 + ẏ2 and

B = b21 + b22.
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(2) The Finsler metri produed by (2.4) and its onformally �at approximation

determine the onstant deviation angle

θE = aros

c1 + c3
√

2c21 + c22 + 2c23
.

(3) The deviation funtion expressing the angle between the Finsler metri pro-

dued by (2.5) and its onformally Eulidean approximation is

(2.11) θQ = aros

p√
2s

,

where p is the polynomial from (2.9), and s = π+ σ(π) is a polynomial in ẋ, ẏ
with

π =
(

64q41 + 8q21q
2
2 − 8q1q

2
2q3 + 16q21q

2
3 + q42

)

ẋ12

+
(

192q31q2 + 96q21q3q4 − 24q1q
2
2q4 + 24q1q

3
2

)

ẋ11ẏ

+
(

192q31q3 ++192q21q
2
2 + 144q21q

2
4 − 48q21q2q4 + 192q21q3q5

+ 48q1q2q3q4 + 48q1q
2
2q3 − 48q1q

2
2q5 − 12q32q4 + 18q42

)

ẋ10ẏ2

+
(

256q31q4 + 352q21q2q3 − 128q21q2q5 + 576q21q4q5 + 128q1q2q3q5

− 56q1q
2
2q4 + 32q1q2q

2
3 + 144q1q2q

2
4 − 8q22q4q3

+ 32q1q4q
2
3 + 72q1q

3
2 + 72q32q3 − 32q32q5

)

ẋ9ẏ3

+
(

384q31q5 + 144q21q
2
3 + 72q21q

2
4 + 576q21q

2
5 + 480q21q2q4 − 96q1q2q4q3

+ 672q1q2q4q5 + 168q1q
2
2q3 + 96q1q

2
3q5 + 120q1q3q

2
4

+ 30q22q
2
4 − 240q1q

2
2q5 − 24q22q3q5 + 120q22q

2
3 + 24q32q4 + 9q42

)

ẋ8ẏ4

+
(

768q21q2q5 + 384q21q3q4 + 384q21q4q5 − 96q1q
2
3q4 + 768q1q2q

2
5 − 384q1q2q3q5

+ 576q1q3q4q5 + 48q2q3q
2
4 − 72q32q5 + 168q22q4q5 + 120q22q3q4 + 240q1q

2
2q4

− 24q1q2q
2
4 + 96q1q2q

2
3 + 72q1q

3
4 + 24q32q3 + 96q2q

3
3

)

ẋ7ẏ5

+
(

512q21q
2
5 + 640q21q3q5 + 272q1q2q3q4 + 32q1q2q4q5 + 272q2q3q4q5

+ 432q1q
2
2q5 − 144q1q3q

2
4 − 144q22q3q5 − 256q1q

2
3q5 + 432q1q

2
4q5

+ 44q22q
2
4 + 640q1q3q

2
5 + 176q2q

2
3q4 + 240q21q

2
4 + 16q22q

2
3

+ 16q23q
2
4 + 240q22q

2
5 + 36q32q4 + 36q2q

3
4 + 32q43

)

ẋ6ẏ6 · 1
2
,

and σ(π) produed from π after interhanging

(q1, q2, q3, q4, q5, ẋ, ẏ) ↔ (q5, q4, q3, q2, q1, ẏ, ẋ).
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Proof. Let f be the onformal Eulidean fator of the projetion in the equa-

tions (2.6)�(2.8), and let θ = ∢(g, prδ g) be the angle between the orresponding

metri and its projetion to δ. Then, the homogeneity of the inner produt implies

cos θ =
〈g, fδ〉

√

〈g, g〉
√

f2〈δ, δ〉
= sign(f) · 〈g, δ〉

√

〈g, g〉
√

〈δ, δ〉
= sign(f) · cos∢(g, δ).

By use of (2.2), we have the following expressions

5

cos θ =
g11 + g22

√

2(g211 + 2g212 + g222)
, ∢(g, δ) = aros

√

(g11 + g22)2

2(g211 + 2g212 + g222)
.

By plugging into the previous formula the appropriate metri omponents, one gets

(2.10)�(2.11). �

The proposed Finsler funtions are of loally Minkowski type, whih infers that

many geometri objets related to them onsiderably simplify: the geodesis are

(piees of) straight lines, the KCC invariants vanish, the Berwald linear onnetion

is trivial [1, 8℄. In fat, the Finlser strutures will provide point-independent norms,

whih at on a ertain proper subset of the spae TM = TR2
.

3. The statisti �tting of the Finsler strutures

3.1. The redued Garner system. We observe that the original Garner

dynamial system (1.1), denoted further as GS, is the extended version of the

redued dynamial system (denoted as RS)6:

(3.1)

ẋ = x− x(x+ y)

ẏ = −ry + ax(x + y).

We note that in the original system GS, for h being signi�ant one noties a

malignant evolution of the illness; this happens when:

• the parameter a signi�antly dereases, beoming negligible (i.e., there is a

small ratio of nutrient uptake of resting vs. proliferating ells, whih shows

that the resoures are absorbed mostly by the proliferating ells in detriment

of quiesent ells);

• the parameter c is negligible (i.e., the rate of ell transition from anerous

to the resting state is negligible, hene the evolution of the disease is either

stationary, or worsening);

• the parameter Ā signi�antly inreases (the rate of inrease of Q is abruptly

big at small x, i.e., the ell transition from the quiesent to anerous ells is

intense).

We onlude that when these onditions are far from being ahieved (this might

happen, e.g., under treatment, whih may signi�antly modify the intake of nutrient

ratio in disfavor of anerous ells), the GS (1.1) an be approximated by RS (3.1).

5

We shall further onsider the absolute value of the fator, reduing thus the angle to the

�rst quadrant.

6

This ours when in system (3.1) the onstant h = Ā/(ac) is negligible, 0 < |h| ≪ 1.
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Figure 2. The �eld lines of the redued Garner model RS, for a =
1.998958904 and r = 0.03.

3.2. The inrease rate of aner ell populations for mild premises.

As desribed in the previous setion, under mild (ontrolled) evolution of the disease

(for 0 6 |h| ≪ 1), the RS system (3.1) reasonably approximates the original system

(1.1).

The set of all possible states of the Garner's dynamial system is a bounded

subset D of the �rst quadrant in R
2
, K+ = {p = (x, y) | x > 0, y > 0}, whih

ontains the information on the saled amount of proliferating and of quiesent ells.

The RS (3.1) attahes to any point p = (x, y) ∈ D its related veloity ṗ =
(ẋ, ẏ) ∈ T(x,y)(K+). Due to the polynomial form of the vetor �eld, RS provides a

reverse assoiation ṗ = (ẋ, ẏ)  p(x, y), by solving the nonlinear algebrai system

(3.1) in terms of p = (x, y) for given ṗ = (ẋ, ẏ), but only in ertain regions of K+

and only for ertain values of the parameters r, h, k.
We shall further onsider the RS system for the ase of �xed parameters [12℄:

(A1) a = 1.998958904 and r = 0.03.

We hoose the domain D of the Finsler norm F as a set of tangent vetors,

where D = ϕ(Iρ × Iθ) ⊂ TpK+, with

Iρ × Iθ = [0.329915, 0.888939]× [1.0988, 1.51452]⊂ [0,∞)× [0, 2π),

and ϕ is the mapping whih hanges the polar oordinates to the Cartesian ones,

ϕ : [0,∞)× [0, 2π) → R
2, ϕ(ρ, θ) = (ρ cos θ, ρ sin θ).

Under an appropriate hoie of I1 and I2, one an uniquely solve the quadrati

system (3.1) in terms of p = (x, y), with P loated on a �eld line from K+, with

related tangent diretion of the emerging veloity ṗ ∈ D.

By using the inverse funtion theorem for the feasible diretions of the redued

dynamial system, one may solve the pair of algebrai nonlinear equations of the

system, to loally �nd the assoiated point p.
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3.3. The rate-shift under hanges of premises. The status of the aner-

ous disease hanges from mild to severe status due to a multitude of fators whih

orresponds to a hange of parameters in the GS Garner system (1.1).

Suh a ase ours when h beomes signi�ant; this transforms RS into GS and

then (1.1) assoiates to the solutions p from the nonlinear system, the new rates

of hange ṗe = (ẋe, ẋe) valid for the new irumstanes of the illness. Namely, the

point oordinates p = (x, y) determined under mild onditions in Subsetion 3.2,

plugging in (1.1), produe the new hange rate ṗe of the aner ell populations

(see Fig. 3).

Figure 3. The transition ṗ ṗe between the RS and the GS hange rates.

3.4. Statistial �tting of the Finsler norms. The Eulidean norm ‖ṗe‖E
of the obtained rate-vetor ṗe = (ẋe, ẋe) an be used to evaluate the severeness of

the disease evolution. This hoie, however, has the drawbak of being symmetri

in the two omponents of ṗe, espeially in the ase ẋ > 0, sine equal redit is given
to the two rates of the inrease.

One alternative hoie is to design a tool whih emphasizes the aner ell

population inrease, by means of a Finsler norm, whih is likely to emphasize a

tuned fair evaluation of the illness evolution.

To this aim we note that ‖ṗe‖ an provide loally Minkowski (i.e., depending

on diretional variables only) Finsler norms FR(ẋ, ẏ), FE(ẋ, ẏ) and FQ(ẋ, ẏ) by

statistial �tting

7

.

The proposed approximation, whih provides the �t of the Finsler norm F is

given by

(3.2) F (ẋ, ẏ) ∼ ‖ṗe‖E,
where ‖ · ‖E is the Eulidean norm. We note that the triangle inequality for norms

shows that the rate-jump entailed by the hange of status RS → GS due to the

inrease of |h|, does not exeed ‖ṗe − ṗ‖E .
We shall onsider the following hoies whih follow the main requirements of

a Finsler norm, and whih are fundamental funtions of loally Minkowski type

8

:

FR(ẋ, ẏ) =
√

ẋ2 + ẏ2 + b1ẋ+ b2ẏ(3.3)

FE(ẋ, ẏ) =
√

c1ẋ2 + c2ẋẏ + c3ẏ2(3.4)

FQ(ẋ, ẏ) =
4

√

a(ẋ)4 + b(ẋ)3(ẏ) + c(ẋ)2(ẏ)2 + d(ẋ)(ẏ)3 + e(ẏ)4(3.5)

7

Generally, when onsidering one of the three strutures, we shall simply write F (ẋ, ẏ).
Similar proedures of Finslerian statistial �tting were performed in [2℄.

8

For brevity, we denote (a, b, c, d, e) := (q1, q2, q3, q4, q5).
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where b1,2 and c1,2,3 and (a, b, c, d, e) = (q1, q2, q3, q4, q5) are oe�ients to be eval-

uated by statisti �tting.

In our researh, we use the values assumed in (A1) for the systems RS (3.1)

and GS (1.1).

For the statistial �tting of F (ṗ) from (3.2) to ‖ṗe‖, where ṗ = (ẋ, ẏ), and
p = (x, y), ṗe = (ẋe, ẏe) are respetively obtained by traing the proess desribed

in Fig. 3, we use for the Randers, Eulidean and 4-th root ases the following

equalities (k ∈ 1, N)

b1ẋk + b2ẏk =
√

(ẋe)2k + (ẏe)2k −
√

ẋ2
k + ẏ2k,(3.6)

c1ẋ
2
k + c2ẋkẏk + c3ẏ

2
k = (ẋe)

2
k + (ẏe)

2
k,(3.7)

a(ẋ)4k + b(ẋ)3k(ẏ)k + c(ẋ)2k(ẏ)
2
k + d(ẋ)k(ẏ)

3
k + e(ẏ)4k =

(

(ẋe)
2
k + (ẏe)

2
k

)2
,(3.8)

whih allows us to determine the statistial �t for the values b1,2, c1,2,3 and a, b, c, d, e
by the method of least squares.

For �nding ṗe from ṗ via RS and further GS, we use in (1.1) the parameter

values [3, 12℄

(A2) h = 1.236 and k = 0.236.

As inputs for the �tting proess, we employ a uniform grid over the (ρ, θ)-
domain Iρ × Iθ = [0.329915, 0.888939]× [1.0988, 1.51452],

(ρi, θj) ∈ Iρ × Iθ, (i, j) ∈ 0, nρ × 0, nθ,

with ϕ(Iρ × Iθ) = I1 × I2 = [0.05, 0.1596]× [0.293844, 0.887532], and onsider as

related tangent vetors the following saled spherial harmonis

ṗk = (ẋk, ẏk) = (ρi cos θj , ρi cos θj) ∈ D = I1 × I2, k ∈ 1, N

where k = (i − 1)nρ + j ∈ 1, N , and N = (nρ + 1)(nθ + 1).
We note that the right hand side of the RS ontains quadrati polynomials,

and that for given input ṗ = ṗ1, (RS)−1
provides a twofold point-solution, p′, p′′,

of whih one solution p1 is hosen.

For eah next plugged-in saled spherial harmoni ṗk+1, RS similarly provides

two other point-solutions, and the right hoie pk+1 is determined by both the

non-negativity of its omponents and by the Eulidean proximity to the previous

seleted point pk (k ∈ 1, N − 1).
Finally, one gets the set of points pk = (xk, yk) and (via GS) the orresponding

hange rates (ṗe)k, k ∈ 1, N , whih are further plugged in (3.6)-(3.8).

The N samples ṗk and the new rates (ṗe)k (k = 1, N), plugged in the N
relations from (3.6)�(3.8), provide in eah ase N linear equations with parameters

as unknowns whih �x the Finsler funtion (3.3)-(3.5).

3.4.1. The Randers �tting. The system (3.6) is linear relative to b1 and b2,
over-determined (N >> 2), and has the form AS = B, where A = (ẋk, ẏk)k=1,N ∈
MN×2(R), S = (b1, b2)

t ∈ M2×1(R) is the the unknown vetor, and B ∈ MN×1(R)
is given by the r.h.s. of (3.6) for k = 1, N .
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Computer Maple 17 simulation forN = 36, provides by the least square method

the pseudosolution (b1, b2)
t = (AtA)−1AtB, and under assumptions (A1) and (A2),

the exat �t-values of the parameters are

(3.9) b1 ≈ 0.628481987778205518, b2 ≈ −0.269476980932055964.

Hene the �t Randers struture related to the dynamial system of the Garner

aner ells population model (1.1) beomes (for the obtained (3.9) �t values of the

parameters)

(3.10) FR(ẋ, ẏ) ≈
√

ẋ2 + ẏ2 + 0.63 · ẋ− 0.27 · ẏ

where the dot marks denote time derivatives, whih desribe the rates of inrease

for the saled aner ell populations

9

.

3.4.2. The Eulidean �tting. For the Eulidean ase, for �xing the Finsler fun-

tion (3.4), the same N samples ṗk and new rates (ṗe)k (k = 1, N), are plugged in

the N relations (3.7).

The obtained system is linear in terms of c1, c2 and c3, superdetermined

(N ≫ 3), and has the form AS = B, where A ∈ MN×3(R), S ∈ M3×1(R), and
B ∈ MN×1(R), with the unknown vetor S = (c1, c2, c3)

t
.

Analogous omputer simulation provides the parameters solution

c1 ≈ 0.940805450748692151

c2 ≈ 1.16189809024084268

c3 ≈ 0.496069555231253400,

hene the Eulidean type fundamental funtion of the struture �t to (1.1), is

FE(ẋ, ẏ) ≈
√

0.94ẋ2 + 1.16ẋẏ + 0.50ẏ2.

3.4.3. The 4-th root �tting. The 4-th root type Finsler funtion (3.5) (the third

ase) is determined by use of the same method as in the previous two ases with

the di�erenes: A ∈ MN×5(R), S ∈ M5×1(R), and S = (a, b, c, d, e)t.
The same omputer simulation provides the parameters solution

10

:

(3.11)

a ≈ −0.320013354328217758; b ≈ 2.69642032805366582;
c ≈ 2.42492765757201711; d ≈ 1.07381846633249766;
e ≈ 0.254991915496320776,

hene the �t 4-th root Finsler fundamental funtion loally related to the GS (1.1)

is

(3.12) FQ(ẋ, ẏ) ≈ 4

√

−0.32ẋ4 + 2.70ẋ3ẏ + 2.42ẋ2ẏ2 + 1.07ẋẏ3 + 0.25ẏ4.

9

For display onveniene, trunated values of the oe�ients have been used, in this, but

also in the next two strutures

10

For brevity, we denote (a, b, c, d, e) := (q1, q2, q3, q4, q5).
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4. The properties of the onstruted Finsler metri strutures

4.1. The Randers type struture. Regarding the Randers struture, it is

remarkable that for ‖b‖g < 1, whih is our ase, one has (gij) positive de�nite, and
there exists a vertial non-holonomi frame

FH =
{

Xj | Xj = X i
j

∂

∂yi
, j = 1, 2

}

,

alled the Holland frame of the Randers struture [8℄,

X i
j =

√

α/F
(

δij −
yi(αj + bj)

F
+
√

α/F · y
iαj

α

)

, j = 1, 2,

in whih the Randers metri tensor �eld gij beomes the α-subjaent Riemannian

one and αi =
∂α
∂yi = yi

α
. In this respet, we get the following results.

Proposition 4.1. The following assertions hold true:

a) The assoiated Finsler metri tensor �eld g = gij(ṗ)dx
i⊗dxj

of the Randers

struture FR has the omponents

(4.1) gij(y) =
α+ β

α

(

δij −
yiyj

α2

)

+
yiyj + α(biy

j + bjy
i) + bibjα

2

α2
,

where y = (y1, y2) = (ẋ, ẏ), b1 ≈ 0.63, b2 ≈ −0.27 and

11

α =
√

δijyiyj =
√

ẋ2 + ẏ2, β = biy
i = b1ẋ+ b2ẏ.

b) For the Finsler struture (3.3), the omponents of the �elds of the Holland

frame are given by

X i
j =

αFδij − yi(yj + αbj)√
αF 3

+
yiyj

αF
, j = 1, 2.

Proof. a) By a diret omputation, one obtains

gij(y) =
F

α
(δij − αiαj) + (αi + bi)(αj + bj)

=
α+ β

α

(

δij −
1

α2
yiyj

)

+
(yi

α
+ bi

)(yj

α
+ bj

)

,

whene result (4.1) follows. For b), one noties that using the de�nition of the

Holland frame [8℄ and, by performing the alulations for our loally-Minkowski

partiular norm, one infers the laimed result. �

Moreover, by plugging in the �t oe�ients from (3.10) into the appropriate

equations from Propositions 2.1 and 2.2 one gets the following

11

For display onveniene, trunated values of the oe�ients have been used, of the

more aurate statistially determined values b1 = 0.628481987778205518 · r · cos(t) and b2 =
−0.269476980932055964 · r · sin(t).
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Figure 4. Plot of the squared loally Minkowski Finsler Randers norm

z = F 2(ẋ, ẏ) and of the indiatrix F (ẋ, ẏ) = 1

Corollary 4.1. The onformally Eulidean projetion of the metri produed

by the Randers type Finsler struture (3.10) is

prδ gR ≈
(

0.945ẋ− 0.405ẏ
√

ẋ2 + ẏ2
+ 1.235

)

δ,

and the deviation between these two metris is given by

θR ≈ arccos
1.89αẋ− 0.81αẏ + 2.47α2

√
r

,

where α =
√

ẋ2 + ẏ2 and

r = −4.68α3ẏ + 1.20αẋ2ẏ − 0.44αẋ3 + 10.56α3ẋ+ 8.64α4 + 1.94α2ẋ2 − 2.04α2ẋẏ.

The graphial representation of the values of the Finsler-Randers norm along

the z-axis in terms of the inputs (ẋ, ẏ) ∈ D = [0.05, 0.1596]× [0.293844, 0.887532],
and of the Finsler indiatrix are provided in Fig. 4. These learly exhibit onvexity

and ompatness of the Randers indiatrix of (3.10).

By Maple symboli programming one an easily test that the signature of the

metri g is (+,+), hene (D,F ) with D ⊂ K+ is a Randers geometri struture of

loally-Minkowski type [14℄.

To illustrate the signature of the point-independent metri tensor g, one an

see that, within a �ber of TṗR
2
, its assoiated quadrati form

12

Qg
y
(v) = gij |y vivj , v = (vi, vj) ∈ R

2 ≡ TṗR
2

has its graph an ellipti paraboloid path (see Fig. 5), whih gives aount of the

positive signature of g, signalled by the inequality ‖b‖2 ≡ b21+b22 ≈ 0.632+0.272 < 1.

We note as well that the Cartan tensor Cijk = 1
4

∂3F 2

∂yi∂yj∂yk measures the �dis-

tane� between the onstruted Finslerian F norm and the spae of �at Eulidean-

type norms. The distane an be loally estimated in terms of y = (y1, y2) = (ẋ, ẏ)

12

The quadrati form Q ats on the vertial �bre of veloities provided by the identi�ation

TṗR
2 ≡ R2

, assuming the �agpole �xed, ṗ = (.2, 1).
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Figure 5. Graphs of the quadrati form Qg
y and of QC

y = ‖C‖2y for

ṗ ∈ [−1, 0.5]× [−0.5, 1].

by the square of the Frobenius norm QC
y
= ‖C‖2

y
(see Fig. 5), where

‖C‖y =
√

CijkgirgjsgktCrst.

The plot of the energy QC
y
of Cijk emphasizes a speial region inside [−1, 0.5]×

[−0.5, 1], at whih the di�erene between the Randers norm and the anoni Eu-

lidean norm signi�antly matter. This region (a small neighborhood of the origin)

orresponds to slight variations of the aner ell population, while for strong vari-

ations the Randers struture asymptotially approahes the anoni Eulidean one.

4.2. The indued Eulidean strutures. The Eulidean ase δ is anoni,
hene the orresponding equations from Propositions 2.1 and 2.2 produe the on-

stant onformally �at fator and the onstant deviation angle,

prδ gE ≈ 0.72δ, θE ≈ 0.71.

4.3. The 4-root type struture. For the 4-th root Finsler metri, the sub-

stitution of �t trunated parameters (3.11) into the orresponding equations of

Propositions 2.1 and 2.2 produe the following

Corollary 4.2. The onformally Eulidean projetion of the metri produed

by 4-root type Finsler struture (3.12) and the deviation angle between the metri

and its δ-projetion respetively are

prδ gQ =
1

16F 6
Q

p δ, θQ = arccos
p√
2s

,
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Figure 6. Graph of the energy z = F 2(ẋ, ẏ), indiatrix FQ(ẋ, ẏ) = 1
and squared Cartan norm z = QC

y of the 4-th root Finsler struture

where

p ≈ 9.61ẋ6 + 14.93ẋ5ẏ − 27.64ẋ4ẏ2 − 41.64ẋ3ẏ3 − 26.05ẋ2ẏ4 − 11.31ẋẏ5 − 1.78ẏ6,

s ≈ 1.83ẋ12 − 1.34ẋ11ẏ + 7.72ẋ10ẏ2 + 40.57ẋ9ẏ3 + 87.11ẋ8ẏ4

+ 104.79ẋ7ẏ5 + 84.73ẋ6ẏ6 + 52.57ẋ5ẏ7 + 25.57ẋ4ẏ8

+ 9.59ẋ3ẏ9 + 2.72ẋ2ẏ10 + 0.49ẋẏ11 + 0.04ẏ12.

The parameters of both type strutures, FR and FQ have similar graphs, though

the strutures strongly di�er, and the indiatrix of FQ is nononvex.

As well, the nature of FQ auses muh stronger dependeny of the metri tensor

on the diretional argument, partiularly in the neighborhood of (0, 0) (see Fig. 6).

5. The relevane of the Finsler strutures for the Garner model

We note that the �t Randers�Finsler norm (3.3) arises from the evaluation

of the GS evolution-rate in terms of the redued RS, and provides a mediated

information on the prognosis of the disease after the state worsening signaled by

the inrease of the parameter h. The additive term β = 0.63ẋ − 0.27ẏ from the

Randers norm evaluates the impat of the hange in the parameter h and the rate

of inrease.
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The statistially determined oe�ients (b1, b2) ≈ (0.63,−0.27) emphasize the

dominant role of the proliferating ells in the dynamial system (1.1).

The Finsler norm (3.3) provides an evaluation of the severity of the rate of

aner ell evolution immediately after a signi�ant hange of the Garner parameter

h, whih an be experimentally measured or estimated in terms of the ause whih

determined the hange.

The bene�t of the Randers struture relies on the fat that the vetor input

y = ṗ of F (the growth rates of the anerous ells) does not require knowledge of

the amount of the total ell populations p.
These inputs an be experimentally determined when the aner evolution is

ontrolled (�steady", for h ≈ 0), and an be estimated by measuring the population

inrease/derease of the anerous ells by using only two subsequent laboratory

samples.

Moreover, the deformation term β = 0.63ẋ− 0.27ẏ ≈ ‖ṗe‖−‖ṗ‖ represents the
drift

13

[7℄, whih a�ets the straight paths of the Eulidean norm α, produing the
new, urved paths of our Randers struture FR = α+ β.

The Eulidean and the 4-th root �t Finsler norms exhibit di�erent proper-

ties of the variation of ell populations. While FE gives aount via gE on the

anisotropi evolution of the illness proess in the ṗ 2-dimensional plane through its

PCA spetral data, the 4-th root norm FQ(y) = 4

√

P4(y) is muh more dense in

information, through the larger spetral data of its (0, 4) tensor indued by halvings

by the 4-homogeneous in the omponents of the quadrati polynomial P4(y). The
qualitative advantage over the Eulidean ase is sensed within the spae of 4-th

root Finsler norms by the di�erene ∆(y) = 4

√

P4(y)− 4

√

F 2
E(y).

6. Conlusions

A Finsler norm whih �ts the data provided by the Garner dynamial system

is onstruted. This leads to a Randers Finsler struture of loally Minkowski type,

whih mainly gives aount of the hanges of the Garner vetor �eld, in terms of

its parameters. The norm provides a measure of the status hange of the aner

ell proliferation, related to a signi�ant inrease of the growth fator parameter h
in the Garner system, whih modi�es its dynamis, and allows to fairly estimate

the hange of the variation rate based on laboratory subsequent samples.

As well, onsiderations on the onformally Eulidean projetions of the three �t

Finsler norms are produed, and the deviation from the anoni Eulidean frame-

work are desribed by the angle formed by the onformally anoni Eulidean pro-

jetion, omputed within the Hilbert spae of d-tensors, endowed by the anoni

salar produt between tensors.

Further developments on the information provided by Finslerian norm (3.2)

towards the original dynamial system are under urrent researh, and will be

presented in a forthoming paper.

13

In general, in terms of Zermelo navigation [9℄, the Randers struture represents the most

appropriate model for exhibiting through its geodesis the in�uene of the β-fore �eld on the

geodesi trajetories of the Riemannian struture given by α.
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