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FINITE GROUPS WITH THREE CONJUGACY

CLASS SIZES OF CERTAIN ELEMENTS

Qinhui Jiang and Changguo Shao

Abstract. Let G be a finite group and m, n two positive coprime integers. We
prove that the set of conjugacy class sizes of primary and biprimary elements
of G is {1, m, n} if and only if G is quasi-Frobenius with abelian kernel and
complement.

1. Introduction

Throughout this paper all groups considered are finite and G always denotes
a group. A primary element is an element of prime power order and a biprimary
element is an element whose order is divisible by precisely two distinct primes. We
will denote by xG the conjugacy class containing x, and |xG| the conjugacy class
size of xG. A positive integer a is a Hall number of group G if a is a divisor of
|G| and (a, |G|/a) = 1. We say that G is quasi-Frobenius if G/Z(G) is Frobenius.
The inverse image in G of the kernel and a complement of G/Z(G) are called the
kernel and a complement of G. The other notation and terminology are standard,
as in [2].

A well-known problem in group theory is to study the influence of conjugacy
class sizes on the structure of a group. For instance, as regards groups whose set of
conjugacy class sizes is {1, m} with m an integer, Itô [4] proved that G is nilpotent,
m = pa for some prime p, and G = P × A, where P is a Sylow p-subgroup of G.
Moreover, A 6 Z(G). He also showed [5] that G is solvable if the set of conjugacy
class sizes of G is {1, m, n} with integers m and n. Furthermore, by defining a
graph Γ of G, Bertram, Herzog and Mann [1] proved that a group whose set of
conjugacy class sizes is {1, m, n} with m and n coprime if and only if G/Z(G) is
Frobenius with abelian kernel and complement.
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On the other hand, it is interesting to investigate the structure of a group by
some conjugacy class sizes. For instance, in a recent paper [6], Kong proved that:
Let G be a p-solvable group for a fixed prime p. If the conjugacy class sizes of
all primary and biprimary elements of G are {1, pa, n} with a and n two positive
integers and (p, n) = 1,then G is p-nilpotent or G has abelian Sylow p-subgroups.
Here, we work on groups whose set of conjugacy class sizes of primary and biprimary
elements is {1, m, n} with m and n coprime. Our main result is:

Theorem 1.1. Let G be a group. Let m and n be two positive coprime integers.

The set of conjugacy class sizes of primary and biprimary elements of G is {1, m, n}
if and only if G is quasi-Frobenius with abelian kernel and complement.

Remark 1.1. This is a generalization of [6, Theorem].

2. Preliminaries

In this section we list some basic and known results which will be used in the
sequel.

Lemma 2.1. [7, Lemma 2.4] Let G be a group. A prime p does not divide any

conjugacy class size of primary element of G if and only if G has a central Sylow

p-subgroup.

Lemma 2.2. [2, Theorem 6.4.3] If G = AB, where A, B are two nilpotent

subgroups of G, then G is solvable.

Lemma 2.3. [8, Lemma 2.1] Let G be a π-separable group with π a subset of

π(G).
(a) |xG| is a π-number for every primary π′-element x if and only if G has an

abelian Hall π′-subgroup.

(b) |xG| is a π′-number for every primary π′-element x if and only if G =
Oπ(G) × Oπ′(G).

3. Proof of Theorem 1.1

Assume first that G is quasi-Frobenius with an abelian kernel and complement.
Write G/Z(G) = K/Z(G)⋊H/Z(G), which is a Frobenius group with abelian kernel
K/Z(G) and an abelian complement H/Z(G). For every non-central element x ∈ G,
we have that xZ(G) belongs to K/Z(G) or some conjugate of H/Z(G).

If xZ(G) ∈ K/Z(G), then K/Z(G) 6 CG/Z(G)(xZ(G)) = K/Z(G), implying

|xG| = |(xZ(G))G/Z(G)| = |H/Z(G)| since K/Z(G) is abelian and G/Z(G) is a
Frobenius group with kernel K/Z(G) and a complement H/Z(G); if xZ(G) ∈
H/Z(G), then |xG| = |(xZ(G))G/Z(G)| = |K/Z(G)| by the same reasoning above.
Let m := |H/Z(G)| and n := |K/Z(G)|. We clearly see that the sufficiency holds.
Now we prove the necessity.

If a prime r does not divide m or n, by applying Lemma 2.1 we have that G has
a central Sylow r-subgroup. Hence we may write G = A×B, where B 6 Z(G) and
A is a π(m) ∪ π(n)-group. Further, central factors are irrelevant in this context, so
the set of conjugacy class sizes of primary and biprimary elements of A is {1, m, n}.
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Consequently, without loss of generality, we may assume that G is a π(m) ∪ π(n)-
group without central Sylow subgroups.

Let x be a primary or a biprimary element of conjugacy class size m in G.
We assert that CG(x) is nilpotent. By considering the primary decomposition
of x, we may consider x as a p-element for some prime p. Moreover, for every
primary p′-element z ∈ CG(x), as CG(xz) = CG(x) ∩ CG(z) 6 CG(x), it implies
that m = |xG| | |(xz)G| ∈ {1, m, n}. Easily, CG(x) = CG(xz) 6 CG(z) and thus
z ∈ Z(CG(x)), yielding CG(x) = CG(x)p × CG(x)p′ , where CG(x)p is the Sylow
p-subgroup of CG(x) and CG(x)p′ is the abelian Hall p′-subgroup of CG(x). As a
consequence, CG(x) is nilpotent.

Furthermore, by the symmetry of m and n, if y is a primary or a biprimary
element of conjugacy class size n, we obtain that CG(y) is also nilpotent. Therefore,
G is solvable by Lemma 2.2 because G = CG(x)CG(y). Write π := π(m). It is clear
that G has nilpotent Hall π-subgroups and nilpotent Hall π′-subgroups. According
to the symmetry of m and n, we divide the proof into three cases.

Case 1. Both m and n are Hall numbers of G.
Let K be a Hall π-subgroup of G and H be a Hall π′-subgroup of G. Since m

is a Hall number of G, we obtain that every primary π-element has conjugacy class
size 1 or n in G, by Lemma 2.3(a), it follows that K is abelian. Similarly, H is also
abelian.

We prove that Z(G) = 1. If not, then either Z(G)π 6= 1 or Z(G)π′ 6= 1.
Suppose first that the former holds. Then for every primary element v ∈ G, it
follows that |G : CG(v)|π divides |G : Z(G)|π < m because m is a Hall number,
indicating |vG| = 1 or n. This shows that every primary element of G has conjugacy
class size 1 or n, a contradiction to our assumption. Hence Z(G)π′ 6= 1. However,
the same argument above leads to a contradiction. Thus Z(G) = 1, as required.

By symmetry, we can assume that Oπ(G) > 1 or Oπ′(G) > 1, by appealing to
the π-separability of G. We assume for instance that Oπ(G) > 1. Then for every
noncentral primary element a ∈ Oπ(G), we obtain |aG| = n as K is abelian. Note
that Oπ′(G) 6 CG(a) and n is a Hall number of G. This implies that Oπ′(G) = 1
and thus F (G) = Oπ(G) is abelian. Moreover, K 6 CG(F (G)) 6 F (G) = Oπ(G)
as G is solvable with K abelian, yielding K E G. Write G = K ⋊ H . We show
that H acts fixed-point-freely on K. Assume that there exists some 1 6= y ∈ H
and 1 6= a ∈ K such that y ∈ CG(a). By considering the primary decomposition
of x and y, we may assume that x and y are primary elements. As both m and n
are Hall numbers, we obtain that y ∈ Z(G), contradicting with the fact Z(G) = 1.
Hence CG(K) 6 K. By [3, Exercises 7.1(a)], we have that G is a Frobenius
group. Therefore, G is a Frobenius group with abelian kernel K and an abelian
complement H .

Case 2. Only one of m and n is a Hall number of G.
Without loss of generality, we consider that m is a Hall number of G while

n is not. Further, G has an abelian Hall π-subgroup if we are applying the same
argument as in the first paragraph of Case 1.

Let y ∈ G be a primary or a biprimary element of conjugacy class size n in G,
which exists by the hypothesis. Further, by considering the primary decomposition
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of y, y can be assumed to be a p-element. Assume first that p ∈ π′. Then for every
primary π-element z ∈ CG(y), we see that |CG(y) : CG(y) ∩ CG(z)| = 1, which
follows that CG(y) = K1 × CG(y)π′ , where K1 is an abelian Hall π-subgroup of G
and CG(y)π′ is the Hall π′-subgroup of CG(y). Without loss of generality, we may
assume that y ∈ CG(y)π′ 6 H , where H is a Hall π′-subgroup of G. If CG(y)π′ = H ,
then CG(y) = G, yielding y ∈ Z(G). This contradiction shows that CG(y)π′ < H .
Moreover, |hG| = n for every primary element h ∈ H−CG(y)π′ . In fact, if |hG| = m,
then there exists some g ∈ G such that h ∈ Hg 6 CG(h), indicating h ∈ Z(H)g.
Hence, h ∈ CG(y)g = CG(y)g

π′ × Kg
1 . This implies h ∈ CG(y)g

π′ and thus |hG| = 1
or n, a contradiction. Therefore, we conclude that every primary element h0 ∈ H
has conjugacy class size 1 or n in G. By Lemma 2.3(b), we have G = H × K1.
And then K1 6 Z(G) because K1 is abelian, which is again a contradiction. As a
result, p ∈ π.

We claim that H is abelian. Let v ∈ H be an arbitrary non-central primary
element. If |vG| = n, then CG(v) = CG(v)π × CG(v)π′ , where CG(v)π′ is the Hall
π′-subgroup of CG(v) and CG(v)π is the Hall π-subgroup of CG(v), and therefore
of G. On the other hand, there exists a primary or biprimary element x ∈ G of
conjugacy class size m. Without loss, we consider x as an s-element. We clearly
see that s ∈ π′ since m is a Hall number of G. By the solvability of G, there exists

some element g ∈ G such that vg−1

∈ CG(x), showing xg ∈ CG(v)π′ . This gives
that |xG| is a π′-number, a contradiction. Hence |vG| = 1 or m. Moreover, by
Lemma 2.3(a), H is abelian, as desired.

On the other hand, similarly as in Case 1, we obtain that Z(G)π = 1. Assume
first that Oπ(G) 6= 1. Then Oπ′(G) 6 Z(G), which implies that Oπ(G) = K E G
as CG(F (G)) 6 F (G). Write G = K ⋊ H . Let 1 6= v1 ∈ K be a primary element
and u1 ∈ H − Oπ′(G) be a primary or biprimary element. If [u1, v1] = 1, then
|uG

1 | = 1, a contradiction to the choice of u1. Hence, [u1, v1] 6= 1, which implies
that [u1, v1] 6∈ Oπ′(G). We see clearly that [u1, v1] 6∈ Z(G)π′ = Z(G). For every
1 6= aZ(G) ∈ KZ(G)/Z(G) and 1 6= bZ(G) ∈ H/Z(G), by considering the pri-
mary decomposition of a and b, we may assume that a and b are primary elements,
then [a, b] ∈ K. Further, CG/Z(G)(KZ(G)/Z(G)) 6 KZ(G)/Z(G). By [3, Exer-
cises 7.1(a)], we get that G/Z(G) = KZ(G)/Z(G) ⋊ H/Z(G) is a Frobenius group
with abelian kernel KZ(G)/Z(G) and a cyclic complement H/Z(G). Moreover,
KZ(G) and H are abelian, so the theorem is established.

Suppose then that Oπ(G) = 1, leading Oπ′(G) 6= 1. Then we obtain that
F (G) = Oπ′(G). Since G is solvable, we see that H 6 CG(F (G)) = F (G) as H is
abelian. This shows H E G. By considering the action of K on H by conjugation,
we have H = [H, K] × CH(K). In particular, CH(K) = Z(G). For every 1 6= v0 ∈
[H, K] and u0 ∈ K, we see that [v0, u0] ∈ [H, K]. Hence [v0, u0] = 1, which implies
that |vG

0 | = 1 and thus v0 ∈ CH(K), a contradiction. Hence [v0, u0] 6= 1, which
implies that [v0, u0] 6∈ CH(K) = Z(G). Similarly as in the above paragraph, we
also obtain that G/Z(G) = H/Z(G) ⋊ KZ(G))/Z(G) is a Frobenuis group with
abelian kernel H/Z(G) and a cyclic complement KZ(G)/Z(G). Further, H and
KZ(G) are abelian.

Case 3. Neither m nor n is a Hall number of G.



FINITE GROUPS WITH THREE CONJUGACY CLASS SIZES OF CERTAIN ELEMENTS269

If there is a primary π-element f with conjugacy class size m, then CG(f) =
CG(f)π × H , where H is an abelian Hall π′-subgroup of G. Let K be a Hall π-
subgroup of G containing CG(f)π. We trivially have CG(f)π < K since otherwise f
would be central in G. Let d ∈ K−CG(f)π be a primary element such that |dG| = n.
Since G is solvable, there exists some element g ∈ G such that K 6 CG(d)g .
Moreover, the solvability of CG(d) implies that there exists some element t ∈ CG(d)g

such that dg = (dg)t ∈ K. Consequently, dg 6 K 6 CG(d)g , yielding dg ∈ Z(K).
This shows that dg ∈ CG(f)π and thus d ∈ Z(G), contrary to the choice of d.

Consequently, we conclude that every primary π-element has conjugacy class
size 1 or n. Symmetrically, every primary π′-element has size of 1 or m. Let x be
a primary π′-element with |xG| = m. For every primary element z ∈ CG(x), we
see that |CG(x) : CG(x) ∩ CG(z)| = 1, it follows that CG(x) = CG(x)π × H , where
CG(x)π is abelian and H is an abelian Hall π′-subgroup of G. If CG(x)π � Z(G),

then there is a primary element u ∈ CG(x)π − Z(G) and thus |uG| = m, which
contradicts the argument above. Hence CG(x)π = Z(G)π. We observe that K and
H are abelian.

Since G is solvable, we have that F (G) 6= 1. By the symmetry of m and n,
we may assume that F (G)π � Z(G). We prove that K E G. Let v ∈ K − Z(G)
be a primary element. Then |vG| = n. Moreover, CG(v) = K × CG(v)π′ , where
CG(v)π′ is the abelian Hall π′-subgroup of CG(v) and K is the Hall π-subgroup
of CG(v). Similarly, CG(v)π′ = Z(G)π′ by a similar argument in the paragraph
above. Moreover, |H : Z(G)π′ | = n, indicating that Oπ′(G) = Z(G)π′ . In fact, if
there exists some primary element z ∈ Oπ′(G)−Z(G)π′ , then CG(z) > 〈Oπ(G), z〉 >
Oπ(G) > Z(G)π = CG(x)π , giving |zG| = n, a contradiction to the argument above.
As a result, K 6 CG(F (G)) 6 F (G) = Oπ(G)×Oπ′ (G) since K is abelian, showing
K E G.

Now consider the action of H on K by conjugation. Since K is abelian, we
have K = [K, H ] × CK(H). Moreover, CK(H) is an abelian direct factor of G.
As a consequence, m = |K : CG(x)π | = |K : Z(G)π| = |K : CK(H)| = |[K, H ]|.
For every primary element v ∈ H − Z(G) and 1 6= u ∈ [K, H ], it follows that
[u, v] 6= 1. Further, [u, v] 6∈ Z(G) since, otherwise, [u, v] ∈ CK(H) ∩ [K, H ] = 1,
also a contradiction. By the same argument as in Case 2, we get that G/Z(G)
is a Frobenius group with abelian kernel KZ(G)/Z(G) and a cyclic complement
HZ(G)/Z(G). Moreover, KZ(G) and HZ(G) are abelian, and the theorem is
established.
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