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AN EXAMPLE OF BRUNS–GUBELADZE K-THEORY
DEFINED BY THREE DIMENSIONAL POLYTOPE

Th. Yu. Popelensky

Abstract. For the Bruns–Gubeladze polytopal K-theory, we describe a new
series of three dimensional balanced Col-divisible polytopes. Also we calculate
the corresponding elementary groups and as a corollary obtain an expression
of the polytopal K-groups in terms of the Quillen K-groups.

1. Introduction

In the series of papers [1–4] Bruns and Gubeladze have investigated polytopal
algebras k[P ] where k is a field and P is a lattice polytope. The group of graded R-
automorphisms gr.autR(k[P ]) of the algebra k[P ] is an analog of the group GLn(k).
The paper [1] introduces elementary automorphisms of k[P ] and establishes an im-
portant fact that every graded automorphism can be diagonalized by a sequence of
elementary automorphism. In [2] it was shown that many graded retractions are
conjugates of diagonal idempotents. So the natural question arises: is it possible
to find polytopal analogs of the higher algebraic K-groups (for rings). The answer
is positive and has been given by Bruns and Gubeladze in [3, 4] for a wide class
of balanced polytopes. For a commutative ring R and a balanced polytope P the
group ER(P ) generated by elementary graded automorphisms is not perfect in gen-
eral. Bruns and Gubeladze established a highly nontrivial stabilization procedure
which on polytopal level works as “doubling along a facet”. As an outcome of the
stabilization procedure one obtains the stable elementary group E(R,P ). It is im-
portant that the stable group E(R,P ) in general is not a union of corresponding
unstable groups, hence the “polytopal part” of the stabilization is essential. The
group E(R,P ) is perfect. In [3, 4] the (stable) Steinberg group St(R,P ) was de-
fined and it was shown that for a balanced polytope P the natural homomorphism
St(R,P ) → E(R,P ) is a universal central extension. Higher polytopal K-groups
are defined by

Ki(R,P ) = πi(BE(R,P )+), i ≥ 2.
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If P coincides with the standard simplex ∆k one obtains the Quillen K-theory.
More detailed account on history of the question and on the motivation can be
found in [1,2,5].

Some natural questions arise about the polytopal generalization of K-theory.
First of all it is important to know equivalence relations on polytopes which lead to
naturally equivalent polytopal K-theory. The projective equivalence of polytopes
is obvious, but the E-equivalence (see [3, 4] for definition) is more convenient.
Also it is interesting to calculate Ki(R,P ) for various polytopes P . The case
of 2-dimensional polytopes (i.e., polygones) was completely solved by Bruns and
Gubeladze [3, 4]. They proved that there are 6 classes of E-equivalence of the
polygones and also they calculated the corresponding K-groups. The case of 3-
dimensional polytopes was investigated in [6]. In that work a classification of the
balanced 3-dimensional polytopes up to E-equivalence was proposed and the stable
elementary groups of Col -divisible 3-dimensional polytopes were identified. In [8]
the case of the pyramid over the unit square (it is balanced, but not Col -divisible)
was investigated. This polytope appears in [3, 4] several times as a polytope not
satisfying some natural conditions (see also [5]). Some calculations for balanced,
but not Col -divisible polytopes, can be found in [9].

Bruns and Gubeladze conjectured [5, Conjecture 8.3] that for a commutative
ring R and a Col -divisible (balanced) polytope P of arbitrary dimension one has
Ki(R,P ) = Ki(R)⊕· · ·⊕Ki(R) (c(P ) summands), where c(P ) < dimP is a natural
number explicitly defined by P (for some polytopes P a technical condition on the
ring R is involved). In all known examples the conjecture holds even for balanced
not Col -divisible polytopes.

This note appeared as a result of an attempt to find a counterexample to the
Bruns–Gubeladze conjecture. In fact, we did not succeed, but instead we found a
series of balanced Col -divisible polytopes which had not been known before and was
omitted in the Faramarzi’s classification theorem [6, Theorem 3.2]. We calculate
the corresponding elementary groups and as a corollary obtain an expression of the
polytopal K-groups in terms of the Quillen K-groups. Despite [6], a classification
of balanced (and balanced Col -divisible) 3-dimensional polytopes remains open.

The author is grateful to the referee for his/her valuable suggestions and com-
ments.

2. Basic definitions

The details of the Bruns–Gubeladze construction can be found in their original
works [3,4]. Here we present only an outline of necessary definition and construc-
tions.

Let P be a convex polytope in Rn with vertices in the integral lattice Zn. We
always suppose that n is minimal, that is the minimal affine subspace containing
P coincides with Rn. Such a polytope is called a lattice polytope. For any facet
F there is a unique surjective homomorphism 〈F,−〉 : Zn → Z, with the kernel
consisting of vectors parallel to the facet F and such that 〈F, p − q〉 ≥ 0 for any
p ∈ P and q ∈ F .

A vector u ∈ Zn is called a column vector for a lattice polytope P if there
exists a facet Pu ⊂ P such that 〈Pu, u〉 = −1 and for any other facet F ⊂ P one
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has 〈F, u〉 ≥ 0. In this case the facet Pu is called the base facet for the column
vector u. For a given column vector the base facet is defined uniquely, but two
different column vectors can have the same base facet. A collection of all column
vectors with the base facet F is denoted by Col (F ). A collection of all column
vectors of the lattice polytope P is denoted Col (P ).

Assume u ∈ Col (F ). Then for any point p ∈ P ∩ Zn there exists a unique
nonnegative integer k such that p + ku ∈ F . This number is called a height of
the point p over the base facet F and is denoted by htF (p). One has the equality
htF (p) = 〈F, p− q〉 where q is an arbitrary point from F .

One can define a natural partial multiplication on the set Col (P ). Suppose
u, v ∈ Col (P ), u + v ∈ Col (P ) and Pu+v = Pu. Then the product uv is defined
to be u + v. The product uv is defined not for any pair of column vectors u, v.
Obviously if uv exists, then vu is not defined.

As a basic example consider the simplex ∆n in Rn, with one vertex (0, . . . , 0) in
the origin and other n vertices of form (0, . . . , 1, . . . , 0). The description of column
vectors and their partial product is simple. For any two vertices pi, pj ∈ ∆n, there

are two column vectors δji = pj − pi and δij = −δji . The base facet of the column

vector δij is ∆n ∩ {xj = 0} for j 6= 0 and ∆n ∩ {
∑

k xk = 1} for j = 0. The partial

product is described by the relation δji δ
k
j = δki . There are no other column vectors,

and no other product is defined.

Balanced polytopes. A lattice polytope P is called balanced if for any u, v ∈
Col (P ) one has 〈Pu, v〉 ≤ 1. The simplex ∆n is balanced while the triangle
conv {(0, 0), (1, 0), (0, 2)} is not.

Note that for a balanced polytope and its base facet F one has inequality
|〈F, u〉| ≤ 1 for any column vector v. Also 〈F, u〉 = −1 iff v ∈ Col (F ). Obviously
〈F, u〉 = 0 iff u is parallel to F .

Doubling along a facet. Like in the classical Quillen K-theory we need some
kind of a stabilization procedure. Let P be a lattice polytope. Choose its facet F .
Without loss of generality one can assume that the origin belongs to the facet F and
that F is contained in the hyperplane xn = 0. Consider the standard embedding
of Rn ⊂ Rn+1 onto the hyperplane xn+1 = 0. Let us turn the polytope P by π/2
around the plane xn = xn+1 = 0 in Rn+1. The image of P under the rotation is
denoted by P |.

The polytope P yF is defined as the convex hull of P and P | and is called
doubling of P along the facet F . If v ∈ Col (F ) then one can write P yv instead
of P yF .

After doubling along F the number of facets increases by 1. For any facet G
different from F denote by GyF the facet of P yF which is the convex hull of G and
its image G| after rotation of the polytope P by π/2. Let F yF = P | for the facet F .

Let us describe the structure of Col (P yF ). Choose a column vector v ∈ Col (P )
with base facet G. Then v is also a column vector for P yF with the base facet GyF

(think of the inclusion P ⊂ P yF ).
Describe new column vectors which arise after doubling. First of all there

are two column vectors δ+ and δ− = −δ+ with the base facets P | and P− = P
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correspondingly. Secondly, for a column vector v ∈ Col (P ) the vector v| (the image
of v after rotation of P by π/2) is a column vector for P yF . If the vector v is parallel
to the facet F , then v| coincides with v. If v is not parallel to F then v 6= v| and
we have two possibilities. Namely, if v ∈ Col (F ), then one has the relations

(1) δ−v = v|, δ+v| = v,

and if v /∈ Col (F ) (therefore 〈F, v〉 > 0), then one has another relations

(2) vδ+ = v|, v|δ− = v.

One can show that for a balanced polytope P its doubling P yF is also balanced
and that the set Col (P yF ) is a union (not necessarily disjoint)

Col (P yF ) = Col (P ) ∪ Col (P )| ∪ {δ+, δ−}.

A sequence of polytopes P = (P = P0 ⊂ P1 ⊂ P2 ⊂ . . .) is called a doubling

spectrum if (1) Pk+1 is a doubling of Pk along a base facet and (2) for any i ∈ Z+,
v ∈ Col (Pi) there exists j ≥ i, such that Pj+1 = P yv

j .

For any doubling spectrum there is a natural inclusion Col (Pi) ⊂ Col (Pi+1),
therefore the direct limit Col (P) = lim Col (Pi) is defined.

Elementary automorphisms and Steinberg group. Consider a lattice
polytope P . Let S(P ) be the additive semigroup generated by pairs (p, 1) ∈ Rn+1

where p ∈ P∩Zn. For a given associative commutative ring R with unit consider the
semigroup ring R[P ] = R[S(P )]. It has natural grading defined on the generators
of the ring by formula deg(p, d) = d.

Denote by gr.autR (R[P ]) the group of graded R-automorphisms of R[P ]. An
element φ ∈ gr.autR (R[P ]) is called an elementary automorphism if there exist a
column vector v ∈ Col (P ) and an element λ ∈ R such that for every x ∈ S(P ),
one has

φ(x) = (1 + λv)htPv
(x)x.

Denote this automorphism by eλv . The subgroup of gr.autR (R[P ]) generated by
elementary automorphisms is denoted by ER(P ).

For any v ∈ Col (P) there exists i ∈ N such that v ∈ Col (Pj) for all j ≥ i.
Hence elementary automorphisms eλv ∈ ER(Pj), j ≥ i, form a compatible system.
Therefore they define a graded automorphism of R[P], which we call “elementary”
and denote by eλv . The group E(R,P) is the subgroup of gr.autR (R[P]) generated
by elementary automorphisms.

In [3, 4] it was shown that the group E(R,P) does not depend on a choice of
a doubling spectrum of the polytope P , hence one uses notation E(R,P ) instead
of E(R,P). The group E(R,P ) is perfect. For a balanced lattice polytope P ele-
mentary automorphisms satisfy relations which are similar to the relations between
elementary matrices:

(i) eλve
µ
v = eλ+µ

v for all v ∈ Col (P) and λ, µ ∈ R;
(ii) for all u, v ∈ Col (P) and λ, µ ∈ R

[eλu, e
µ
v ] =

{

e−λµ
uv , if uv is defined,

1, if u+ v 6∈ Col (P ) ∪ {0}.
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Fix a doubling spectrum P of P . Define the Steinberg group St(R,P ) to be
the group generated by symbols xλv , v ∈ Col (P), λ ∈ R, and relations

xλvx
µ
v = xλ+µ

v for all v ∈ Col (P), λ, µ ∈ R;(3)

[xλu, x
µ
v ] =

{

x−λµ
uv , if product uv is defined,

1, if u+ v /∈ Col (P) ∪ {0}
(4)

for all u, v ∈ Col (P) and λ, µ ∈ R.
The group St(R,P ) does not depend on a choice of a doubling spectrum P

of P . For a balanced polytope P the natural epimorphism St(R,P ) → E(R,P ) is
a universal central extension.

Example: For P = ∆n the groups E(R,P ) and St(R,P ) are isomorphic to
usual E(R) and St(R).

3. Polytopes F (t, s)

For integers t ≥ s ≥ 1 define the polytope F (t, s) to be the convex hull of the
points (0, 0, 0), (2t, 0, 0), (1, 2, 0), (t+ 1, 1, 0), (0, 0, 1), (1, 0, 2), (2t− s+ 1, 0, 1) ∈ R3.

The Col -structure of F (t, s) can be described as follows. There are two base
facets: Fw = F (t, s) ∩ {y = 0} with the column vectors vτ = (τ − 1,−1, 0),
τ = 1, . . . , t, and w = (0,−1, 1) and Fu = F (t, s) ∩ {z = 0} with the column
vectorsvσ = (σ − 1, 0,−1), σ = 1, . . . , s. The only relations between the column
vectors are wuσ = vσ, σ = 0, . . . , s. If t > s, then the column vectors vs+1, . . . , vt
cannot be decomposed as a product of other column vectors.

From this description it follows that the polytopes F (t, s) are balanced and
Col -divisibe. Note that

(1) for t = s > 1 the polytope F (t, t) is E-equivalent to the polytope Pe4
(t),

(2) for t > 1 the polytope F (t, 1) is E-equivalent to the polytope Pe(t, 1) (for
definition of Pe4

(t) and Pe(t, 1) see [6]),
(3) the polytope F (1, 1) (though it is three dimensional) is E-equivalent to the

polygon of type (c) (for definition see [4]).

It appears that the condition t ≥ s is essential.

Proposition 1. Suppose P is a polytope such that there are at least two base

facets Fu and Fw. Assume that for the base facet Fu there are s column vectors

uσ, 1 ≤ σ ≤ s, which are parallel to Fw and that for the base facet Fw there is a

column vector w which is not parallel to the Fu. Then the vectors vσ = w+ uσ are

column vectors for the base facet Fw.

In other words, in assumptions of the proposition there are at least s column
vectors for the base facet Fw such that wuσ = vσ.

Proof. Fix σ = 1, . . . , s. As w and uσ are column vectors, one has 〈G,w + uσ〉
= 〈G,w〉 + 〈G, uσ〉 ≥ 0 for any facet G of the polytope P different from Fu and
Fw. For the facet Fu one has 〈Fu, w + uσ〉 = 〈Fu, w〉 − 1 ≥ 0 and for the facet
Fw: 〈Fw, w + uσ〉 = −1 + 0 = −1. Hence w + uσ is a column vector for the base
facet Fw. �
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Fix integers t ≥ s ≥ 1 and consider a doubling spectrum P0, P1, P2, . . . of the
polytope P0 = F (t, s). Let us describe the column structure of the polytopes Pj (by
induction on j). From this we obtain the description of the elementary group and
the Steinberg group for the polytope P0 and identify the corresponding K-theory.

First of all we describe the structure of the base facets of the polytopes Pj .
For every polytope Pj we divide its base facets into two families A1(0), A2(0) and
enumerate the facets in the families. For the polytope P0 define A1(0) = {Fw},
A2(0) = {Fu}.

Suppose Pj+1 is a doubling of Pj along a facet F , which belongs to A1(j).
Assume A1(j) = {A1, A2, . . . , An}. Define A1(j+1) to be {A′

1, A
′
2, . . . , A

′
n, A

′
n+1},

where A′
n+1 = Pj (recall that Pj is a facet of Pj+1) and A′

j = AyF
j for j ≤ n.

Assume A2(j) = {B1, B2, . . . , Bm}. Define A2(j + 1) to be {B′
1, B

′
2, . . . , B

′
m},

B′
j = ByF

j . Definition of Ar(j + 1) for the case F ∈ A2(j) is analogous.
Now describe the structure of Col -vectors. We shall do it in two steps.
First of all we describe what happens to the vectors uσ, vτ , w under consecutive

doublings. Let ar(j) = #Ar(j)

Lemma 1. For the polytope Pj there are the column vectors wki , uσ,k, vτ,i,
where 1 ≤ i ≤ a1(j), 1 ≤ k ≤ a2(j) such that:

(1) wki uσ,k = vσ,i, for all k and 1 ≤ σ ≤ s,
(2) vτ,i is a column vector for the i-th base facet from A1(j),

and it is parallel to all other base facets,

(3) uσ,k is a column vector for the k-th base facet from A2(j),
and it is parallel to all other base facets,

(4) wki is a column vector for the i-th base facet from A1(j), it has height 1 over

the k-th base facet from A2(j) and it is parallel to all other base facets.

Proof. The case of P0 is obvious.
By induction assume that doubling of Pj was made along the facet Ai ∈ A1(j).

Then besides the vectors δ± we obtain new vectors (wki )| and v
|
τ,i for all k and τ .

Denote them by wka1(j)+1 and vτ,a1(j)+1 correspondingly. All these vectors are

column vectors for the new base facet Aa1(j)+1.

Assume doubling of Pj was made along the facet Bk ∈ A2(j). Then besides

the vectors δ± we obtain new vectors (wki )| and u
|
σ,k for all i and τ . Denote them

by w
a2(j)+1
i and vτ,a2(j)+1 correspondingly.

Statement (1) is a straightforward consequence of the relation wuσ = vσ. Also
note that there is no such relation for the vectors vσ+1,i, . . . , vτ,i. �

Secondly, we describe column vectors which appear as the δ±-vectors or vectors
they produce under doublings.

Lemma 2. For any Pj and for any two different facets Ak, Al ∈ Ar(j) there

is a column vector δlk(r) for the base facet Ak, which has height 1 over the facet

Al and is parallel to all other base facets. The vectors δlk(r) satisfy the relations

δlk(r)δpl (r) = δpk(r) for all r, k, l, p.
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Proof. For j = 0 the statement is trivial.
Assume by induction that doubling of Pj was made along the facet Ai ∈ A1(j).

Then we have new column vectors δ± and δki (1)|, δik(1)| for all k 6= i. Denote δki (1)|

by δka1(j)+1(1), δik(1)| by δ
a1(j)+1
k (1), δ+ by δ

a1(j)+1
i , and δ− by δia1(j)+1. If one of the

indices k, l, p coincides with a1(j) + 1, then the relation δlk(r)δ
p
l (r) = δpk(r) follows

from one of relations (1), (2). For example relation (2) (δik)|δ− = δik is the same as

δa1+1
k δia1+1 = δik and relation (1) δ+(δki )| = δki is the same as δa1+1

i δka1+1 = δki .

The collection of the vectors δlk(2) is unchanged as all of them are parallel to
the facet Ai.

The case of doubling along the facet from A2(j) is analogous. �

Lemma 3. The vectors δki (r), uσ,p, vτ,i, w
p
i satisfy the relations

δik(1)vτ,i = vτ,k(5)

δpq (2)uσ,p = uσ,q(6)

δik(1)wpi = wpk(7)

wpi δ
q
p(2) = wqi(8)

for all i, k, p, q, r.

The relations (5)-(7) follow from (1), and the relation (8) follows from (1).

4. Representation of St(R, F (t, s))

The purpose of this section is to construct a kind of a matrix representation of
St(R,F (t, s)) and to deduce from it the description of E(R,F (t, s)). From now on
fix t ≥ s ≥ 1 and choose a doubling spectrum P of P0 = F (t, s).

Denote by St(n), n ≥ 0, a group generated by the symbols xλv and the Steinberg
relations (3), (4) where v ∈ ColPn and λ ∈ R. There is a canonical homomorphism
φn : St(n) → St(n+ 1). It can be shown that St(R,P0) = lim St(n).

Let ar(n) = #Ar(n) (for simplicity we write ar). Denote by Mkl (or Mkl(R))
a set of all matrices (with k rows and l columns) with entries in R. Let M(n) be a
set of block matrices of the form





Ma1a1
Ma1a2

⊕

1≤τ≤tMa11

0 Ma2a2

⊕

1≤σ≤sMa21

0 0 1





(here Ma1a1
acts on

⊕

τ Ma11 diagonally, etc.).
We define the map ψn : St(n) → M(n) as follows. Consider the “scheme”





δ(1) w vτ
0 δ(2) uσ
0 0 1



 .

Let v be one of the column vectors δji (r), w
j
i , vτ,i or uσ,i (r = 1, 2) of the polytope

Pn. Define ψn on the generator xλv to be the matrix from M(n) with zero entries
except 1 on the diagonal and λ placed in the block with the same “name” as the
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vector v at the intersection of i-th row and j-th column if v is δji (r) or wji , or just
in i-th row if v = uσ,i or v = vτ,i.

Proposition 2. The map ψn is an epimorphism of St(n) onto the group

E(n) =





Ea1
(R) Ma1a2

(R)
⊕

τ Ma11(R)
0 Ea2

(R)
⊕

σMa21(R)
0 0 1



 .

The proof is straightforward.
While passing from Pn to Pn+1 one of the numbers a1, a2 increases by 1. So

we have obvious stabilization maps ηn : M(n) → M(n + 1) and their restrictions
ηn : E(n) → E(n+ 1). The diagram

St(n)
φn

−−−−→ St(n+ 1)




y
ψn





y

ψn+1

E(n)
ηn

−−−−→ E(n+ 1)

commutes, hence we have a homomorphism of the stable groups ψ : St(R,P0) →
E(∞), where E(∞) is the group





E(R) M(R)
⊕

τ V (R)
0 E(R)

⊕

σ V (R)
0 0 1



 ,

E(R) = limnEn(R), M(R) = limm,nMmn(R), V (R) = limnMn1(R).

5. Elementary group E(R, F (t, s)) and K-theory

The representation ψ of St(R,F (t, s)) is not exact.

Proposition 3. kerψ = Z(St(R,P0)).

Proof. The inclusion kerψ ⊂ Z(St(R,P0)) is obvious since Z(E(∞)) = 0.
For the inverse inclusion we need the following statement, which generalizes

Milnor’s arguments from [7, Theorem 5.1].

Proposition 4. [4, proof of Proposition 8.2] Assume that Q = (Q = Q0 ⊂
Q1 ⊂ Q2 ⊂ . . .) is a doubling spectrum of a polytope Q. For every i ∈ N∪{0} define

two sets of column vectors U i+1 = {u ∈ Col (Qi+1) | 〈Qi, u〉 = 1} and V i+1 =
{v ∈ Col (Qi+1) | 〈Qi, v〉 = −1}. Consider subgroups Ui+1,Vi+1 ⊂ Sti+1(R,Q)
generated by all xλu and xµv correspondingly (here u ∈ U i+1 and v ∈ V i+1, λ, µ ∈ R).
Suppose for a group G, there is given an epimorphism π : St(R,Q) → G which is

injective on Ui+1 and Vi+1. Then kerπ ⊂ Z(St(R,Q)).

Apply this proposition to the doubling spectrum P of P0, G = E(∞) and
π = ψ. From Lemmas 1 and 2 we can identify the sets Un and V n.

First of all suppose that doubling Pn−1 ⊂ Pn was done along a facet Ai ∈ A1.
Then the set Un consists of the vectors δij(1), j = 1, . . . , a1(n), j 6= i. The set V n
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consists of the vectors vτ,i, δ
j
i (A

1), j = 1, . . . , a1(n), j 6= i, and the vectors wki ,
k = 1, . . . , a2(n).

Image of Vn consists of the matrices in E(n) ⊂ E(∞) with 1 on the diagonal
and other nonzero entries in the i-th rows of the blocks δ(1), w and ⊕vτ . Image of
Un consists of matrices in E(n) ⊂ E(∞) with 1 on the diagonal and other nonzero
entries in the i-th column of the block δ(A1).

To prove the injectivity one should note that from the Steinberg relations,
it follows that Un are Vn are abelian groups. Moreover, using arguments from
Lemma 5.2 of [7] or from Proposition 8.2 of [4] one can show that these abelian
groups are isomorphic to RN for suitable numbers N ∈ N. Then simple counting
of dimensions shows that ψ is injective on Un and Vn.

The case of doubling Pn−1 ⊂ Pn along a facet from A2 is analogous. �

Theorem 1. The groups E(∞) and E(R,P ) are naturally isomorphic.

Proof. The kernel of the natural homomorphism St(R,P0) → E(R,P0) coin-
cides with Z(St(R,P0)) as St(R,P0) is the universal central extension of E(R,P0).
It Proposition 3 it was shown that ker(ψ : St(R,P0) → E(∞)) also coincides
with Z(St(R,P0)). Therefore there exists a natural isomorphism of E(∞) and
E(R,P ). �

Recall that a ringR is called an S(n)-ring if there exist elements x1, . . . , xn ∈ R∗

such that sum of any subset of them is a unit. The ring R has many units if R is
an S(n)-ring for any n ∈ N.

Corollary 1. There is a natural isomorphism

Ki(R,F (t, s)) = Ki(R) ⊕Ki(R), i ≥ 2,

provided R has many units.

The proof can be done in the same way as the proof of Theorem 9.2 from [3]
with suitable minor changes.
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