AN EXAMPLE OF BRUNS–GUBELADZE *K*-THEORY DEFINED BY THREE DIMENSIONAL POLYTOPE

Th. Yu. Popelensky

ABSTRACT. For the Bruns–Gubeladze polytopal K-theory, we describe a new series of three dimensional balanced Col-divisible polytopes. Also we calculate the corresponding elementary groups and as a corollary obtain an expression of the polytopal K-groups in terms of the Quillen K-groups.

1. Introduction

In the series of papers [1–4] Bruns and Gubeladze have investigated polytopal algebras k[P] where k is a field and P is a lattice polytope. The group of graded Rautomorphisms gr.aut_R(k[P]) of the algebra k[P] is an analog of the group $GL_n(k)$. The paper [1] introduces elementary automorphisms of k[P] and establishes an important fact that every graded automorphism can be diagonalized by a sequence of elementary automorphism. In [2] it was shown that many graded retractions are conjugates of diagonal idempotents. So the natural question arises: is it possible to find polytopal analogs of the higher algebraic K-groups (for rings). The answer is positive and has been given by Bruns and Gubeladze in [3, 4] for a wide class of balanced polytopes. For a commutative ring R and a balanced polytope P the group $\mathbb{E}_R(P)$ generated by elementary graded automorphisms is not perfect in general. Bruns and Gubeladze established a highly nontrivial stabilization procedure which on polytopal level works as "doubling along a facet". As an outcome of the stabilization procedure one obtains the stable elementary group $\mathbb{E}(R, P)$. It is important that the stable group $\mathbb{E}(R, P)$ in general is not a union of corresponding unstable groups, hence the "polytopal part" of the stabilization is essential. The group $\mathbb{E}(R, P)$ is perfect. In [3, 4] the (stable) Steinberg group $\mathbb{S}t(R, P)$ was defined and it was shown that for a balanced polytope P the natural homomorphism $St(R, P) \to \mathbb{E}(R, P)$ is a universal central extension. Higher polytopal K-groups are defined by

$$K_i(R, P) = \pi_i(B\mathbb{E}(R, P)^+), \quad i \ge 2.$$

²⁰¹⁰ Mathematics Subject Classification: 19C09, 19D06, 19M05.

 $Key\ words\ and\ phrases:$ K-theory, lattice polytope, elementary automorphism, Steinberg group.

Partially supported by RFBR grants 14-01-00007, 13-01-00664, SciSchool 581.2014.1. Communicated by Zoran Rakić.

If *P* coincides with the standard simplex Δ^k one obtains the Quillen *K*-theory. More detailed account on history of the question and on the motivation can be found in [1, 2, 5].

Some natural questions arise about the polytopal generalization of K-theory. First of all it is important to know equivalence relations on polytopes which lead to naturally equivalent polytopal K-theory. The projective equivalence of polytopes is obvious, but the E-equivalence (see $[\mathbf{3}, \mathbf{4}]$ for definition) is more convenient. Also it is interesting to calculate $K_i(R, P)$ for various polytopes P. The case of 2-dimensional polytopes (i.e., polygones) was completely solved by Bruns and Gubeladze $[\mathbf{3}, \mathbf{4}]$. They proved that there are 6 classes of E-equivalence of the polygones and also they calculated the corresponding K-groups. The case of 3dimensional polytopes was investigated in $[\mathbf{6}]$. In that work a classification of the balanced 3-dimensional polytopes up to E-equivalence was proposed and the stable elementary groups of Col-divisible 3-dimensional polytopes were identified. In $[\mathbf{8}]$ the case of the pyramid over the unit square (it is balanced, but not Col-divisible) was investigated. This polytope appears in $[\mathbf{3}, \mathbf{4}]$ several times as a polytope not satisfying some natural conditions (see also $[\mathbf{5}]$). Some calculations for balanced, but not Col-divisible polytopes, can be found in $[\mathbf{9}]$.

Bruns and Gubeladze conjectured [5, Conjecture 8.3] that for a commutative ring R and a Col-divisible (balanced) polytope P of arbitrary dimension one has $K_i(R, P) = K_i(R) \oplus \cdots \oplus K_i(R)$ (c(P) summands), where $c(P) < \dim P$ is a natural number explicitly defined by P (for some polytopes P a technical condition on the ring R is involved). In all known examples the conjecture holds even for balanced not Col-divisible polytopes.

This note appeared as a result of an attempt to find a counterexample to the Bruns–Gubeladze conjecture. In fact, we did not succeed, but instead we found a series of balanced Col-divisible polytopes which had not been known before and was omitted in the Faramarzi's classification theorem [6, Theorem 3.2]. We calculate the corresponding elementary groups and as a corollary obtain an expression of the polytopal K-groups in terms of the Quillen K-groups. Despite [6], a classification of balanced (and balanced Col-divisible) 3-dimensional polytopes remains open.

The author is grateful to the referee for his/her valuable suggestions and comments.

2. Basic definitions

The details of the Bruns–Gubeladze construction can be found in their original works [3, 4]. Here we present only an outline of necessary definition and constructions.

Let P be a convex polytope in \mathbb{R}^n with vertices in the integral lattice \mathbb{Z}^n . We always suppose that n is minimal, that is the minimal affine subspace containing P coincides with \mathbb{R}^n . Such a polytope is called a *lattice polytope*. For any facet F there is a unique surjective homomorphism $\langle F, - \rangle \colon \mathbb{Z}^n \to \mathbb{Z}$, with the kernel consisting of vectors parallel to the facet F and such that $\langle F, p - q \rangle \ge 0$ for any $p \in P$ and $q \in F$.

A vector $u \in \mathbb{Z}^n$ is called a column vector for a lattice polytope P if there exists a facet $P_u \subset P$ such that $\langle P_u, u \rangle = -1$ and for any other facet $F \subset P$ one

has $\langle F, u \rangle \geq 0$. In this case the facet P_u is called *the base facet* for the column vector u. For a given column vector the base facet is defined uniquely, but two different column vectors can have the same base facet. A collection of all column vectors with the base facet F is denoted by Col(F). A collection of all column vectors of the lattice polytope P is denoted Col(P).

Assume $u \in \operatorname{Col}(F)$. Then for any point $p \in P \cap \mathbb{Z}^n$ there exists a unique nonnegative integer k such that $p + ku \in F$. This number is called a *height* of the point p over the base facet F and is denoted by $\operatorname{ht}_F(p)$. One has the equality $\operatorname{ht}_F(p) = \langle F, p - q \rangle$ where q is an arbitrary point from F.

One can define a natural partial multiplication on the set $\operatorname{Col}(P)$. Suppose $u, v \in \operatorname{Col}(P)$, $u + v \in \operatorname{Col}(P)$ and $P_{u+v} = P_u$. Then the product uv is defined to be u + v. The product uv is defined not for any pair of column vectors u, v. Obviously if uv exists, then vu is not defined.

As a basic example consider the simplex Δ^n in \mathbb{R}^n , with one vertex $(0, \ldots, 0)$ in the origin and other n vertices of form $(0, \ldots, 1, \ldots, 0)$. The description of column vectors and their partial product is simple. For any two vertices $p_i, p_j \in \Delta^n$, there are two column vectors $\delta_i^j = p_j - p_i$ and $\delta_j^i = -\delta_i^j$. The base facet of the column vector δ_j^i is $\Delta^n \cap \{x_j = 0\}$ for $j \neq 0$ and $\Delta^n \cap \{\sum_k x_k = 1\}$ for j = 0. The partial product is described by the relation $\delta_i^j \delta_j^k = \delta_i^k$. There are no other column vectors, and no other product is defined.

Balanced polytopes. A lattice polytope P is called *balanced* if for any $u, v \in Col(P)$ one has $\langle P_u, v \rangle \leq 1$. The simplex Δ^n is balanced while the triangle conv $\{(0,0), (1,0), (0,2)\}$ is not.

Note that for a balanced polytope and its base facet F one has inequality $|\langle F, u \rangle| \leq 1$ for any column vector v. Also $\langle F, u \rangle = -1$ iff $v \in \text{Col}(F)$. Obviously $\langle F, u \rangle = 0$ iff u is parallel to F.

Doubling along a facet. Like in the classical Quillen K-theory we need some kind of a stabilization procedure. Let P be a lattice polytope. Choose its facet F. Without loss of generality one can assume that the origin belongs to the facet F and that F is contained in the hyperplane $x_n = 0$. Consider the standard embedding of $\mathbb{R}^n \subset \mathbb{R}^{n+1}$ onto the hyperplane $x_{n+1} = 0$. Let us turn the polytope P by $\pi/2$ around the plane $x_n = x_{n+1} = 0$ in \mathbb{R}^{n+1} . The image of P under the rotation is denoted by P^{\mid} .

The polytope $P^{\lrcorner F}$ is defined as the convex hull of P and $P^{|}$ and is called doubling of P along the facet F. If $v \in \operatorname{Col}(F)$ then one can write $P^{\lrcorner v}$ instead of $P^{\lrcorner F}$.

After doubling along F the number of facets increases by 1. For any facet G different from F denote by $G^{\downarrow F}$ the facet of $P^{\downarrow F}$ which is the convex hull of G and its image G^{\mid} after rotation of the polytope P by $\pi/2$. Let $F^{\downarrow F} = P^{\mid}$ for the facet F.

Let us describe the structure of $\operatorname{Col}(P^{\lrcorner F})$. Choose a column vector $v \in \operatorname{Col}(P)$ with base facet G. Then v is also a column vector for $P^{\lrcorner F}$ with the base facet $G^{\lrcorner F}$ (think of the inclusion $P \subset P^{\lrcorner F}$).

Describe new column vectors which arise after doubling. First of all there are two column vectors δ^+ and $\delta^- = -\delta^+$ with the base facets $P^|$ and $P^- = P$

POPELENSKY

correspondingly. Secondly, for a column vector $v \in \operatorname{Col}(P)$ the vector $v^{|}$ (the image of v after rotation of P by $\pi/2$) is a column vector for $P^{\downarrow F}$. If the vector v is parallel to the facet F, then $v^{|}$ coincides with v. If v is not parallel to F then $v \neq v^{|}$ and we have two possibilities. Namely, if $v \in \operatorname{Col}(F)$, then one has the relations

(1)
$$\delta^- v = v^{\dagger}, \quad \delta^+ v^{\dagger} = v,$$

and if $v \notin \operatorname{Col}(F)$ (therefore $\langle F, v \rangle > 0$), then one has another relations

(2)
$$v\delta^+ = v^{\dagger}, \quad v^{\dagger}\delta^- = v.$$

One can show that for a balanced polytope P its doubling $P^{\downarrow F}$ is also balanced and that the set $\operatorname{Col}(P^{\downarrow F})$ is a union (not necessarily disjoint)

$$\operatorname{Col}(P^{\lrcorner F}) = \operatorname{Col}(P) \cup \operatorname{Col}(P)^{|} \cup \{\delta^{+}, \delta^{-}\}.$$

A sequence of polytopes $\mathfrak{P} = (P = P_0 \subset P_1 \subset P_2 \subset \ldots)$ is called *a doubling* spectrum if (1) P_{k+1} is a doubling of P_k along a base facet and (2) for any $i \in \mathbb{Z}_+$, $v \in \operatorname{Col}(P_i)$ there exists $j \geq i$, such that $P_{j+1} = P_j^{\sqcup v}$.

For any doubling spectrum there is a natural inclusion $\operatorname{Col}(P_i) \subset \operatorname{Col}(P_{i+1})$, therefore the direct limit $\operatorname{Col}(\mathfrak{P}) = \lim \operatorname{Col}(P_i)$ is defined.

Elementary automorphisms and Steinberg group. Consider a lattice polytope P. Let S(P) be the additive semigroup generated by pairs $(p, 1) \in \mathbb{R}^{n+1}$ where $p \in P \cap \mathbb{Z}^n$. For a given associative commutative ring R with unit consider the semigroup ring R[P] = R[S(P)]. It has natural grading defined on the generators of the ring by formula $\deg(p, d) = d$.

Denote by $\operatorname{gr.aut}_R(R[P])$ the group of graded *R*-automorphisms of R[P]. An element $\phi \in \operatorname{gr.aut}_R(R[P])$ is called *an elementary automorphism* if there exist a column vector $v \in \operatorname{Col}(P)$ and an element $\lambda \in R$ such that for every $x \in S(P)$, one has

$$\phi(x) = (1 + \lambda v)^{\operatorname{ht}_{P_v}(x)} x.$$

Denote this automorphism by e_v^{λ} . The subgroup of gr.aut_R (R[P]) generated by elementary automorphisms is denoted by $\mathbb{E}_R(P)$.

For any $v \in \operatorname{Col}(\mathfrak{P})$ there exists $i \in \mathbb{N}$ such that $v \in \operatorname{Col}(P_j)$ for all $j \geq i$. Hence elementary automorphisms $e_v^{\lambda} \in \mathbb{E}_R(P_j), j \geq i$, form a compatible system. Therefore they define a graded automorphism of $R[\mathfrak{P}]$, which we call "elementary" and denote by e_v^{λ} . The group $\mathbb{E}(R, \mathfrak{P})$ is the subgroup of graut_R ($R[\mathfrak{P}]$) generated by elementary automorphisms.

In [3, 4] it was shown that the group $\mathbb{E}(R, \mathfrak{P})$ does not depend on a choice of a doubling spectrum of the polytope P, hence one uses notation $\mathbb{E}(R, P)$ instead of $\mathbb{E}(R, \mathfrak{P})$. The group $\mathbb{E}(R, P)$ is perfect. For a balanced lattice polytope P elementary automorphisms satisfy relations which are similar to the relations between elementary matrices:

(i) $e_v^{\lambda} e_v^{\mu} = e_v^{\lambda+\mu}$ for all $v \in \text{Col}(\mathfrak{P})$ and $\lambda, \mu \in R$;

(ii) for all $u, v \in \operatorname{Col}(\mathfrak{P})$ and $\lambda, \mu \in R$

$$[e_u^{\lambda}, e_v^{\mu}] = \begin{cases} e_{uv}^{-\lambda\mu}, & \text{if } uv \text{ is defined,} \\ 1, & \text{if } u+v \notin \operatorname{Col}(P) \cup \{0\}. \end{cases}$$

Fix a doubling spectrum \mathfrak{P} of P. Define the Steinberg group St(R, P) to be the group generated by symbols x_v^{λ} , $v \in Col(\mathfrak{P})$, $\lambda \in R$, and relations

(3)
$$x_v^{\lambda} x_v^{\mu} = x_v^{\lambda+\mu} \text{ for all } v \in \operatorname{Col}(\mathfrak{P}), \ \lambda, \mu \in R;$$

(4)
$$[x_u^{\lambda}, x_v^{\mu}] = \begin{cases} x_{uv}^{-\lambda\mu}, & \text{if product } uv \text{ is defined,} \\ 1, & \text{if } u + v \notin \operatorname{Col}\left(\mathfrak{P}\right) \cup \{0\} \end{cases}$$

for all $u, v \in \text{Col}(\mathfrak{P})$ and $\lambda, \mu \in R$.

The group St(R, P) does not depend on a choice of a doubling spectrum \mathfrak{P} of P. For a balanced polytope P the natural epimorphism $St(R, P) \to \mathbb{E}(R, P)$ is a universal central extension.

Example: For $P = \Delta^n$ the groups $\mathbb{E}(R, P)$ and $\mathbb{St}(R, P)$ are isomorphic to usual E(R) and St(R).

3. Polytopes F(t, s)

For integers $t \ge s \ge 1$ define the polytope F(t, s) to be the convex hull of the points $(0, 0, 0), (2t, 0, 0), (1, 2, 0), (t + 1, 1, 0), (0, 0, 1), (1, 0, 2), (2t - s + 1, 0, 1) \in \mathbb{R}^3$.

The Col-structure of F(t, s) can be described as follows. There are two base facets: $F_w = F(t, s) \cap \{y = 0\}$ with the column vectors $v_{\tau} = (\tau - 1, -1, 0)$, $\tau = 1, \ldots, t$, and w = (0, -1, 1) and $F_u = F(t, s) \cap \{z = 0\}$ with the column vectors $v_{\sigma} = (\sigma - 1, 0, -1)$, $\sigma = 1, \ldots, s$. The only relations between the column vectors are $wu_{\sigma} = v_{\sigma}, \sigma = 0, \ldots, s$. If t > s, then the column vectors v_{s+1}, \ldots, v_t cannot be decomposed as a product of other column vectors.

From this description it follows that the polytopes F(t, s) are balanced and Col-divisibe. Note that

- (1) for t = s > 1 the polytope F(t, t) is *E*-equivalent to the polytope $P_{e_4}(t)$,
- (2) for t > 1 the polytope F(t, 1) is *E*-equivalent to the polytope $P_e(t, 1)$ (for definition of $P_{e_4}(t)$ and $P_e(t, 1)$ see [6]),
- (3) the polytope F(1,1) (though it is three dimensional) is *E*-equivalent to the polygon of type (c) (for definition see [4]).

It appears that the condition $t \ge s$ is essential.

PROPOSITION 1. Suppose P is a polytope such that there are at least two base facets F_u and F_w . Assume that for the base facet F_u there are s column vectors u_{σ} , $1 \leq \sigma \leq s$, which are parallel to F_w and that for the base facet F_w there is a column vector w which is not parallel to the F_u . Then the vectors $v_{\sigma} = w + u_{\sigma}$ are column vectors for the base facet F_w .

In other words, in assumptions of the proposition there are at least s column vectors for the base facet F_w such that $wu_{\sigma} = v_{\sigma}$.

PROOF. Fix $\sigma = 1, \ldots, s$. As w and u_{σ} are column vectors, one has $\langle G, w + u_{\sigma} \rangle = \langle G, w \rangle + \langle G, u_{\sigma} \rangle \geq 0$ for any facet G of the polytope P different from F_u and F_w . For the facet F_u one has $\langle F_u, w + u_{\sigma} \rangle = \langle F_u, w \rangle - 1 \geq 0$ and for the facet F_w : $\langle F_w, w + u_{\sigma} \rangle = -1 + 0 = -1$. Hence $w + u_{\sigma}$ is a column vector for the base facet F_w .

POPELENSKY

Fix integers $t \ge s \ge 1$ and consider a doubling spectrum P_0, P_1, P_2, \ldots of the polytope $P_0 = F(t, s)$. Let us describe the column structure of the polytopes P_j (by induction on j). From this we obtain the description of the elementary group and the Steinberg group for the polytope P_0 and identify the corresponding K-theory.

First of all we describe the structure of the base facets of the polytopes P_j . For every polytope P_j we divide its base facets into two families $\mathbf{A}^1(0)$, $\mathbf{A}^2(0)$ and enumerate the facets in the families. For the polytope P_0 define $\mathbf{A}^1(0) = \{F_w\}$, $\mathbf{A}^2(0) = \{F_u\}$.

Suppose P_{j+1} is a doubling of P_j along a facet F, which belongs to $\mathbf{A}^1(j)$. Assume $\mathbf{A}^1(j) = \{A_1, A_2, \dots, A_n\}$. Define $\mathbf{A}^1(j+1)$ to be $\{A'_1, A'_2, \dots, A'_n, A'_{n+1}\}$, where $A'_{n+1} = P_j$ (recall that P_j is a facet of P_{j+1}) and $A'_j = A_j^{\downarrow F}$ for $j \leq n$. Assume $\mathbf{A}^2(j) = \{B_1, B_2, \dots, B_m\}$. Define $\mathbf{A}^2(j+1)$ to be $\{B'_1, B'_2, \dots, B'_m\}$, $B'_j = B_j^{\downarrow F}$. Definition of $\mathbf{A}^r(j+1)$ for the case $F \in \mathbf{A}^2(j)$ is analogous.

Now describe the structure of Col-vectors. We shall do it in two steps.

First of all we describe what happens to the vectors u_{σ}, v_{τ}, w under consecutive doublings. Let $a_r(j) = #\mathbf{A}^r(j)$

LEMMA 1. For the polytope P_j there are the column vectors w_i^k , $u_{\sigma,k}$, $v_{\tau,i}$, where $1 \leq i \leq a_1(j)$, $1 \leq k \leq a_2(j)$ such that:

- (1) $w_i^k u_{\sigma,k} = v_{\sigma,i}$, for all k and $1 \le \sigma \le s$,
- (2) $v_{\tau,i}$ is a column vector for the *i*-th base facet from $\mathbf{A}^{1}(j)$, and it is parallel to all other base facets,
- (3) $u_{\sigma,k}$ is a column vector for the k-th base facet from $\mathbf{A}^2(j)$, and it is parallel to all other base facets,
- (4) w_i^k is a column vector for the *i*-th base facet from $\mathbf{A}^1(j)$, it has height 1 over the *k*-th base facet from $\mathbf{A}^2(j)$ and it is parallel to all other base facets.

PROOF. The case of P_0 is obvious.

By induction assume that doubling of P_j was made along the facet $A_i \in \mathbf{A}^1(j)$. Then besides the vectors δ^{\pm} we obtain new vectors $(w_i^k)^{\mid}$ and $v_{\tau,i}^{\mid}$ for all k and τ . Denote them by $w_{a_1(j)+1}^k$ and $v_{\tau,a_1(j)+1}$ correspondingly. All these vectors are column vectors for the new base facet $A_{a_1(j)+1}$.

Assume doubling of P_j was made along the facet $B_k \in \mathbf{A}^2(j)$. Then besides the vectors δ^{\pm} we obtain new vectors $(w_i^k)^{\mid}$ and $u_{\sigma,k}^{\mid}$ for all i and τ . Denote them by $w_i^{a_2(j)+1}$ and $v_{\tau,a_2(j)+1}$ correspondingly.

Statement (1) is a straightforward consequence of the relation $wu_{\sigma} = v_{\sigma}$. Also note that there is no such relation for the vectors $v_{\sigma+1,i}, \ldots, v_{\tau,i}$.

Secondly, we describe column vectors which appear as the δ^{\pm} -vectors or vectors they produce under doublings.

LEMMA 2. For any P_j and for any two different facets $A_k, A_l \in \mathbf{A}^r(j)$ there is a column vector $\delta_k^l(r)$ for the base facet A_k , which has height 1 over the facet A_l and is parallel to all other base facets. The vectors $\delta_k^l(r)$ satisfy the relations $\delta_k^l(r)\delta_l^p(r) = \delta_k^p(r)$ for all r, k, l, p.

PROOF. For j = 0 the statement is trivial.

Assume by induction that doubling of P_j was made along the facet $A_i \in \mathbf{A}^1(j)$. Then we have new column vectors δ^{\pm} and $\delta_i^k(1)^{|}$, $\delta_k^i(1)^{|}$ for all $k \neq i$. Denote $\delta_i^k(1)^{|}$ by $\delta_{a_1(j)+1}^k(1)$, $\delta_k^i(1)^{|}$ by $\delta_a^{a_1(j)+1}(1)$, δ^+ by $\delta_i^{a_1(j)+1}$, and δ^- by $\delta_{a_1(j)+1}^i$. If one of the indices k, l, p coincides with $a_1(j) + 1$, then the relation $\delta_k^l(r)\delta_l^p(r) = \delta_k^p(r)$ follows from one of relations (1), (2). For example relation (2) $(\delta_k^i)^{|}\delta^- = \delta_k^i$ is the same as $\delta_k^{a_1+1}\delta_{a_1+1}^i = \delta_k^i$ and relation (1) $\delta^+(\delta_k^i)^{|} = \delta_k^k$ is the same as $\delta_a^{a_1+1}\delta_{a_1+1}^k = \delta_k^i$. The collection of the vectors $\delta_k^l(2)$ is unchanged as all of them are parallel to

The collection of the vectors $\delta_k^l(2)$ is unchanged as all of them are parallel to the facet A_i .

The case of doubling along the facet from $\mathbf{A}^2(j)$ is analogous.

LEMMA 3. The vectors $\delta_i^k(r), u_{\sigma,p}, v_{\tau,i}, w_i^p$ satisfy the relations

(5)
$$\delta_k^i(1)v_{\tau,i} = v_{\tau,k}$$

(6)
$$\delta^p_q(2)u_{\sigma,p} = u_{\sigma,q}$$

(7)
$$\delta^i_k(1)w^p_i = w^p_k$$

(7) $\delta_k(1)w_i^i = w_k^i$ (8) $w_i^p \delta_p^q(2) = w_i^q$

for all i, k, p, q, r.

The relations (5)-(7) follow from (1), and the relation (8) follows from (1).

4. Representation of St(R, F(t, s))

The purpose of this section is to construct a kind of a matrix representation of $\mathbb{St}(R, F(t, s))$ and to deduce from it the description of $\mathbb{E}(R, F(t, s))$. From now on fix $t \ge s \ge 1$ and choose a doubling spectrum \mathfrak{P} of $P_0 = F(t, s)$.

Denote by $\operatorname{St}(n)$, $n \geq 0$, a group generated by the symbols x_v^{λ} and the Steinberg relations (3), (4) where $v \in \operatorname{Col} P_n$ and $\lambda \in R$. There is a canonical homomorphism $\phi_n : \operatorname{St}(n) \to \operatorname{St}(n+1)$. It can be shown that $\operatorname{St}(R, P_0) = \lim \operatorname{St}(n)$.

Let $a_r(n) = #\mathbf{A}^r(n)$ (for simplicity we write a_r). Denote by M_{kl} (or $M_{kl}(R)$) a set of all matrices (with k rows and l columns) with entries in R. Let M(n) be a set of block matrices of the form

$$\begin{pmatrix} M_{a_1a_1} & M_{a_1a_2} & \bigoplus_{1 \le \tau \le t} M_{a_11} \\ 0 & M_{a_2a_2} & \bigoplus_{1 \le \sigma \le s} M_{a_21} \\ 0 & 0 & 1 \end{pmatrix}$$

(here $M_{a_1a_1}$ acts on $\bigoplus_{\tau} M_{a_11}$ diagonally, etc.).

We define the map $\psi_n : \operatorname{St}(n) \to M(n)$ as follows. Consider the "scheme"

$$\begin{pmatrix} \delta(1) & w & v_{\tau} \\ 0 & \delta(2) & u_{\sigma} \\ 0 & 0 & 1 \end{pmatrix}$$

Let v be one of the column vectors $\delta_i^j(r)$, w_i^j , $v_{\tau,i}$ or $u_{\sigma,i}$ (r = 1, 2) of the polytope P_n . Define ψ_n on the generator x_v^{λ} to be the matrix from M(n) with zero entries except 1 on the diagonal and λ placed in the block with the same "name" as the

vector v at the intersection of *i*-th row and *j*-th column if v is $\delta_i^j(r)$ or w_i^j , or just in *i*-th row if $v = u_{\sigma,i}$ or $v = v_{\tau,i}$.

PROPOSITION 2. The map ψ_n is an epimorphism of St(n) onto the group

$$E(n) = \begin{pmatrix} E_{a_1}(R) & M_{a_1a_2}(R) & \bigoplus_{\tau} M_{a_11}(R) \\ 0 & E_{a_2}(R) & \bigoplus_{\sigma} M_{a_21}(R) \\ 0 & 0 & 1 \end{pmatrix}.$$

The proof is straightforward.

While passing from P_n to P_{n+1} one of the numbers a_1, a_2 increases by 1. So we have obvious stabilization maps $\eta_n : M(n) \to M(n+1)$ and their restrictions $\eta_n : E(n) \to E(n+1)$. The diagram

$$\begin{array}{ccc} \operatorname{St}(n) & \stackrel{\phi_n}{\longrightarrow} & \operatorname{St}(n+1) \\ & & \downarrow \psi_n & & \downarrow \psi_{n+1} \\ E(n) & \stackrel{\eta_n}{\longrightarrow} & E(n+1) \end{array}$$

commutes, hence we have a homomorphism of the stable groups $\psi : St(R, P_0) \to E(\infty)$, where $E(\infty)$ is the group

$$\begin{pmatrix} E(R) & M(R) & \bigoplus_{\tau} V(R) \\ 0 & E(R) & \bigoplus_{\sigma} V(R) \\ 0 & 0 & 1 \end{pmatrix},$$

 $E(R) = \lim_{n \to \infty} E_n(R), \ M(R) = \lim_{m \to \infty} M_{mn}(R), \ V(R) = \lim_{n \to \infty} M_{n1}(R).$

5. Elementary group $\mathbb{E}(R, F(t, s))$ and K-theory

The representation ψ of St(R, F(t, s)) is not exact.

PROPOSITION 3. ker $\psi = Z(\operatorname{St}(R, P_0)).$

PROOF. The inclusion ker $\psi \subset Z(\operatorname{St}(R, P_0))$ is obvious since $Z(E(\infty)) = 0$.

For the inverse inclusion we need the following statement, which generalizes Milnor's arguments from [7, Theorem 5.1].

PROPOSITION 4. [4, proof of Proposition 8.2] Assume that $\mathfrak{Q} = (Q = Q_0 \subset Q_1 \subset Q_2 \subset \ldots)$ is a doubling spectrum of a polytope Q. For every $i \in \mathbb{N} \cup \{0\}$ define two sets of column vectors $U^{i+1} = \{u \in \operatorname{Col}(Q_{i+1}) \mid \langle Q_i, u \rangle = 1\}$ and $V^{i+1} = \{v \in \operatorname{Col}(Q_{i+1}) \mid \langle Q_i, v \rangle = -1\}$. Consider subgroups $\mathfrak{U}^{i+1}, \mathfrak{V}^{i+1} \subset \operatorname{St}_{i+1}(R,Q)$ generated by all x_u^{λ} and x_v^{ν} correspondingly (here $u \in U^{i+1}$ and $v \in V^{i+1}, \lambda, \mu \in R$). Suppose for a group G, there is given an epimorphism π : $\operatorname{St}(R,Q) \to G$ which is injective on \mathfrak{U}^{i+1} and \mathfrak{V}^{i+1} . Then $\ker \pi \subset Z(\operatorname{St}(R,Q))$.

Apply this proposition to the doubling spectrum \mathfrak{P} of P_0 , $G = E(\infty)$ and $\pi = \psi$. From Lemmas 1 and 2 we can identify the sets U^n and V^n .

First of all suppose that doubling $P_{n-1} \subset P_n$ was done along a facet $A_i \in \mathbf{A}^1$. Then the set U^n consists of the vectors $\delta_j^i(1), j = 1, \ldots, a_1(n), j \neq i$. The set V^n

consists of the vectors $v_{\tau,i}$, $\delta_i^j(\mathbf{A}^1)$, $j = 1, \ldots, a_1(n)$, $j \neq i$, and the vectors w_i^k , $k=1,\ldots,a_2(n).$

Image of \mathfrak{V}^n consists of the matrices in $E(n) \subset E(\infty)$ with 1 on the diagonal and other nonzero entries in the *i*-th rows of the blocks $\delta(1)$, w and $\oplus v_{\tau}$. Image of \mathfrak{U}^n consists of matrices in $E(n) \subset E(\infty)$ with 1 on the diagonal and other nonzero entries in the *i*-th column of the block $\delta(\mathbf{A}^1)$.

To prove the injectivity one should note that from the Steinberg relations, it follows that \mathfrak{U}^n are \mathfrak{V}^n are abelian groups. Moreover, using arguments from Lemma 5.2 of [7] or from Proposition 8.2 of [4] one can show that these abelian groups are isomorphic to \mathbb{R}^N for suitable numbers $N \in \mathbb{N}$. Then simple counting of dimensions shows that ψ is injective on \mathfrak{U}^n and \mathfrak{V}^n .

The case of doubling $P_{n-1} \subset P_n$ along a facet from \mathbf{A}^2 is analogous.

THEOREM 1. The groups $E(\infty)$ and $\mathbb{E}(R, P)$ are naturally isomorphic.

PROOF. The kernel of the natural homomorphism $St(R, P_0) \to \mathbb{E}(R, P_0)$ coincides with $Z(St(R, P_0))$ as $St(R, P_0)$ is the universal central extension of $\mathbb{E}(R, P_0)$. It Proposition 3 it was shown that $\ker(\psi : \operatorname{St}(R, P_0) \to \mathbb{E}(\infty))$ also coincides with $Z(St(R, P_0))$. Therefore there exists a natural isomorphism of $E(\infty)$ and $\mathbb{E}(R, P).$

Recall that a ring R is called an S(n)-ring if there exist elements $x_1, \ldots, x_n \in R^*$ such that sum of any subset of them is a unit. The ring R has many units if R is an S(n)-ring for any $n \in \mathbb{N}$.

COROLLARY 1. There is a natural isomorphism

$$K_i(R, F(t, s)) = K_i(R) \oplus K_i(R), \quad i \ge 2,$$

provided R has many units.

The proof can be done in the same way as the proof of Theorem 9.2 from [3] with suitable minor changes.

References

- 1. W. Bruns, J. Gubeladze, Polytopal linear groups, J. Algebra 219 (1999), 715–737.
- 2. _____, Polytopal linear retractions, Trans. AMS 354 (2002), 179–203.
- ___, Higher polyhedral K-groups, J. Pure Appl. Algebra 184 (2003), 175–228. 3. _____
- 4. _____, Polyhedral K₂, Manuscr. Math. **109**, (2002), 367–404.
- ., Polytopes and K-theory, Georgian Mathematical Journal 411 (2004), 655–670. 5.
- 6. S.O. Faramarzi, Polytopial linear groups ans balanced 3-polytopes, Comm. in Algebra 37 (2009), 4391-4415.
- 7. J. Milnor, Introduction to Algebraic K-theory, Princeton, 1971.
- Th. Yu. Popelensky, M. V. Prikhodko, Bruns-Gubeladze K-groups for quadrangular pyramid, Sovrem. Mat., Fundam. Napravl. 51 (2013), 141-150.
- 9. Th. Yu. Popelenskii, Bruns-Gubeladze K-theory defined by some three-dimensional polytopes, Russ. J. Math. Phys. 22(3) (2015), 400-409.

Moscow State Lomonosow University Moscow, Russia

(Received 20 12 2012) (Revised 29 04 2015)

popelens@mech.math.msu.su