CONVERGENCE THEOREMS OF A SCHEME FOR
I-ASYMPTOTICALLY QUASI-NONEXPANSIVE
TYPE MAPPING IN BANACH SPACE

Seyit Temir

Abstract. Let X be a Banach space. Let K be a nonempty subset of X. Let $T : K \to K$ be an I-asymptotically quasi-nonexpansive type mapping and $I : K \to K$ be an asymptotically quasi-nonexpansive type mappings in the Banach space. Our aim is to establish the necessary and sufficient conditions for the convergence of the Ishikawa iterative sequences with errors of an I-asymptotically quasi-nonexpansive type mapping in Banach spaces to a common fixed point of T and I. Also, we study the convergence of the Ishikawa iterative sequences to common fixed point for nonself I-asymptotically quasi-nonexpansive type mapping in Banach spaces. The results presented in this paper extend and generalize some recent work of Chang and Zhou [1], Wang [19], Yao and Wang [20] and many others.

1. Introduction

Let X be a real Banach space, K be a nonempty subset of Banach space and $T, I : K \to K$. Let $F(T) = \{x \in K : Tx = x\}$ and $F(I) = \{x \in K : Ix = x\}$ denote the set of fixed points of mappings T and I, respectively. Recall some definitions and notations. T is called nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in K$. The quasi-nonexpansive mappings defined as the following were studied by Diaz and Metcalf [4] and Dotson [5] in Banach spaces. T is called a quasi-nonexpansive mapping if $F(T) \neq \emptyset$ and $\|Tx - p\| \leq \|x - p\|$ for all $x \in K$ and $p \in F(T)$. The concept of asymptotically nonexpansiveness defined as the following was introduced by Goebel and Kirk [7]. T is called asymptotically quasi-nonexpansive mapping if $F(T) \neq \emptyset$ and there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} k_n = 1$ such that $\|T^nx - p\| \leq k_n \|x - p\|$ for all $x \in K$ and $p \in F(T)$ and $n \geq 1$. Let X be a Banach space and K be a nonempty subset of the Banach space. Let $T, I : K \to K$ be two mappings. T is called I-nonexpansive if $\|Tx - Ty\| \leq \|Ix - Iy\|$ for all $x, y \in K$. T is called I-quasi-nonexpansive if $\cap F(T) \neq \emptyset$ and $\|Tx - p\| \leq \|Ix - p\|$ for all $x \in K$ and $p \in F(T) \cap F(I)$.

2010 Mathematics Subject Classification: 47H09; 47H10.
Key words and phrases: I-asymptotically quasi-nonexpansive type mapping, nonself I-asymptotically quasi-nonexpansive type mapping, Ishikawa iterative schemes.
Communicated by Stevan Pilipović.
From the above definitions, it follows that if $F(T) \cap F(I)$ is nonempty, an I-nonexpansive mapping must be I quasi-nonexpansive, and linear I quasi-nonexpansive mappings are I-nonexpansive mappings. But it is easily seen that there exist nonlinear continuous I quasi-nonexpansive mappings which are not I-nonexpansive. T is called I-asymptotically quasi-nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n \to \infty} k_n = 1$ such that $\|T^n x - p\| \leq k_n\|P^n x - p\|$ for all $x \in K$ and $p \in F(T) \cap F(I)$ and $n \geq 1$. T is called I-asymptotically nonexpansive type mapping if $\limsup_{n \to \infty} \{\sup\{\|T^n x - T^n y\| - \|P^n x - P^n y\|\}\} = 0$ for all $x, y \in K$.

T is called I-asymptotically quasi-nonexpansive type if $F(T) \cap F(I) \neq \emptyset$ and
\[
\limsup_{n \to \infty} \{\sup\{\|T^n x - p\| - \|P^n x - p\|\}\} \leq 0
\]
for all $x \in K$ and $p \in F(T) \cap F(I)$.

I is called asymptotically quasi-nonexpansive type if $F(I) \neq \emptyset$ and
\[
\limsup_{n \to \infty} \{\sup\{\|I^n x - p\| - \|x - p\|\}\} \leq 0
\]
for all $x \in K$ and $p \in F(I)$.

From the above definitions, it follows that if $F(I)$ is nonempty, quasi-nonexpansive mappings, asymptotically nonexpansive mappings, asymptotically quasi-nonexpansive mappings and asymptotically nonexpansive type mappings all are special cases of asymptotically quasi-nonexpansive type mappings.

Let $\{x_n\}$ be of the Ishikawa iterative scheme $[8]$ associated with T, $x_0 \in K$,
\[
y_n = (1 - \beta_n)x_n + \beta_nTx_n
\]
\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTy_n
\]
for every $n \in \mathbb{N}$, where $0 \leq \alpha_n, \beta_n \leq 1$.

Let $S, T : K \to K$ be two mappings. In 2006, Lan $[9]$ introduced the following iterative scheme with errors. The sequence x_n in K defined by
\[
y_n = (1 - \beta_n)x_n + \beta_nT^n x_n + \psi_n
\]
\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_nS^n y_n + \varphi_n
\]
for every $n \in \mathbb{N}$, where $0 \leq \{\alpha_n\}, \{\beta_n\} \leq 1$ and $\{\varphi_n\}, \{\psi_n\}$ are two sequences in K.

The iterative approximation problems for nonexpansive mapping, asymptotically nonexpansive mapping and asymptotically quasi-nonexpansive mapping were studied Ghosh and Deb Nath $[6]$, Goebel and Kirk $[7]$, Liu $[10, 11]$, Petryshyn and Williamson $[13]$ in the settings of Hilbert spaces and uniformly convex Banach spaces. The strong and weak convergences of the sequence of Mann iterates to a fixed point of quasi-nonexpansive maps were studied by Petryshyn and Williamson $[13]$. Subsequently, the convergence of Ishikawa iterates of quasi-nonexpansive mappings in Banach spaces were discussed by Ghosh and Deb Nath $[6]$. The above results and some necessary and sufficient conditions for Ishikawa iterative sequences obtained to converge to a fixed point for asymptotically quasi-nonexpansive mappings were extended by Liu $[10]$. In $[11]$, the results of Liu $[10]$ were extended and some sufficient and necessary conditions for Ishikawa iterative sequences of
asymptotically quasi-nonexpansive mappings with error member to converge to fixed points were proved. Recently, Temir and Gul [17] obtained the weakly almost convergence theorems for I-asymptotically quasi-nonexpansive mapping in a Hilbert space. In [20], Yao and Wang established the strong convergence of an iterative scheme with errors involving I-asymptotically quasi-nonexpansive mappings in a uniformly convex Banach space. Temir [18], studied the convergence to common fixed point of Ishikawa iterative process of generalized I-asymptotically quasi-nonexpansive mappings to common fixed point in Banach space. In [1], the convergence theorems for Ishikawa iterative sequences with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces were studied.

2. Preliminaries and notations

We first recall the following definitions. A Banach space X is said to satisfy Opial’s condition [12] if, for each sequence $\{x_n\}$ in X, the condition $x_n \to x$ implies

$$\lim \inf_{n \to \infty} \|x_n - x\| < \lim \inf_{n \to \infty} \|x_n - y\|$$

for all $y \in X$ with $y \neq x$. It is well known from [12] that all l_r spaces for $1 < r < \infty$ have this property. However, the L_r space do not have unless $r = 2$.

In order to prove the main results of this paper, we need the following lemmas.

Lemma 2.1. [16] Let $\{a_n\}, \{b_n\}$ be sequences of nonnegative real numbers satisfying the following conditions: $\forall n \geq 1$, $a_{n+1} \leq a_n + b_n$, where $\sum_{n=1}^{\infty} b_n < \infty$. Then $\lim_{n \to \infty} a_n$ exists.

Lemma 2.2. [15] Let K be a nonempty closed bounded convex subset of a uniformly convex Banach space X and $\{a_n\} \subseteq [\epsilon, 1 - \epsilon] \subset (0, 1)$. Let $\{x_n\}$ and $\{y_n\}$ be two sequences in K such that $\limsup_{n \to \infty} \|x_n\| \leq c$, $\limsup_{n \to \infty} \|y_n\| \leq c$, and $\limsup_{n \to \infty} \|a_n x_n + (1 - a_n) y_n\| = c$ for some $c > 0$. Then $\lim_{n \to \infty} \|x_n - y_n\| = 0$.

Lemma 2.3. [2] Let X be a uniformly convex Banach space, K a nonempty closed convex subset of X and $T : K \to K$ an asymptotically nonexpansive mapping with a sequence $\{k_n\} \subset [1, \infty)$ and $\lim_{n \to \infty} k_n = 1$. Then $E - T$ is semi-closed (demi-closed) at zero, i.e., for each sequence $\{x_n\}$ in K, if $\{x_n\}$ converges weakly to $q \in K$ and $(E - T)\{x_n\}$ converges strongly to 0, then $(E - T)q = 0$.

3. Convergence theorems for I-asymptotically quasi-nonexpansive type mapping

In this section, X is a Banach space and K is its nonempty subset. Let $T, I : K \to K$ be two mappings, where T is an I-asymptotically quasi-nonexpansive type mapping and $I : K \to K$ is an asymptotically quasi-nonexpansive type mapping. We study the strong and weak convergences of the sequence of Ishikawa iterates with mixed errors to a common fixed point of T and I.

Theorem 3.1. Let X be a Banach space, K its nonempty subset, and $T, I : K \to K$ two mappings. Let T be an I-asymptotically quasi-nonexpansive type and I be an asymptotically quasi-nonexpansive type in the Banach space satisfying

$$(3.1) \quad \|Tx - p\| \leq L\|Ix - p\|$$
for all $x \in K$ and $p \in F(T) \cap F(I)$, where $L > 0$ is a constant and
\begin{equation}
\|Lx - p\| \leq \Gamma \|x - p\|
\end{equation}
for all $x \in K$ and $p \in F(I)$, where $\Gamma > 0$ is a constant. Write $I : K \to K$ instead of $S : K \to K$ in (3.2) and get
\begin{align*}
y_n &= (1 - \beta_n)x_n + \beta_nT^nx_n + \psi_n \\
x_{n+1} &= (1 - \alpha_n)x_n + \alpha_nI^ny_n + \varphi_n
\end{align*}
for every $n \in \mathbb{N}$, where $0 \leq \{\alpha_n\}, \{\beta_n\} \leq 1$ and $\{\varphi_n\}, \{\psi_n\}$ be two sequences in K satisfying: (i) $\sum_{n=1}^{\infty} \alpha_n < \infty$; (ii) $\{\psi_n\}$ is bounded, $\varphi_n = \varphi'_n + \varphi''_n$, $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \|\varphi'_n\| < \infty$, $\|\varphi''_n\| = o(\alpha_n)$.

Then $\{x_n\}$ converges strongly to a common fixed point of T and I in K iff
\begin{equation}
\liminf_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0.
\end{equation}

Lemma 3.1. Suppose all conditions in Theorem 3.1 are satisfied; then for $\varepsilon > 0$, there exists a positive integer n_0 and $M > 0$ such that
\begin{equation}
\|x_{n+1} - p\| \leq \|x_n - p\| + \alpha_nM + \|\varphi'_n\|
\end{equation}
for all $p \in F(T) \cap F(I)$, $n \geq n_0$ and
\begin{equation}
\|x_{n+m} - p\| \leq \|x_n - p\| + M \sum_{i=n}^{n+m-1} \alpha_i + \sum_{i=n}^{n+m-1} \|\varphi'_i\|
\end{equation}
for all $p \in F(T) \cap F(I)$, $n \geq n_0$, $\forall m \geq 1$, where $M = \sup_{n \geq 0} \{\varepsilon_n + \|\psi_n\|\} + 3\varepsilon < \infty$, and ε_n is a sequence with $\varepsilon_n > 0$ and $\varepsilon_n \to 0$ such that $\|\varphi''_n\| = \varepsilon_n\alpha_n$.

Proof. For $p \in F(T) \cap F(I)$, from (3.3), we have
\begin{equation}
\|x_{n+1} - p\| = \|(1 - \alpha_n)(x_n - p) + \alpha_n(I^ny_n - p) + \psi_n\|
\leq (1 - \alpha_n)\|x_n - p\| + \alpha_n\|I^ny_n - p\| + \|\varphi_n\|
= (1 - \alpha_n)\|x_n - p\| + \alpha_n\|I^ny_n - p\| - \|y_n - p\|
+ \alpha_n\|y_n - p\| + \|\varphi_n\|
\end{equation}

Now we consider the second term on the right-hand side of (3.5). From (1.1) and (1.2), for any given $\varepsilon > 0$, there exists a positive integer n_0 such that $n \geq n_0$, so we have
\begin{align*}
\sup_{x \in K, p \in F(T) \cap F(I)} \{\|T^n x - p\| - \|I^n x - p\|\} &< \varepsilon, \\
\sup_{x \in K, p \in F(I)} \{\|I^n x - p\| - \|x - p\|\} &< \varepsilon.
\end{align*}
Therefore, in particular, we have
\begin{equation}
\{\|T^n x - p\| - \|I^n x - p\|\} < \varepsilon,
\end{equation}
for all $p \in F(T) \cap F(I)$ and $\forall n \geq n_0$.
\begin{equation}
\{\|I^n y - p\| - \|y - p\|\} < \varepsilon,
\end{equation}
for all \(p \in F(I) \) and \(\forall n \geq n_0 \). From (3.7), we have

\[
(3.8) \quad \|x_{n+1} - p\| \leq (1 - \alpha_n)\|x_n - p\| + \alpha_n\|y_n - p\| + \|\varphi_n\|
\]

Consider the third term on the right-hand side of (3.8). From (3.6) and (3.7), we get

\[
(3.9) \quad \|y_n - p\| = \|(1 - \beta_n)(x_n - p) + \beta_n(T^n x_n - p) + \psi_n\|
\]

\[
\leq (1 - \beta_n)\|x_n - p\| + \beta_n\|T^n x_n - p\| - \|I^n x_n - p\| + \|\psi_n\|
\]

\[
\leq (1 - \beta_n)\|x_n - p\| + 2\beta_n\|y_n - p\| + \|\psi_n\|
\]

\[
= \|x_n - p\| + 2\beta_n\|y_n - p\| + \|\psi_n\|
\]

Now consider the fourth term on the right side of (3.8): we have \(\|\varphi_n\| \leq \|\varphi'_n\| + \|\varphi''_n\| \), \(\forall n \geq 0 \). Substituting (3.9) into (3.8), we have

\[
\|x_{n+1} - p\| \leq (1 - \alpha_n)\|x_n - p\| + \alpha_n\|x_n - p\| + \|\varphi'_n\| + \|\varphi''_n\| + \|\psi_n\|
\]

Taking \(M = \sup_{n \geq 0} \{\psi_n + \|\psi_n\|\} + 3\varepsilon \) we obtain

\[
(3.10) \quad \|x_{n+1} - p\| \leq \|x_n - p\| + \alpha_nM + \|\varphi'_n\|
\]

for all \(p \in F(T) \cap F(I) \), \(n \geq n_0 \). Writing \(n + m - 1 \) instead of \(n \) in inequality (3.10), for \(m \geq 1 \), we get

\[
\|x_{n+m} - p\| \leq \|x_{n+m-1} - p\| + \alpha_{n+m-1}\|\varphi'_{n+m-1}\|
\]

\[
\leq \|x_{n+m-2} - p\| + (\alpha_{n+m-1} + \alpha_{n+m-2})M + \|\varphi'_{n+m-2}\| + \|\varphi''_{n+m-1}\|
\]

\[
\vdots
\]

\[
\leq \|x_n - p\| + M \sum_{i=n}^{n+m-1} \alpha_i + \sum_{i=n}^{n+m-1} \|\varphi'_i\|
\]

for all \(p \in F(T) \cap F(I) \), \(n \geq n_0 \). Thus Lemma 3.1 is proved.

Since \(\{\psi_n\} \) is bounded, \(\varphi_n = \varphi'_n + \varphi''_n \), \(n \in \mathbb{N} \) and \(\sum_{n=0}^{\infty} \|\varphi'_n\| < \infty \), \(\|\varphi''_n\| = o(\alpha_n) \), then we have \(\sum_{n=0}^{\infty} M\alpha_n + \|\varphi'_n\| < \infty \). From Lemma 2.1, we take \(\{a_n\} = \{x_n - p\} \) and \(\{b_n\} = M\alpha_n + \|\varphi'_n\| \). This implies that \(\lim_{n \to \infty} \|x_n - p\| \) exists.

Proof of Theorem 3.1. We only prove the sufficiency of Theorem 3.1. Suppose that (3.3) is satisfied; then \(\lim_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0 \).

First we show that \(\{x_n\} \) is a Cauchy sequence in \(K \). For \(\varepsilon > 0 \) and \(n \geq n_1 \) there exists \(n_1 \geq n_0 \) such that \(d(x_n, F(T) \cap F(I)) < \varepsilon \). Then \(\sum_{n=n_1}^{\infty} \alpha_n < \frac{\varepsilon}{M} \sum_{n=n_1}^{\infty} \|\varphi'_n\| < \varepsilon \). By the definition of infimum and \(d(x_n, F(T) \cap F(I)) < \varepsilon \) there exists \(p_0 \in F(T) \cap F(I) \), we have

\[
\|x_n - p_0\| \leq \|x_n - p\| + \|p - p_0\| < \varepsilon
\]
$F(I)$ such that $d(x_{n_1}, p) < 2\varepsilon$. Furthermore, for $n \geq n_1 \geq n_0$ and $\forall m \geq 1$

$$\|x_{n+m} - x_n\| \leq \|x_{n+m} - p_0\| + \|x_n - p_0\|$$

$$\leq \|x_{n_1} - p_0\| + M \sum_{i=n_1}^{n+m-1} \alpha_i + \sum_{i=n_1}^{n+m-1} \|\varphi_i\|$$

$$+ \|x_{n_1} - p_0\| + M \sum_{i=n_1}^{n-1} \alpha_i + \sum_{i=n_1}^{n-1} \|\varphi_i\|.$$

Then for $n \geq n_1 \geq n_0$ and $\forall m \geq 1$ we have $\|x_{n+m} - x_n\| \leq 8\varepsilon$. Since ε is arbitrary, then $\{x_n\}$ is a Cauchy sequence in K. Since X is a Banach space, let $\{x_n\} \to p^*$ as $n \to \infty$. We prove that $p^* \in F(T) \cap F(I)$. We have $\{x_n\} \to p^*$ as $n \to \infty$ and $\lim_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0$, for $\varepsilon > 0$, there exists a positive integer $n_1 \geq n_0$ and $n \geq n_1$ we have $\|x_n - p^*\| < \varepsilon$, $d(x_n, F(T) \cap F(I)) < \varepsilon$. Then there exists $q \in F(T) \cap F(I)$ such that $d(x_{n_1}, q) < 2\varepsilon$. Furthermore, for $n \geq n_2$

$$\|T^n p^* - q\| \leq \{(\|T^n p^* - q\| - \|p^* - q\|) + 2\|p^* - q\|$$

$$\leq \{(\|T^n p^* - q\| - \|I^n p^* - q\|) + \|I^n p^* - q\| + \|p^* - q\|\} + 3\|p^* - q\|$$

$$< 2\varepsilon + 3\varepsilon = 11\varepsilon.$$

Since T is I-asymptotically quasi nonexpansive type and I is asymptotically quasi nonexpansive type, this implies that $\{T^n p^*\} \to p^*$ as $n \to \infty$. Furthermore,

$$\|T^n p^* - Tp^*\| \leq \{(\|T^n p^* - q\| - \|p^* - q\|) + \|p^* - q\| + \|Tp^* - q\|.$$

Then for $n \geq n_2$ by 13.4, 13.2, 13.6 and 13.7 we have

$$\|T^n p^* - Tp^*\| \leq \{(\|T^n p^* - q\| - \|I^n p^* - q\|) + \|I^n p^* - q\| - \|p^* - q\|\}$$

$$+ 2\|p^* - q\| + L\|I p^* - q\|$$

$$\leq 2\varepsilon + 2\|p^* - q\| + L\|p^* - q\|$$

$$\leq 2\varepsilon + (2 + L\varepsilon)\{\|x_{n_2} - p^*\| + \|x_{n_2} - q\|\}$$

$$< 2\varepsilon + (2 + L\varepsilon)\varepsilon < \varepsilon(8 + 3L\varepsilon)$$

Since ε is arbitrary, $\{T^n p^*\} \to Tp^*$ as $n \to \infty$, implying $Tp^* = p^* \in F(T) \cap F(I)$.

Further we apply for $I : K \to K$ asymptotically quasi nonexpansive type mapping. Then for $n \geq n_2$ we have

$$\|I^n p^* - p^*\| \leq \{(\|I^n p^* - q\| - \|q - p^*\|) + 2\|p^* - q\|$$

$$\leq \varepsilon + 2\{\|x_{n_2} - p^*\| + \|x_{n_2} - q\|\} < \varepsilon + 2\{\varepsilon + 2\varepsilon\} = 7\varepsilon$$

This implies that $\{I^n p^*\} \to p^*$ as $n \to \infty$. Furthermore,

$$\|I^n p^* - Ip^*\| \leq \{(\|I^n p^* - q\| - \|p^* - q\|) + \|p^* - q\| + \|Ip^* - q\|.$$

Then for \(n \geq n_2 \) by (3.2) and (3.7) we have
\[
\|T^np^* - Ip^*\| \leq \{\|T^np^* - q\| - \|p^* - q\|\} + \|p^* - q\| + \Gamma\|Ip^* - q\|
\leq \varepsilon + \|p^* - q\| + \Gamma\|Ip^* - q\|
\leq \varepsilon + (1 + \Gamma)\{\|xn_2 - p^*\| + \|x_{n_2} - q\|\}
\leq \varepsilon + (1 + \Gamma)3\varepsilon < \varepsilon + (4 + 3\Gamma).
\]
Since \(\varepsilon \) is arbitrary, \(\{T^np^*\} \to p^* \) as \(n \to \infty \). Also
\[
\|T^np^* - Ip^*\| \leq \|T^np^* - q\| + \|Ip^* - q\| < 2\varepsilon
\]
Since \(\varepsilon \) is arbitrary, \(\{T^np^*\} \to Ip^* \) as \(n \to \infty \). This shows that \(Ip^* = p^* \in F(I) \).
From this we obtain \(p^* \in F(T) \cap F(I) \).
Thus \(\{x_n\} \) converges strongly to a common fixed point of \(T \) and \(I \) in \(K \), subset of \(X \) Banach space.

Now we establish the weak convergence theorem for Ishikawa iterates of \(I \)-asymptotically quasi-nonexpansive type mappings in Banach spaces. First, we prove the following lemma.

Lemma 3.2. Let \(X \) be a uniformly convex Banach space and \(K \) be a nonempty closed convex subset of \(X \). Let \(T, I \) and \(\{x_n\} \) be the same as in Lemma 3.1. If \(F = F(T) \cap F(I) \neq \emptyset \), then \(\lim_{n \to \infty} \|Tx_n - x_n\| = \lim_{n \to \infty} \|Ix_n - x_n\| = 0 \).

Proof. By Lemma 3.1, for any \(p \in F(T) \cap F(I) \), \(\lim_{n \to \infty} \|x_n - p\| \) exists. Let \(\lim_{n \to \infty} \|x_n - p\| = c \). If \(c = 0 \), then the proof is completed.

Now suppose \(c > 0 \). From (3.7), we have \(\|y_n - p\| \leq \|x_n - p\| + 2\beta_n\varepsilon + \|\psi_n\| \).
Taking \(\limsup \) on both sides in the above inequality,
\[
\lim_{n \to \infty} \sup_{\langle 3.11 \rangle} \|y_n - p\| \leq c.
\]
Since \(I \) is asymptotically nonexpansive type self-mappings on \(K \), from (3.7), which is on taking \(\limsup_{n \to \infty} \) and using (3.11), then we get \(\limsup_{n \to \infty} \|T^ny_n - p\| \leq c \).
Further, \(\lim_{n \to \infty} \|x_{n+1} - p\| = c \) means that
\[
\lim_{n \to \infty} \|\alpha_nT^nx_n + (1 - \alpha_n)x_n - p\| = c
\]
\[
\lim_{n \to \infty} (1 - \alpha_n)\|x_n - p\| + \alpha_n\|T^nx_n - p\| = c.
\]
It follows from Lemma 2.2
\[
\lim_{n \to \infty} \|T^nx_n - x_n\| = 0.
\]
Further,
\[
\lim_{n \to \infty} \|\alpha_n(T^nx_n - p) + (1 - \alpha_n)(x_n - p)\| = \lim_{n \to \infty} \|y_n - p\| = c.
\]
By Lemma 2.2, we have
\[
\lim_{n \to \infty} \|T^nx_n - x_n\| = 0.
\]
From (3.12) and (3.13), we have
\[
\lim_{n \to \infty} \|I^n x_n - x_n\| = 0.
\]
Using (3.1), (3.2), (3.3), (3.13) and (3.14), it is easy to show that

\[
\lim_{n \to \infty} \|Tx_n - x_n\| = 0
\]
\[
\lim_{n \to \infty} \|Ix_n - x_n\| = 0.
\]

Then the proof is completed. \(\Box\)

Theorem 3.2. Let \(X\) be a uniformly convex Banach space which satisfies Opial’s condition, \(K\) be a nonempty closed convex subset of \(X\). Let \(T, I\) and \(\{x_n\}\) be the same as in Lemma 3.1. If \(F(T) \cap F(I) \neq \emptyset\), the mappings \(E - T\) and \(E - I\) are semi-closed at zero, then \(\{x_n\}\) converges weakly to a common fixed point of \(T\) and \(I\).

Proof. By assumption, \(F(T) \cap F(I)\) is nonempty. Take \(p \in F(T) \cap F(I)\). It follows from Lemma 3.1 that the limit \(\lim_{n \to \infty} \|x_n - p\|\) exists. Therefore, \(\{x_n - p\}\) is a bounded sequence in \(X\). Since \(X\) is a uniformly convex Banach space and \(K\) is a nonempty closed convex subset of \(X\), then \(K\) is weakly compact. This implies that there exists a subsequence \(\{x_{n_k}\}\) of \(\{x_n\}\) such that \(\{x_{n_k}\}\) converges to a point \(p \in w(\{x_n\})\), where \(w(\{x_n\})\) denotes the weak limit set of \(\{x_n\}\), which shows that \(w(\{x_n\})\) is nonempty. For any \(p \in w(\{x_n\})\), there exists a subsequence \(\{x_{n_k}\}\) of \(\{x_n\}\) such that \(x_{n_k} \to p\) weakly. Hence, it follows from (3.15) and (3.16) in Lemma 3.2 that \(Tp = p\) and \(Ip = p\). By Opial’s condition, \(\{x_n\}\) has only one weak limit point, i.e., \(\{x_n\}\) converges weakly to a common fixed point of \(T\) and \(I\). \(\Box\)

4. Convergence for nonself \(I\)-asymptotically quasi-nonexpansive type mappings

In this section, the convergence of the Ishikawa iterative sequences to common fixed point for nonself \(I\)-asymptotically quasi-nonexpansive type mappings is obtained in Banach spaces.

A subset \(K\) of \(X\) is called a retract of \(X\) if there exists a continuous map \(P : X \to K\) such that \(Px = x\) for all \(x \in K\). A map \(P : X \to K\) is called a retraction if \(P^2 = P\). In particular, a subset \(K\) is called a nonexpansive retract of \(X\) if there exists a nonexpansive retraction \(P : X \to K\) such that \(Px = x\) for all \(x \in K\).

Next, we introduce the following concepts for nonself mappings. Let \(X\) be a real Banach space. A subset \(K\) of \(X\) be nonempty nonexpansive retraction of \(X\) and \(P\) be nonexpansive retraction from \(X\) onto \(K\). A nonself mapping \(T : K \to X\) is called asymptotically nonexpansive if there exists a sequence \(\{v_n\} \subset [1, \infty)\) with \(\lim_{n \to \infty} v_n = 1\) such that

\[
\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq v_n\|x - y\|
\]

for all \(x, y \in K\) and \(n \geq 1\). \(T\) is called uniformly \(L\)-Lipschitzian if there exists a constant \(L > 0\) such that

\[
\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq L\|x - y\|
\]

for all \(x, y \in K\) and \(n \geq 1\). From the above definition, it is obvious that nonself asymptotically nonexpansive mappings is uniformly \(L\)-Lipschitzian.
Let $I : K \rightarrow X$ be a nonself asymptotically quasi-nonexpansive type mappings and $T : K \rightarrow X$ be a nonself I-asymptotically quasi-nonexpansive type mappings with $F(T) \cap F(I) = \{ x \in K : Tx = x = Ix \} \neq \emptyset$. A mapping $T : K \rightarrow X$ is called Λ-Lipschitzian if there exists constant $\Lambda > 0$ such that

$$
\|T(PT)^{n-1}x - T(PT)^{n-1}y\| \leq \Lambda\|I(PI)^{n-1}x - I(PI)^{n-1}y\|
$$

for all $x, y \in K$ and $n \geq 1$.

Iterative techniques for converging fixed points of nonexpansive non-self mappings have been studied by many authors (see, for example, [3, 19, 14]). The concept of nonself asymptotically nonexpansive mappings was introduced in [3] as a generalization of asymptotically nonexpansive self-mappings and some strong and weak convergence theorems for such mappings were obtained. The sequence \(\{x_n\}_{n \geq 1} \) generated as follows: \(x_1 \in K \),

$$
y_n = P(\alpha_n T(PT)^{n-1}x_n + \beta_n x_n),
$$

$$
x_{n+1} = P(\alpha'_n I(PI)^{n-1}y_n + \beta'_n x_n), \quad \forall n \geq 1,
$$

where \(\{\alpha_n\}, \{\beta_n\}, \{\alpha'_n\}, \{\beta'_n\} \in (0, 1) \).

Let $T : K \rightarrow X$ be a nonself asymptotically quasi-nonexpansive type mapping and $I : K \rightarrow X$ be a nonself asymptotically quasi-nonexpansive type mapping.

Now we define an \(\{x_n\}_{n \geq 1} \) sequence as follows:

$$
y_n = P(\alpha_n T(PT)^{n-1}x_n + \beta_n x_n + \gamma_n \psi_n),
$$

$$
x_{n+1} = P(\alpha'_n I(PI)^{n-1}y_n + \beta'_n x_n + \gamma'_n \psi_n + \phi_n), \quad \forall n \geq 1,
$$

where \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha'_n\}, \{\beta'_n\}, \{\gamma'_n\} \) are sequences in \((0, 1) \) with \(\alpha_n + \beta_n + \gamma_n = 1 = \alpha'_n + \beta'_n + \gamma'_n \) and \(\{\psi_n\}, \{\phi_n\} \) are bounded sequences in K.

$$
\limsup_{n \rightarrow \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \leq 0.
$$

Observe that

$$
\limsup_{n \rightarrow \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \times \limsup_{n \rightarrow \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| + \|I(PI)^{n-1}x - p\| \} \right)
$$

$$
= \limsup_{n \rightarrow \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\|^2 - \|I(PI)^{n-1}x - p\|^2 \} \right) \leq 0.
$$

Therefore we have

$$
\limsup_{n \rightarrow \infty} \left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \leq 0.
$$

This implies that for any given $\varepsilon > 0$, there exists a positive integer n_0 such that for $n \geq n_0$ we have

$$
\left(\sup_{x \in X, p \in F(T) \cap F(I)} \{ \|T(PT)^{n-1}x - p\| - \|I(PI)^{n-1}x - p\| \} \right) \leq 0.
$$
THEOREM 4.1. Let X be a Banach space and K be a nonempty subset of the Banach space. Let $T, I : K \to X$ be two nonself mappings. Let T be a nonself I-asymptotically quasi-nonexpansive type and I be a nonself asymptotically quasi-nonexpansive type in Banach space with $F(T) \cap F(I) \neq \emptyset$. Let the sequence $\{x_n\}$ be defined by (4.1) and for every $n \in \mathbb{N}$, where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\alpha'_n\}, \{\beta'_n\}, \{\gamma'_n\}$ are sequences in $(0, 1)$ with $\alpha_n + \beta_n + \gamma_n = 1 = \alpha'_n + \beta'_n + \gamma'_n$, $\sum_{i=1}^{\infty} \gamma_i < \infty$, $\sum_{i=1}^{\infty} \gamma'_i < \infty$, and $\{\psi_n\}, \{\varphi_n\}$ are bounded sequences in K.

Then $\{x_n\}$ converges strongly to a common fixed point of T and I in K if

\begin{equation}
\liminf_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0. \tag{4.2}
\end{equation}

PROOF. The necessity of condition (4.2) is obvious. Next we prove the sufficiency of condition (4.2). Let the sequence $\{x_n\}$ be defined by (4.1). Let $p \in F(T) \cap F(I)$, by boundedness of the sequences $\{\psi_n\}, \{\varphi_n\}$, so we can put

$$M = \max\{\sup_{n \geq 1} \|\psi_n - p\|, \sup_{n \geq 1} \|\varphi_n - p\|\}.$$

For any given $\varepsilon > 0$, there exists a positive integer n_0 such that $n \geq n_0$

$$\sup_{x \in K, p \in F(T) \cap F(I)} \{\|T(PT)^{n-1}x - p\| - \|I(IP)^{n-1}x - p\|\} < \varepsilon.$$

$$\sup_{x \in K, p \in F(I)} \{\|I(IP)^{n-1}x - p\| - \|x - p\|\} < \varepsilon.$$

Therefore, in particular, we have

\begin{equation}
\{\|T(PT)^{n-1}x_n - p\| - \|I(IP)^{n-1}x_n - p\|\} < \varepsilon, \tag{4.3}
\end{equation}

for all $p \in F(T) \cap F(I)$ and $\forall n \geq n_0$.\n
\begin{equation}
\{\|I(IP)^{n-1}y_n - p\| - \|y_n - p\|\} < \varepsilon, \tag{4.4}
\end{equation}

for all $p \in F(I)$ and $\forall n \geq n_0$. Thus for each $n \geq 1$ and for any $p \in F(T) \cap F(I)$, using (4.1), (4.3) and (4.4), we have

\begin{equation}
\|x_{n+1} - p\| = \|P(\alpha'_n x_n + \beta'_n I(IP)^{n-1}y_n + \gamma'_n \varphi_n - p)\| \\
\leq \alpha'_n \|x_n - p\| + \beta'_n \|I(IP)^{n-1}y_n - p\| + \gamma'_n \|\varphi_n - p\| \\
= \alpha'_n \|x_n - p\| + \beta'_n (\|I(IP)^{n-1}y_n - p\| - \|y_n - p\|) \\
+ \beta'_n \|y_n - p\| + \gamma'_n \|\varphi_n - p\| \\
\leq \alpha'_n \|x_n - p\| + \beta'_n (\varepsilon) + \beta'_n \|y_n - p\| + \gamma'_n M \tag{4.5}
\end{equation}
and
\[
\|y_n - p\| = \|P(\alpha_n x_n + \beta_n T(PT)^{n-1} x_n + \gamma_n \psi_n - p)\|
\]
\[
\leq \alpha_n \|x_n - p\| + \beta_n \|T(PT)^{n-1} x_n - p\| + \gamma_n \|\psi_n - p\|
\]
\[
\leq \alpha_n \|x_n - p\| + \beta_n \|T(PT)^{n-1} x_n - p\| + \|I(PT)^{n-1} x_n - p\|
\]
\[
+ \beta_n \|I(PT)^{n-1} x_n - p\| - \|x_n - p\|) + \beta_n \|x_n - p\| + \gamma_n M
\]
\[
\leq \alpha_n \|x_n - p\| + 2\beta_n \|\epsilon\| + \beta_n \|x_n - p\| + \gamma_n M
\]
\[
\leq (1 - \gamma_n) \|x_n - p\| + 2\beta_n \|\epsilon\| + \gamma_n M
\]
\[
\leq \|x_n - p\| + D_n
\]

where \(D_n = 2\beta_n \|\epsilon\| + \gamma_n M\). Then \(\sum_{n=1}^{\infty} D_n < \infty\) since \(\sum_{n=1}^{\infty} \gamma_n < \infty\).

Substituting (4.6) into (4.5), we have
\[
\|x_{n+1} - p\| \leq \alpha_n' \|x_n - p\| + \beta_n' \|\epsilon\| + \beta_n' \|x_n - p\| + D_n) + \gamma_n' M
\]
\[
\leq (\alpha_n' + \beta_n') \|x_n - p\| + \beta_n' \|\epsilon\| + D_n) + \gamma_n' M
\]
\[
\leq (1 - \gamma_n') \|x_n - p\| + G_n
\]
\[
\leq \|x_n - p\| + G_n
\]

where \(G_n = \beta_n' \|\epsilon\| + D_n) + \gamma_n' M\). Then \(\sum_{n=1}^{\infty} G_n < \infty\) since \(\sum_{n=1}^{\infty} \gamma_n' < \infty\) and \(\sum_{n=1}^{\infty} D_n < \infty\).

It follows from (4.7) that \(d(x_{n+1}, F(T) \cap F(I)) \leq d(x_n, F(T) \cap F(I)) + G_n\).

By Lemma 2.1, we can get that \(\lim_{n \to \infty} d(x_n, F(T) \cap F(I))\) exists. By condition \(\lim \inf_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0\), we have
\[
\lim_{n \to \infty} d(x_n, F(T) \cap F(I)) = 0.
\]

Next we prove that \(\{x_n\}\) is a Cauchy sequence in \(X\). In fact, for any \(n \geq n_0\), any \(m \geq n_1\) and any \(p \in F(T) \cap F(I)\) we have
\[
\|x_{n+m} - p\| \leq \|x_{n+m-1} - p\| + G_{n+m-1}
\]
\[
\leq \|x_{n+m-2} - p\| + G_{n+m-1} + G_{n+m-2}
\]
\[
\leq \ldots \leq \|x_n - p\| + \sum_{k=n}^{\infty} G_k.
\]

So by (4.8), we have
\[
\|x_{n+m} - x_n\| \leq \|x_{n+m} - p\| + \|x_n - p\| \leq 2\|x_n - p\| + \sum_{k=n}^{\infty} G_k.
\]

By the arbitrariness of \(p \in F(T) \cap F(I)\) and (4.10), we have
\[
\|x_{n+m} - p\| \leq 2d(x_n, F(T) \cap F(I)) + \sum_{k=n}^{\infty} G_k \quad \forall n \geq n_0.
\]
For any given \(\varepsilon > 0 \), there exists a positive integer \(n_1 \geq n_0 \), such that for any \(n \geq n_1 \),
\[d(x_n, F(T) \cap F(I)) < \frac{\varepsilon}{2} \text{ and } \sum_{k=n}^{\infty} G_k < \frac{\varepsilon}{2}, \]
we have \(\|x_{n+m} - x_n\| < \varepsilon \), and so for any \(m \geq 1 \)
\[\lim_{n \to \infty} \|x_{n+m} - x_n\| = 0. \]
This shows that \(\{x_n\} \) is a Cauchy sequence in \(X \). Since \(X \) is complete, there exists a \(p^* \in X \) such that \(x_n \to p^* \) as \(n \to \infty \).

Finally, by the routine method, we have to prove that \(p^* \in F(T) \cap F(I) \). By contradiction, we assume that \(p^* \) is not in \(F(T) \cap F(I) \). Since \(F(T) \cap F(I) \) is a closed set, \(d(p^*, F(T) \cap F(I)) > 0 \). Hence for all \(p \in F(T) \cap F(I) \), we have
\[\|p^* - p\| \leq \|x_n - p^*\| + \|x_n - p\|. \]
This implies that
\[d(p^*, F(T) \cap F(I)) \leq \|x_n - p^*\| + d(x_n, F(T) \cap F(I)). \]
Letting \(n \to \infty \) in \((4.1) \) and noting \((4.8) \), we have \(d(p^*, F(T) \cap F(I)) \leq 0 \). This is a contradiction. Hence \(p^* \in F(T) \cap F(I) \). This completes the proof of Theorem 4.1. \(\square \)

References

Department of Mathematics
Art and Science Faculty
Harran University
Sanliurfa
Turkey
temirezit@harran.edu.tr