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ON THE SIGNLESS LAPLACIAN SPECTRAL

RADIUS OF UNICYCLIC GRAPHS

WITH FIXED MATCHING NUMBER

Jing-Ming Zhang, Ting-Zhu Huang, and Ji-Ming Guo

Abstract. We determine the graph with the largest signless Laplacian spec-
tral radius among all unicyclic graphs with fixed matching number.

1. Introduction

Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G) =
{v1, v2, . . . , vn} and edge set E(G). Its adjacency matrix A(G) = (aij) is defined
as an n × n matrix (aij), where aij = 1 if vi is adjacent to vj ; aij = 0, oth-
erwise. Denote by d(vi) or dG(vi) the degree of the vertex vi (i = 1, 2, . . . , n).
Let Q(G) = D(G) + A(G) be the signless Laplacian matrix of a graph G, where
D(G) = diag(d(v1), d(v2), . . . , d(vn)) denotes the diagonal matrix of the vertex de-
grees of G. It is well known that A(G) is a real symmetric matrix and Q(G) is
a positive semidefinite matrix. Hence, the eigenvalues of A(G) and Q(G) can be
ordered as

λ1(G) > λ2(G) > · · · > λn(G)

and
q1(G) > q2(G) > · · · > qn(G) > 0,

respectively. The largest eigenvalues of A(G) and Q(G) are called the spectral
radius and the signless Laplacian spectral radius of G, denoted by ρ(G) and q(G),
respectively. When G is connected, A(G) and Q(G) are nonegative irreducible
matrix. By the Perron–Frobenius theory, ρ(G) is simple and has a unique positive
unit eigenvector, so does q(G). We refer to such the eigenvector corresponding to
q(G) as the Perron vector of G.

Two distinct edges in a graph G are independent if they are not adjacent in G.
A set of pairwise independent edges of G is called a matching in G. A matching of
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maximum cardinality is a maximum matching in G. The cardinality of a maximum
matching of G is commonly known as its matching number, denoted by µ(G).

Denote by Cn and Pn the cycle and the path on n vertices, respectively. The
characteristic polynomial of A(G) is det(xI − A(G)), which is denoted by Φ(G) or
Φ(G, x). The characteristic polynomial of Q(G) is det(xI−Q(G)), which is denoted
by Ψ(G) or Ψ(G, x).

A unicyclic graph is a connected graph in which the number of vertices equals
the number of edges. Let Un(µ) denote the set of all unicyclic graphs on n vertices
with matching number µ.

The investigation on the spectral radius of graphs is an important topic in the
theory of graph spectra, and some early results can go back to the very beginnings
(see [4]). The recent developments on this topic also involve the problem concerning
graphs with maximal or minimal spectral radius of a given class of graphs. In [2],
Chang et al. gave the first two spectral radii of unicyclic graphs with perfect
matchings. Recently, Yu et al. [9] gave the first two spectral radii of unicyclic
graphs with a given matching number; and Guo [13] gave the first six spectral
radii over the class of unicyclic graphs on a given number of vertices; Guo [12] gave
the first ten spectral radii over the class of unicyclic graphs on a given number of
vertices and the first four spectral radii of unicyclic graphs with perfect matchings.
For more results on this topic, the reader is referred to [1, 6, 14, 3] and the
references therein.

In this paper, we deal with the extremal signless Laplacian spectral radius
problems for the unicyclic graphs with fixed matching number. The graph with the
largest signless Laplacian spectral radius among all unicyclic graphs with a fixed
matching number is obtained.

2. Lemmas

Let G − u or G − uv denote the graph obtained from G by deleting the vertex
u ∈ V (G) or the edge uv ∈ E(G). A pendant vertex of G is a vertex with degree
one. A path P : vv1v2 · · · vk in G is called a pendant path if d(v1) = d(v2) = · · · =
d(vk−1) = 2 and d(vk) = 1. If k = 1, then we say vv1 is a pendant edge of the
graph G.

In order to complete the proof of our main result, we need the following lemmas.

Lemma 2.1. [7, 15] Let G be a connected graph, and u, v be two vertices

of G. Suppose that v1, v2, . . . , vs ∈ N(v)\{N(u) ∪ u} (1 6 s 6 d(v)) and x =
(x1, x2, . . . , xn) is the Perron vector of G, where xi corresponds to the vertex vi

(1 6 i 6 n). Let G∗ be the graph obtained from G by deleting the edges vvi and

adding the edges uvi(1 6 i 6 s). If xu > xv, then q(G) < q(G∗).

From Lemma 2.1, we obtain the following results.

Corollary 2.1. Let G = (V, E) be a connected graph with vertex set V =
{v1, v2, . . . , vn}. Suppose that v1v2 is an edge of G which does not lie on a circuit

of length three satisfying d(v1) > 2 and d(v2) > 2. Let G̃ be the graph obtained
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from G − v1v2 by amalgamating v1 and v2 to form a new vertex w1 together with

attaching a new pendant vertex w2 to w1. Then q(G̃) > q(G).

Corollary 2.2. Let w and v be two vertices in a connected graph G and

suppose that s paths {ww1w′

1, ww2w′

2, . . . , wwsw′

s} of length 2 are attached to G
at w and t paths {vv1v′

1, vv2v′

2, . . . , vvtv
′

t} of length 2 are attached to G at v to

form Gs,t. Then either q(Gs+i,t−i) > q(Gs,t) (1 6 i 6 t), or q(Gs−i,t+i) > q(Gs,t)
(1 6 i 6 s) and µ(G0,s+t) = µ(Gs+t,0) = µ(Gs,t).

Corollary 2.3. Let w and v be two vertices in a connected graph G and

suppose that s paths {ww1, ww2, . . . , wws} of length 1 are attached to G at w and

t paths {vv1v′

1, vv2v′

2, . . . , vvtv
′

t} of length 2 are attached to G at v to form Hs,t.

Then either

q(Hs,t − ww1 − · · · − wwi + vw1 + · · · + vwi) > q(Hs,t) (1 6 i 6 s) or

q(Hs,t − vv1 − · · · − vvi + wv1 + · · · + wvi) > q(Hs,t) (1 6 i 6 t).

Corollary 2.4. Let w and v be two vertices in a connected graph G and

suppose that s paths {ww1, ww2, . . . , wws} of length 1 are attached to G at w and

t paths {vv1, vv2, . . . , vvt} of length 1 are attached to G at v to form Fs,t. Then

either

q(Fs+i,t−i) > q(Fs,t) (1 6 i 6 t), or q(Fs−i,t+i) > q(Fs,t) (1 6 i 6 s).

Corollary 2.5. Suppose u is a vertex of graph G with d(u) > 2. Let G : uv
be a graph obtained by attaching a pendant edge uv to G at u. Suppose t paths

{vv1v′

1, . . . , vvtv
′

t} of length 2 are attached to G : uv at v to form L0,t. Let

M1,t = L0,t − vv1 − · · · − vvt + uv1 + · · · + uvt.

Then we have µ(M1,t) = µ(L0,t) and q(M1,t) > q(L0,t), (t > 1).

An internal path of a graph G is a sequence of vertices v1, v2, . . . , vm with
m > 2 such that:
(1) The vertices in the sequences are distinct (except possibly v1 = vm);
(2) vi is adjacent to vi+1, (i = 1, 2, . . . , m − 1);
(3) The vertex degrees d(vi) satisfy d(v1) > 3, d(v2) = · · · = d(vm−1) = 2 (unless
m = 2) and d(vm) > 3.

Lemma 2.2. Suppose that P : v1v2 · · · vk (k > 3) is an internal path of the

graph G and v1vk /∈ E(G) for k = 3. Let G∗ be the graph obtained from G −
vivi+1 − vi+1vi+2 (1 6 i 6 k − 2) by amalgamating vi, vi+1 and vi+2 to form a new

vertex w1 together with attaching a new pendant path w1w2w3 of length 2 at w1.

Then q(G∗) > q(G) and µ(G∗) = µ(G).

Proof. Let G′ = G∗ − w2 − w3. By similar reasoning as that of Theorem 3.1
of [11] and Theorem 4.11 of [10], we have q(G′) > q(G). From the well-known
Perron–Frobenius theory, we have q(G∗) > q(G′). Thus we have q(G∗) > q(G).
Next,we prove µ(G∗) > µ(G). Let M be a maximum matching of G. If vivi+1 ∈ M
or vi+1vi+2 ∈ M , then {M − {vivi+1}} ∪ {w2w3} or {M − {vi+1vi+2}} ∪ {w2w3}
is a matching of G∗. Thus, µ(G∗) > µ(G); if vivi+1 /∈ M and vi+1vi+2 /∈ M ,
then there exist two edges viu and vi+2v ∈ M . Thus, {M − {viu}} ∪ {w2w3} is
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a matching of G∗. Hence, µ(G∗) > µ(G). Let M0 be a maximum matching of
G∗. If there exists some vertex, say u(6= w2), of G∗ such that uw1 ∈ M0, then
w2w3 ∈ M0. Thus {M0 − {uw1, w2w3}} ∪ {uvi, vi+1vi+2} is a matching of G; if
there’s no such a vertex, then we have either w1w2 ∈ M0 or w2w3 ∈ M0. Thus
{M0 − {w1w2, w2w3}} ∪ {vi+1vi+2} is a matching of G. So, µ(G) > µ(G∗). Hence,
µ(G) = µ(G∗). �

Let S(G) be the subdivision graph of G obtained by subdividing every edge
of G.

Lemma 2.3. [5, 18] Let G be a graph on n vertices and m edges. Then

Φ(S(G)) = xm−nΨ(G, x2), where Φ(G) and Ψ(G) are the characteristic polyno-

mials of A(G) and Q(G), respectively.

Lemma 2.4. [8] Let u be a vertex of a connected graph G with at least two

vertices. Let Gk,l (k, l > 0) be the graph obtained from G by attaching two pendant

paths of lengths k and l at u, respectively. If k > l > 1, then q(Gk,l) > q(Gk+1,l−1).

Corollary 2.6. Suppose that P : v1v2 · · · vk (k > 4) is a pendant path of the

graph G with d(v1) > 3. Let G∗ = G − vk−2vk−1 + v1vk−1. Then q(G∗) > q(G)
and µ(G∗) = µ(G).

Proof. By Lemma 2.4, we have q(G∗) > q(G). By similar reasoning as that
of Lemma 2.2, we have µ(G∗) = µ(G). �

Lemma 2.5. [17] Let e = uv be an edge of G, and C(e) be the set of all circuits

containing e. Then Φ(G) satisfies

Φ(G) = Φ(G − e) − Φ(G − u − v) − 2
∑

Z

Φ(G − V (Z)),

where the summation extends over all Z ∈ C(e).

From the Perron–Frobenius theory, we immediately have the following

Lemma 2.6. (1) Let △(G) be the maximum degree of G. Then ρ(G) >
√

△(G).
(2) Let G be a connected graph, and let G′ be a proper spanning subgraph of G.

Then ρ(G) > ρ(G′) and q(G) > q(G′).

3. Main results

Theorem 3.1. Let G = (V, E) be a connected graph with n > 4 vertices.

Suppose that v1v2 ∈ E(G), v1v3 ∈ E(G), v1v4 ∈ E(G), d(v3) > 2, d(v4) > 2,

d(v1) = 3, and d(v2) = 1. Let Gv1v3
(Gv1v4

) be the graph obtained from G − v1v3

(G − v1v4) by amalgamating v1 and v3 (v4) to form a new vertex w1 (w3) together

with subdivising the edge w1v2 (w3v2) with a new vertex w2(w4). If q = q(G) >

3 +
√

5 ≈ 5.23606, then

(1) either q(Gv1v3
) > q(G) or q(Gv1v4

) > q(G);
(2) µ(Gv1v3

) > µ(G) and µ(Gv1v4
) > µ(G).
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Proof. Let X = (x1, x2, . . . , xn)T be the Perron vector of G. Then from
(D(G) + A(G))X = q(G)X , we have

(3.1) qxi = dixi +
∑

vivj∈E

xj .

We distinguish the following two cases:

Case 1: x3 > x4. From (3.1), we have

x1 = (q − 1)x2,(3.2)

qx1 = 3x1 + x2 + x3 + x4.(3.3)

Substituting (3.2) into (3.3), together with condition x3 > x4, we get

(3.4)
(

q − 3 − 1

q − 1

)

x1 6 2x3.

From (3.4), we have if q−3− 1
q−1 > 2, namely, q(G) > 3+

√
5, then x3 > x1. Suppose

that the vertices w1, w2, v2, v4, . . . , vn of Gv1v3
are relabelled v3, v1, v2, v4, . . . , vn,

respectively. Then

XT Q(Gv1v3
)X −q(G) = XT Q(Gv1v3

)X −XT Q(G)X = x2
3 −x2

1 +2x4(x3 −x1) > 0.

Thus q(Gv1v3
) > q(G).

Case 2: x4 > x3. By similar reasoning as that of Case 1, we have q(Gv1v4
) >

q(G).
Now, we prove that (2) holds. Let M be a maximum matching of G. If

v1v3 ∈ M , then {M − v1v3} ∪ {v2w2} is a matching of Gv1v3
. So, µ(Gv1v3

) > µ(G).
If v1v3 /∈ M , then v1v2 ∈ M or v1v4 ∈ M . So {M − v1v2 − v1v4} ∪ {v2w2} is
also a matching of Gv1v3

. Thus, µ(Gv1v3
) > µ(G). By similar reasoning, we have

µ(Gv1v4
) > µ(G). �

2
G

2-m

3-m

1
G

12 +- mn 12 +- mn

2-m

m2-n

3
G 4

G

1-m

Figure 1. G1 − G4

Lemma 3.1. Let G1, G2 and G3 be the graphs as given in Figure 1. Then for

n > 6, we have q(G1) > q(G2), q(G1) > q(G3).
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Proof. From Lemma 2.1, it is easy to see that q(G1) > q(G2). Now we prove
that q(G1) > q(G3). From Lemma 2.5, we have

Φ(S(G3)) − Φ(S(G1)) = x2(x2 − 1)n−2µ(x4 − 3x2 + 1)µ−4[(n − µ − 3)x10(3.5)

+ (20 + 6µ − 6n)x8 + (11n − 49 − 10µ)x6

+ (54 − 6n + 3µ)x4 + (n − 25)x2 + 4].

If n > 10, it is easy to prove that for x >
√

n − µ + 1, x2−1 > 0, x4−3x2+1 > 0
and (n − µ − 3)x10 + (20 + 6µ − 6n)x8 + (11n − 49 − 10µ)x6 + (54 − 6n + 3µ)x4 +
(n − 25)x2 + 4 > 0. By Lemma 2.6, we know that ρ(S(G1)) >

√
n − µ + 1. Thus,

ρ(S(G1)) > ρ(S(G3)) (n > 10). For 6 6 n 6 9, by direct calculation, we have
ρ(S(G1)) > ρ(S(G3)). By Lemma 2.3, we have q(G1) > q(G3). �

Theorem 3.2. Suppose u is a vertex of the unicyclic graph G with d(u) > 2.

Let G : uv be a graph obtained by attaching a pendant edge uv to G at u. Suppose

that s paths {vw1, . . . , vws} of length 1 and t paths {vv1v′

1, . . . , vvtv
′

t} of length 2
are attached to G : uv at v to form Ls,t. Let Ms−1,t+1 = Ls,t − vv1 − · · · − vvt −
vw1 − · · · − vws−1 + uv1 + · · · + uvt + uw1 + · · · + uws−1. Then we have

(1) q(Ms−1,t+1) > q(Ls,t), (s > 2 or t > 1);
(2) µ(L0,t) = µ(M−1,t+1) and µ(Ls,t) 6 µ(Ms−1,t+1), (s > 1).

Proof. We distinguish the following four cases:
Case 1: s = 0, t > 1. Then we have Ms−1,t+1 = M−1,t+1 and Ls,t = L0,t.
Since M−1,t+1 (t > 1) can also be obtained from L0,t by identifying u and v

with subsequent removal of the loop, and adding a new pendant edge at this new
vertex, it is easy to show that µ(M−1,t+1) = µ(L0,t) and from Corollary 2.1, we
have q(M−1,t+1) > q(L0,t), (t > 1).

Case 2: s > 2, t > 1. Suppose a new pendant edge vw is attached to G : uv at
v to form G : uvw. And then we subdivide every edge of G in G : uvw to obtain
the graph S(G) : uvw.

Suppose that s paths {ww1w′

1, . . . , wwsw′

s} of length 2 and t paths

{ww11w12w13w14, . . . , wwt1wt2wt3wt4}

of length 4 are attached to S(G) : uvw at w to form L̄s,t. Let

M̄s−1,t+1 = L̄s,t − ww1 − · · · − wws−1 − ww11 − · · · − wwt1

+ uw1 + · · · + uws−1 + uw11 + · · · + uwt1.

Obviously, M̄s−1,t+1
∼= S(Ms−1,t+1), L̄s,t

∼= S(Ls,t) and M̄0,1
∼= L̄1,0.

By Lemma 2.3, we only need to prove that ρ(M̄s−1,t+1) > ρ(L̄s,t). Obvi-
ously, P4 is a proper subgraph of S(L1,t). From Lemma 2.6, we have ρ(S(L1,t)) >

ρ(S(G) − u) > ρ(P4) ≈ 1.61803 >
√

2.
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From Lemma 2.5, we have

Φ(L̄s,t) = Φ(L̄s,t − ww1) − Φ(L̄s,t − w − w1)

= (x2 − 1)Φ(L̄s−1,t) − x(x2− 1)s−1(x4− 3x2+ 1)tΦ(S(G) : uv)

· · ·(3.6)

= (x2 − 1)s−1Φ(L̄1,t) − (s − 1)x(x2 − 1)s−1(x4 − 3x2 + 1)tΦ(S(G) : uv),

and

Φ(L̄1,t) = Φ(L̄1,t − ww11) − Φ(L̄1,t − w − w11)(3.7)

= (x4 − 3x2 + 1)Φ(L̄1,t−1) − (x2 − 1)(x3 − 2x)

· (x4 − 3x2 + 1)t−1Φ(S(G) : uv)

· · ·
= (x4 − 3x2 + 1)tΦ(L̄1,0) − t(x2 − 1)(x3 − 2x)

· (x4 − 3x2 + 1)t−1Φ(S(G) : uv).

Substituting (3.7) into (3.6), we have

Φ(L̄s,t) = (x2 − 1)s−1(x4 − 3x2 + 1)tΦ(L̄1,0)(3.8)

− t(x3 − 2x)(x2 − 1)s(x4 − 3x2 + 1)t−1Φ(S(G) : uv)

− (s − 1)x(x2 − 1)s−1(x4 − 3x2 + 1)tΦ(S(G) : uv),

Φ(M̄s−1,t+1) = Φ(M̄s−1,t+1 − uw1) − Φ(M̄s−1,t+1 − u − w1)(3.9)

= (x2 − 1)Φ(M̄s−2,t+1) − x(x2 − 1)s−2

· (x4 − 3x2 + 1)t+1Φ(S(G) − u)

· · ·
= (x2 − 1)s−1Φ(M̄0,t+1) − (s − 1)x(x2 − 1)s−2

· (x4 − 3x2 + 1)t+1Φ(S(G) − u),

Φ(M̄0,t+1) = Φ(M̄0,t+1 − uw11) − Φ(M̄0,t+1 − u − w11)(3.10)

= (x4 − 3x2 + 1)Φ(M̄0,t) − (x3 − 2x)(x4 − 3x2 + 1)t

· Φ(S(G) − u)

· · ·
= (x4 − 3x2 + 1)tΦ(M̄0,1) − t(x3 − 2x)(x4 − 3x2 + 1)t

· Φ(S(G) − u).

Substituting (3.10) into (3.9), we have

Φ(M̄s−1,t+1) = (x2 − 1)s−1(x4 − 3x2 + 1)tΦ(M̄0,1)(3.11)

− t(x3 − 2x)(x2 − 1)s−1(x4 − 3x2 + 1)tΦ(S(G) − u)

− (s − 1)x(x2 − 1)s−2(x4 − 3x2 + 1)t+1Φ(S(G) − u).
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From (3.8) and (3.11), we have

Φ(L̄s,t) − Φ(M̄s−1,t+1)(3.12)

= [t(x3 − 2x)(x2 − 1)s−1(x4 − 3x2 + 1)t−1 + (s − 1)x(x2 − 1)s−2

· (x4 − 3x2 + 1)t][(x4 − 3x2 + 1)Φ(S(G) − u) − (x2 − 1)Φ(S(G) : uv)].

From Lemma 2.5, by simple calculation, we have

(x4 − 3x2 + 1)Φ(S(G) − u) − (x2 − 1)Φ(S(G) : uv)(3.13)

= −x2Φ(S(G) − u) + x(x2 − 1)
∑

y

Φ(S(G) − u − y)

+ 2x(x2 − 1)
∑

Z

Φ(S(G) − Z).

Since dG(u) > 2 and S(G) is the subdivision graph of G, we have dS(G)(u) > 2.
Without loss of generality, we can suppose that y1 and y2 are two vertices of S(G)
such that yiu ∈ E(S(G)) (i = 1, 2). For x > ρ(S(G) − u), we have from (3.13) that

(x4 − 3x2 + 1)Φ(S(G) − u) − (x2 − 1)Φ(S(G) : uv)(3.14)

> −x2Φ(S(G) − u) + x(x2 − 1)[Φ(S(G) − u − y1) + Φ(S(G) − u − y2)]

and from [16], we have

(3.15) xΦ(S(G) − u − yi) > Φ(S(G) − u) > 0, (i = 1, 2).

Since x > ρ(S(G) − u) >
√

2, we have 2(x2 − 1) > x2. Hence, we have from
(3.15) that for x > ρ(S(G) − u),

−x2Φ(S(G) − u) + x(x2 − 1)[Φ(S(G) − u − y1) + Φ(S(G) − u − y2)] > 0.

So, from (3.14), we have for x > ρ(S(G) − u),

(x4 − 3x2 + 1)Φ(S(G) − u) − (x2 − 1)Φ(S(G) : uv) > 0.

Combined with (3.12), we have for x > ρ(S(G) − u), Φ(L̄s,t) − Φ(M̄s−1,t+1) > 0.

Since ρ(L̄s,t) > ρ(S(G)−u), we have ρ(M̄s−1,t+1) > ρ(L̄1,t). Hence, q(Ms−1,t+1) >
q(Ls,t) by Lemma 2.3.

Case 3: s = 1, t > 1. Then we have M̄s−1,t+1 = M̄0,t+1, L̄s,t = L̄1,t. From
(3.7) and (3.10), we have

Φ(L̄1,t) − Φ(M̄0,t+1) = t(x3 − 2x)(x4 − 3x2 + 1)t−1

[(x4 − 3x2 + 1)Φ(S(G) − u) − (x2 − 1)Φ(S(G) : uv)].

By the similar reasoning as that of Case 2, we have q(M0,t+1) > q(L1,t).

Case 4: s > 2, t = 0. Then we have M̄s−1,t+1 = M̄s−1,1 and L̄s,t = L̄s,0. From
(3.6) and (3.9), we have

Φ(L̄s,0) − Φ(M̄s−1,1) = (s − 1)x(x2 − 1)s−2

· [(x4 − 3x2 + 1)Φ(S(G) − u) − (x2 − 1)Φ(S(G) : uv)].

By the similar reasoning as that of Case 2, we have q(Ms−1,1) > q(Ls,0).
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In the end, we prove that µ(Ls,t) 6 µ(Ms−1,t+1) for s > 1. Let M be a
maximum matching of Ls,t. If uv ∈ M , then {M − {uv}} ∪ {vws} is a matching of
Ms−1,t+1. So, µ(Ls,t) 6 µ(Ms−1,t+1). If uv /∈ M , then there exists some edge, say
vws, of Ls,t such that vws ∈ M . Then M is also a matching of Ms−1,t+1. Thus,
µ(Ls,t) 6 µ(Ms−1,t+1). �

The length of the shortest path between vertices u and v is defined as the
distance of u and v, denoted by d(u, v). Let G1, G2, G3 and G4 be the graphs as
Figure 1. Let B, G1, G2 and G3 be the graphs as given in Figure 2.

3G1G B

1
v

2
v3

v

4
v

2G

Figure 2. G1 − G3, B

Denote by Ug
n(µ) the set of all unicyclic graphs on n vertices with matching

number µ and girth g (> 3).

Theorem 3.3. If G ∈ Un(µ), (n > 6), then q(G) 6 q(G1), with equality if and

only if G = G1.

Proof. Let X = (x1, x2, . . . , xn)T be the Perron vector of G. From Lemma

2.6 and by direct calculations, we have for µ > 3, q(G1) > q(B) ≈ 5.38 > 3 +
√

5 >

4 > q(Cn). So, in the following, we can suppose that q(G) > 3 +
√

5 and G 6= Cn.
Choose G∗ ∈ Un(µ) such that q(G∗) is as large as possible. Then G∗ consists

of a cycle Cg (g > 3) as a subgraph. Let T be a tree attached at some vertex,
say z, of Cg, |V (T )| is the number of vertices of T including the vertex z. In the
following, we prove that T is formed by attaching paths of length at most 2 at z.

Suppose that P : v0v1 . . . vk is a pendant path of G∗ and vk is a pendant vertex.
If k > 3, let H1 = G∗−vk−2vk−1 +v0vk−1. From Corollary 2.6, we have H1 ∈ Ug

n(µ)
and q(H1) > q(G∗), a contradiction. Hence, the pendant paths of G∗ have length
at most 2.

For each vertex u ∈ V (T − z), we prove that d(u) 6 2. Otherwise, there must
exist some vertex u0 of T −z such that d(z, u0) = max{d(z, v)|v ∈ V (T ), d(v) > 3}.
By similar reasoning as that of above, the pendant paths attached at u0 have length
at most 2 by Corollary 2.6. Furthermore, there exists an internal path between u0

and some vertex w of T , denoted by P̄ : u0w1 . . . wm (wm = w). If m > 2, let
H2 be the graph obtained from G∗ − u0w1 − w1w2 by amalgamating u0, w1 and
w2 to form a new vertex s1 together with attaching a new pendant path s1s2s3

of length 2 at s1. From Lemma 2.2, we have H2 ∈ Ug
n(µ) and q(H2) > q(G∗), a

contradiction. If m = 1, by Theorem 3.2, Lemma 2.4 and Corollary 2.5, we can get
a new graph H3 ∈ Ug

n(µ) and q(H3) > q(G∗), a contradiction.
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Thus, we have that the tree T is obtained by attaching some pendant paths of
length at most 2 at z.

From Corollary 2.2, we have that all the pendant paths of length 2 in G∗ must
be attached at the same vertex of Cg.

Now we prove that for cycle Cg of G∗, g = 3. Assume that the cycle Cg of
G∗ with length at least 4. From Lemma 2.2, we have that each internal path of
G∗ has length 1. From Corollary 2.4, there exists at most one vertex of Cg such
that it is attached more than one path of length 1. Then there must exist edges
v1v2 ∈ E(G∗), v1v3 ∈ E(Cg), v1v4 ∈ E(Cg) and d(v1) = 3, d(v2) = 1, d(v3) > 3
and d(v4) > 3. Let H4 (H5) be the graph obtained from G∗ − v1v3 (G∗ − v1v4) by
amalgamating v1 and v3 (v4) to form a new vertex y1 (y3) together with subdivising
the edge y1v2 (y3v2) with a new vertex y2 (y4). From Theorem 3.1 and Lemma 2.4,
we have either q(H4 − y2v2 + y1v2) > q(H4) > q(G∗) or q(H5 − y4v2 + y3v2) >
q(H5) > q(G∗) and µ(H4 − y2v2 + y1v2) 6 µ(G∗) 6 µ(H4), µ(H5 − y4v2 + y3v2) 6
µ(G∗) 6 µ(H5), a contradiction. Hence, g = 3.

Thus, by Corollaries 2.3 and 2.4, we have G∗ is the graph obtained by attaching
the pendant paths of length at most 2 at the same vertex of C3 of G, where G is
one of the graphs C3, G1, G2, and G3 (see Figure 2). Then G∗ is isomorphic to
one of graphs G1, G2, G3 and G4. From Lemma 3.1, we know q(G1) > q(G2) and
q(G1) > q(G3). If G∗ = G4 (in this case, n = 2µ + 1), by Lemma 2.4, we have
q(G1) > q(G4). Thus, G∗ = G1, and the result follows. �
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