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Abstract. Contrary to the notion of a set or a tuple, a multiset is an un-
ordered collection of elements which do not need to be different. As multisets

are already widely used in combinatorics and computer science, the aim of
this paper is to get on track to algebraic multiset theory. We consider gen-
eralizations of known results that hold for equivalence and order relations on
sets and get several properties that are specific to multisets. Furthermore, we
exemplify the novelty that brings this concept by showing that multisets are
suitable to represent partial orders. Finally, after introducing the notion of
an algebra on multisets, we prove that two algebras on multisets, whose root
algebras are isomorphic, are in general not isomorphic.

1. Introduction

Besides having an object representing an unordered collection of distinct el-
ements, which is a set, and an object representing an ordered collection of (not
necessarily distinct) elements, which is a tuple, a fundamental object to complete
this list would be the multiset, an unordered collection of elements. An element can
belong to a multiset more than once, but its multiplicity has to be finite. Several
names have been introduced for such an object: bag, heap, bunch, weighted set,
etc.

The lack of the notion of a multiset in mathematics appears to be groundless
since it is irreplaceable by known objects, e.g., the multiset of prime factors of a
number.

While these objects are used frequently in many areas of computer science,
engineering and philosophy, there is still no coherent fundamental theory that de-
scribes their appearance and behavior. The application goes back to the ancient
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times when numbers were represented as unordered collections of tally marks. How-
ever, the first time they were mentioned formally was by Dedekind [3] in his well-
known essay “The nature and meaning of numbers", noticing that “In this way
we reach the notion, very useful in many cases, of systems in which every element
is endowed with a certain frequency-number which indicates how often it is to be
reckoned as an element of the system." Later on, mathematics has been develop-
ing on classical set theory and the necessity for the introduction of the notion of
a multiset appeared in applications a few decades ago. Multisets were used for
proving termination properties and in some search and sort algorithms [8], Petri
nets [9], relational data bases [11], automata theory [4], software verification and
interactive theorem proving [10], etc.

For example, in concurrency theory, the replication of a process !P is struc-
turally equivalent with the paralell composition of the process and its replication
P |!P . This means that !P is a parallel composition of infinite number of copies of
P and one can represent it as the multiset containg infinite number of copies of P ,
as it was done in [5]. A deep survey and axiomatic introduction of multisets can be
found in the work of Blizard [1, 2]. More on relations and functions can be found
in [6].

The paper is organized as follows. In order to make the presentation self-
contained, we recall some basic notions in Section 2. For references, we refer the
reader to [1] and [6]. In Section 3, we give a characterization of equivalence relations
on multisets and give a property of equivalence relations on a set that does not
hold for equivalence relations on a multiset. The main results are the content of
Section 4, where we show that it is possible to represent algebraic properties by
multisets. Section 5 introduces the notion of an operation and an algebra on a
multiset, as well as subalgebras and homomorphisms of algebras on multisets. We
prove a property specific to multisets, namely, that a necessary but not sufficient
condition for two algebras on a multiset to be isomorphic is that their root algebras
are isomorphic.

2. Preliminaries and basic definitions

A multiset is a collection of elements that may appear more than once and the
number of occurrences of an element in a multiset is a unique positive integer. For
a multiset M the root set of M , denoted by M∗, is the set containing all distinct
elements from M . A multiset is completely described by its root set and the number
of occurrences in the multiset of each element of the root set.

For a positive integer n, if M contains n copies of x, we write x ∈n M . The
multiplicity of x in M will be denoted by |x|M . For a multiset M with |x1|M = n1,
|x2|M = n2 and so on, we usually write M = [x1, x2, . . .]n1,n2,... or repeat all
the occurrences of elements in square brackets. The cardinality of the multiset
[x1, x2, . . . , xm]n1,n2,...,nm

, having a finite root set, is equal to n1 + n2 + · · · + nm.
Let M and N be non-void multisets and l, m, n non-negative integers. The

intersection of M and N is the multiset denoted by M ∩ N such that x ∈l M ∩ N

iff x ∈m M and x ∈n N and l = min{m, n}. The union of M and N is the multiset
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denoted by M ∪N such that x ∈l M ∪N iff x ∈m M and x ∈n N and l = max{m, n}.
We say that M is a multisubset of N , written as M ⊆ N , iff x ∈m M implies x ∈n N

and m 6 n. They are equal if x ∈m M iff x ∈m N . The n-th Cartesian power of
M is defined by: M0 = {∅}, M1 = M and

Mn =
⋃

xi∈mi M, 16i6n

[(x1, . . . , xn)]m1·m2·...·mn
, for n > 2.

The n-ary relation α on M is an arbitrary subset of Mn satisfying:

(x1, . . . , xn) ∈l1·...·ln α ∧ x1 ∈m1 M ∧ . . . ∧ xn ∈mn M

for some 0 < li 6 mi, i ∈ {1, . . . , n}, where we also take into account the multiplicity
of each coordinate and write (x1, . . . , xn) ∈(l1,...,ln) α. For a relation α on a multiset
M , we denote by α∗ the relation that contains all distinct elements from α. Since for
an element of a relation we specify the multiplicity of each coordinate, operations
on relations also depend on them.

Let α and β be n-ary relations on a multiset M .

(a) α ⊆ β iff (x1, . . . , xn) ∈(m1,...,mn) α implies (x1, . . . , xn) ∈(k1,...,kn) β and
mi 6 ki for each i ∈ {1, . . . , n}.

(b) (x1, . . . , xn) ∈(l1,...,ln) α ∩ β iff (x1, . . . , xn) ∈(m1,...,mn) α and (x1, . . .,
xn) ∈(k1,...,kn) β and li = min{mi, ki}, 1 6 i 6 n.

We define the inverse relation α−1 of a binary relation α as follows:

(x, y) ∈(k,l) α−1 iff (y, x) ∈(l,k) α.

and we say that

(R) α is reflexive on M iff (∀x ∈m M) (x, x) ∈(m,m)∈ α,
(S) α is symmetric on M iff (∀x, y ∈ M∗) (x, y) ∈(k,l) α ⇒ (y, x) ∈(l,k) α,
(A) α is antisymmetric on M iff

(∀x, y, z ∈ M∗)((x, y) ∈(k,l) α ∧ (y, x) ∈(l,k) α ⇒ x = y ∧ l = k),

(T) α is transitive on M iff

(∀x, y, z ∈ M∗)((x, y) ∈(k,l) α ∧ (y, z) ∈(l,m) α ⇒ (x, z) ∈(k,m) α).

3. On equivalence and order relations

Concepts of equivalence and order relations are powerful descriptive tools widely
applied both in mathematics and computer science. We will point out similarities
and differences of these concepts for sets and multisets. Proofs that are straight-
forward are omitted. As usual, a binary relation α on a multiset M is said to be
an equivalence relation on M iff α is a reflexive, symmetric and transitive relation
on M . A binary relation α on a multiset M is said to be an order relation on
M iff α is a reflexive, antisymmetric and transitive relation on M . The following
theorem gives a characterization of equivalence relations on a multiset, providing
necessary and sufficient conditions for a relation on a multiset, whose root relation
is an equivalence, to be an equivalence relation too.
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Theorem 3.1. Let M be a non-void multiset with the root set M∗. α is an

equivalence relation on M iff

(a) for all x, y ∈ M∗ it holds that (x, y) ∈(k,l) α implies x ∈k M and y ∈l M .

(b) α∗ is an equivalence relation on M∗.

Proof. Even-though the proof is straightforward, we do not omit it since
we find this theorem to be of fundamental importance for the characterization of
multiset partitioning.

(⇒) (a) From (x, y) ∈(k,l) α, since α is symmetric, it follows that (y, x) ∈(l,k) α.
Hence, since α is transitive, we have that (x, x) ∈(k,k) α and (y, y) ∈(l,l) α. By
reflexivity of α we conclude that x ∈k M and y ∈l M .

(b) (R) If α is reflexive, then (x, x) ∈(m,m) α for any x ∈m M . Therefore,
(x, x) ∈ α∗ for each x ∈ M∗.

(S) From (x, y) ∈ α∗ and x ∈k M, y ∈l M , by the definition of the root
relation and (a), we have that (x, y) ∈(k,l) α. Since α is symmetric, it follows that
(y, x) ∈(l,k) α, and so (y, x) ∈ α∗.

(T ) Let us assume that (x, y) ∈ α∗, (y, z) ∈ α∗, x ∈k M, y ∈l M and z ∈m M .
From the definition of the root relation and (a) we conclude that (x, y)(k,l) ∈ α

and (y, z) ∈(l,m) α. By transitivity of α, it holds that (x, z) ∈(k,m) α and therefore
(x, z) ∈ α∗.

(⇐) (R) If α∗ is reflexive then (x, x) ∈ α∗ for every x ∈ M∗. Therefore, (x,

x) ∈(m′,m′′) α for some positive integers m′, m′′. From (b) it holds that x ∈m M

for m = m′ = m′′. So, (x, x) ∈(m,m) α for every x ∈m M .
(S) If (x, y) ∈(k,l) α, then (x, y) ∈ α∗ and from symmetry of α∗ also (y, x) ∈ α∗.

Then, (y, x) ∈(l′,k′) α for some positive integers l′, k′ which by (a) gives l = l′ and
k = k′.

(T ) Let us suppose that (x, y) ∈(k,l) α and (y, z) ∈(l,m) α. It follows that
(x, y) ∈ α∗, (y, z) ∈ α∗, x ∈k M, y ∈l M and z ∈m M . By transitivity of α∗, it holds
that (x, z) ∈ α∗. We can conclude, by applying (a), that (x, z) ∈(k,m) α. �

We will show that for a reflexive and transitive relation α on a multiset, the
relation α ∩ α−1 is in general not an equivalence relation, contrary to what holds
for relations on sets.

Theorem 3.2. Let M be a non-void multiset and α a reflexive and transitive

relation on M . Then, α ∩ α−1 is a reflexive and symmetric relation on M .

Proof. (R) Let x ∈m M . Since α is reflexive, (x, x) ∈(m,m) α and (x, x) ∈(m,m)

α−1 implies (x, x) ∈(m,m) α ∩ α−1.

(S) If (x, y) ∈(k,l) α ∩ α−1 then (x, y) ∈(k′,l′) α and (x, y) ∈(k′′,l′′) α−1, where

k = min{k′, k′′} and l = min{l′, l′′}. Therefore, (y, x) ∈(l′,k′) α−1 and (y, x) ∈(l′′,k′′)

α, and hence so (y, x) ∈(l,k) α ∩ α−1. �

In contrast to the well-known property that holds for sets, we show now that
α ∩ α−1 is not necessarilly an equivalence relation, assuming that α is a reflexive
and transitive relation.
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Example 3.1. Let α = [(x, x), (y, y), (x, y), (y, x)](5,5),(3,3),(2,3),(1,5) be a rela-

tion on M = [x, y]5,3. Hence, α−1 = [(x, x), (y, y), (y, x), (x, y)](5,5),(3,3),(3,2),(5,1)

and α ∩ α−1 = [(x, x), (y, y), (x, y), (y, x)](5,5),(3,3),(2,1),(1,2). It is not transitive,

since (x, y) ∈(2,1) α ∩ α−1 and (y, x) ∈(1,2) α ∩ α−1, but it does not hold that

(x, x) ∈(2,2) α ∩ α−1.

4. Partial orders described by multisets

Let A be a finite set and let G = {G1, . . . , Gn} be a set of subsets of A ordered
by set inclusion. We will show that some partial orders can be represented by the
additive union MG = G1

⊎
G2

⊎
. . .

⊎
Gn of all the elements of G.

In the following Lemma, MG completely describes a chain, i.e., multiplicities
of elements in the multiset MG determine the depth to which elements belong.

Lemma 4.1. Let G be such that Gn ⊆ Gn−1 ⊆ . . . ⊆ G1 and MG = G1
⊎

G2
⊎

. . .
⊎

Gn. Then, for each i ∈ {1, . . . , n}, x ∈i MG if and only if x ∈ Gi and

x 6∈ Gi+1.

Proof. The proof follows directly from the property of the total order that
x ∈ Gi implies that x ∈ Gj for each j ∈ {1, . . . , i − 1}. �

Theorem 4.1. Let A = {e, a, . . . , (pk − 1)a} be a cyclic group of order pk, for

a prime p and a positive integer k. Let MG be defined by: x ∈j+1 MG if there

is j ∈ {0, . . . , k} such that x is generated by pja and x is not generated by pj+1a.

MG = G1 ⊎ G2 ⊎· · ·⊎ Gk+1 for a chain {G1, . . . , Gk+1} iff the chain is the subgroup

lattice of the cyclic group of order pk.

Proof. It is well-known that a subgroup lattice is a chain of length k + 1 if
and only if the group is cyclic of order pk. Each subgroup is generated by pja, for
some 0 6 j 6 k. �

Theorem 4.2. For |A| = n, let G1 = {e} be the least and Gn = A the greatest

element of (G, ⊆) and let MG = G1
⊎

G2
⊎

. . .
⊎

Gn. If e ∈n MG and x ∈2 MG,

x 6= e, then Gi * Gj and Gj * Gi, for all i, j ∈ {2, . . . , n − 1}.

Proof. Consider the partition of MG onto subsets from G. Since e ∈n MG

there are at least n such subsets, each containing e. Since G1 is the least element,
there are exactly n such subsets. The greatest element Gn contains all the elements
from A, so the remaining n − 2 elements have to be assigned to other n − 2 subsets.
In order to obtain n − 2 subsets, they have to be pairwise distinct, each having the
cardinality 2. �

5. Algebras on multisets

We introduce the concept of an algebra on a multiset, which will bring us to
the study of the properties that are common to all such algebras and also to those
that make distinctions between them.
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Definition 5.1. Let M be a non-void multiset with the root set M∗, n a positive

integer and f∗ an n-ary operation on M∗. The n-ary operation on the multiset M

determined by f∗ is the n-ary relation f defined by: if (x1, . . . , xn, y) ∈ f∗ and

(x1, . . . , xn, y) ∈(m1,...,mn,l) Mn+1, then (x1, . . . , xn, y) ∈(m1,...,mn,l) f .

Notice that the previous definition can be extended to the case n = 0, which
defines the nullary operation f : {∅} → M . If f∗(∅) = a and a ∈m M then
f(∅) = [a]m. We usually avoid nullary operations and replace them with unary
operations with constant values.

The number n is called the arity of f and denoted by ar(f).

Definition 5.2. An algebra on a multiset is an ordered pair (M ; F ), where

M is an arbitrary non-void multiset and F is a set of finitary operations on M .

The set M is called the underlying multiset of M .

If F = {f1, . . . , fn}, we write (M ; f1, . . . , fn), or (M ; {fi : i ∈ I}) for a cer-
tain index set I. We will denote the corresponding set {f∗

1 , . . . , f∗
n} of opera-

tions on the root set by F ∗. As usual, the type of the algebra M is the sequence
(ar(f1), . . . , ar(fn)) of the arities of the fundamental operations. For the algebra
(M ; F ) we say that its root algebra is (M∗; F ∗).

Definition 5.3. Let (MA; FA) and (MB; FB) be two algebras of the same type

and FA = {fi : i ∈ I} and FB = {gi : i ∈ I} with ar(fi) = ar(gi) = ni for every

i ∈ I. We say that the mapping ϕ from MA to MB is a homomorphism from

MA into MB if ϕ∗ is a homomorphism from M∗
A into M∗

B, for the corresponding

algebras (M∗
A; F ∗

A) and (M∗
B; F ∗

B).

If ϕ is a bijection from MA to MB, then ϕ is said to be an isomorphism and we
write (MA; FA) ∼= (MB; FB). Hickman [7] has shown that the Schröder-Bernstein
theorem does not hold for multisets. We show that there are non-isomorphic al-
gebras on multisets for which the corresponding algebras on their root sets are
isomorphic.

Theorem 5.1. Let (A; FA) and (MB; FB) be algebras on multisets. The nec-

essary, but not sufficient, condition for (MA; FA) ∼= (MB; FB) is (M∗
A, F ∗

A) ∼=
(M∗

B, F ∗
B).

Proof. If (MA; FA) ∼= (MB; FB) it follows directly from the definition that
(M∗

A; F ∗
A) ∼= (M∗

B, F ∗
B). We shall prove that the reverse is not true. Let M∗

A =
{a1, a2, . . .}, M∗

B = {b1, b2, . . .} and let us define unary operations p∗ on M∗
A and

q∗ on M∗
B as follows:

p∗(ai) = ai+1 and q∗(bi) = bi+1 for every i ∈ {1, 2, . . .}.

Let us consider algebras (MA; p) and (MB; q), where

MA = [a1, a2, . . . , ak, . . .]{2,4,...,2k,...} and MB = [b1, b2, . . . , bl, . . .]{1,3,...,2l−1,...}.

We will show that the function f∗ : M∗
A → M∗

B defined by f∗(ai) = bi, i ∈
{1, 2, . . .}, is an isomorphism from (M∗

A, p∗) to (M∗
B, q∗). It is obvious that f∗ is a
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bijection from M∗
A to M∗

B and it holds

f∗(p∗(ai)) = f∗(ai+1) = bi+1 = q∗(bi) = q∗(f∗(ai)).

However, there is no bijection between the multiset MA and MB, since |x|MA
6=

|y|MB
for all x ∈ M∗

A and y ∈ M∗
B (see [7]). �

6. Conclusion and future work

The main aim of this study was a comparison of some results that hold on sets
with the corresponding extensions on multisets. Some results can be extended to
the multiset case, whereas there are characteristics that are specific for multisets. In
the future work we will put emphasis on the investigation of multialgebra properties.
An interesting problem would be to study the possibilities to derive properties of a
structure of algebra from a given multiset, as it was done in the present paper for
the subgroup lattice of the cyclic group of order pk. If we are given a multiset, the
question is to determine the necessary and sufficient conditions for a multiset to
have a unique partition, corresponding to a specific characterization of an algebra.
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