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Abstract. First I will explain my motivation to introduce the δ-invariants for
Riemannian manifolds. I will also recall the notions of ideal immersions and
best ways of living. Then I will present a few of the many applications of δ-
invariants in several areas in mathematics. Finally, I will present two optimal
inequalities involving δ-invariants for Lagrangian submanifolds obtained very
recently in joint papers with F. Dillen, J. Van der Veken and L. Vrancken.

1. Why introduced δ-invariants ?

In this section I will explain my motivation to introduce the δ-invariants.

1.1. Nash’s embedding theorem. In 1956, John F. Nash (1928– ) proved
in [21] the following famous embedding theorem.

Theorem 1.1. Every Riemannian n-manifold can be isometrically embedded
in a Euclidean m-space E

m with m = n
2 (n + 1)(3n + 11).

For example, Nash’s theorem implies that every 3-dimensional Riemannian
manifold can be isometrically embedded in E

120 with codimension 117.
The embedding problem had been around since Bernhard Riemann (1826–1866)

and was posed explicitly by Ludwig Schläfli (1814–1895) in the 1870s. The problem
has evolved naturally from a progression of other questions that had been posed
and partly answered beginning in the middle of 19th century via the work of Jean F.
Frenet (1816–1900), Joseph A. Serret (1819–1885), Louis S. X. Aoust (1814–1885);
and then by Maurice Janet (1888–1984) and Élie Cartan (1869–1951) in the 1920s.
First, mathematicians studied the embedding problem of ordinary curves, then of
surfaces, and finally, of Riemannian manifolds of higher dimensions.
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John Conway (1937– ), the Princeton mathematician who discovered surreal
numbers and invented the game of life (known simply as Life), called Nash’s result

“one of the most important pieces of mathematical analysis in
the 20th century”.

Also, according to Shlomo Sternberg (1936– ) of Harvard University,
“The embedding problem is a deep philosophical question con-
cerning the foundations of geometry that virtually every mathe-
matician – from Riemann and Hilbert to Élie Cartan and Her-
mann Weyl – working in the field of differential geometry for the
past century has asked himself.”

(Quoted from the book: “A Beautiful Mind; The life of mathematical genius and
Nobel laureate John Nash” by Sylvia Nasar, 1998.)

1.2. Why is it so difficult to apply Nash’s embedding theorem? Nash’s
embedding theorem served for in the hope that if Riemannian manifolds could al-
ways be regarded as Riemannian submanifolds, this would then yield the opportu-
nity to use extrinsic help. Till when observed in [19] as such by Mikhail L. Gromov
(1943– ), this hope had not been materialized however.

There were several reasons why it is so difficult to apply Nash’s theorem. One
reason is that it requires very large codimension for a Riemannian manifold to
admit an isometric embedding in Euclidean spaces in general, as stated in Nash’s
theorem. On the other hand, submanifolds of higher codimension are very diffi-
cult to be understood, e.g., there are no general results for arbitrary Riemannian
submanifolds, except the three fundamental equations of Gauss, Codazzi and Ricci.

Another reason, for instance, was explained in [23] as follows.
“What is lacking in the Nash theorem is the control of the ex-
trinsic quantities in relation to the intrinsic quantities.”

In other words, another main difficulty to apply Nash’s theorem is:
“There do not exist general optimal relationships between the
known intrinsic invariants and the main extrinsic invariants for
arbitrary Riemannian submanifolds of Euclidean spaces.”

1.3. Obstructions to minimal immersions. Since there are no obstruc-
tions to isometric embeddings according to Nash’s theorem, in order to study iso-
metric embedding (or more generally, immersion) problems, it is natural to impose
some suitable conditions on immersions.

For example, if one imposes the minimality condition it leads to the following
problem proposed by Shiing-Shen Chern (1911–2004) during the 1960s.

Problem 1. What are necessary conditions for a Riemannian manifold to
admit a minimal isometric immersion into a Euclidean space?

The equation of Gauss states that the Riemann curvature tensor R and the
second fundamental form h of a Riemannian submanifold in a Euclidean space
satisfy

R(X, Y ; Z, W ) = 〈h(X, W ), h(Y, Z)〉 − 〈h(X, Z), h(Y, W )〉 .
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It follows immediately from the equation of Gauss that a necessary condition for a
Riemannian manifold to admit a minimal immersion in any Euclidean space is

Ric 6 0, (in particular, τ 6 0),

where Ric and τ are the Ricci and scalar curvatures of the submanifold.
For many years, before the invention of δ-invariants, this was the only known

Riemannian obstruction for a general Riemannian manifold to admit a minimal
immersion into a Euclidean space with arbitrary codimension.

1.4. Obstructions to Lagrangian immersions. A submanifold M of a
Kähler manifold (M̃, J, g) is called Lagrangian if J(TpM) = T ⊥

p M , ∀p ∈ M , where
J and g are the complex structure and the Kähler metric of M̃ .

A result of Gromov states that a compact n-manifold M admits a Lagrangian
immersion into the complex Euclidean n-space Cn if and only if the complexifica-
tion T M ⊗ C of the tangent bundle of M is trivial [18]. Gromov’s result implies
that there are no topological obstructions to Lagrangian immersions for compact
3-manifolds in C3, because the tangent bundle of every 3-manifold is trivial.

On the other hand, if one imposes isometrical condition to the Lagrangian
immersion problem, it leads to the following.

Problem 2. What are the Riemannian obstructions to Lagrangian isometric
immersions of Riemannian n-manifolds into Cn?

1.5. What do we need to do to overcome the difficulties? We ask the
following two basic questions:

(1) What do we need to do to overcome the difficulties mentioned above?
(in order to apply Nash’s embedding theorem)

(2) How can we solve Problems 1 and 2 concerning minimal and Lagrangian
immersions?

1.6. My answers. My answers to these two basic questions are the following.

(a) We need to introduce a new type of Riemannian invariants, different in
nature, from the “classical” Riemannian invariants; namely, from scalar
and Ricci curvatures (which have been studied extensively for more than
150 years since Riemann).

(b) We also need to establish general optimal relationships between the main
extrinsic invariants of the submanifolds and the new type of intrinsic in-
variants.

1.7. My motivation. These considerations provided me the motivation to
introduce δ-invariants for Riemannian manifolds during the 1990s.

2. How I defined δ-invariants

Let M be a Riemannian n-manifold and K(π) denote the sectional curvature
of a plane section π ⊂ TpM , p ∈ M . For an orthonormal basis {e1, . . . , en} of TpM ,
the scalar curvature τ at p is given by τ(p) =

∑

i<j K(ei ∧ ej).
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Let L be a subspace of TpM of dimension r > 2 and {e1, . . . , er} be an or-
thonormal basis of L. The scalar curvature τ(L) of L is defined by

τ(L) =
∑

α<β

K(eα ∧ eβ), 1 6 α < β 6 r.

2.1. The set S(n). For a given integer n > 2, denote by S(n) the finite
set consisting of all k-tuples (n1, . . . , nk) of integers 2 6 n1, . . . , nk 6 n − 1 with
n1 + · · · + nk 6 n, where k is a non-negative integer.

In number theory and combinatorics, a partition of a positive integer n is a
way of writing n as a sum of positive integers. The cardinal number #S(n) of S(n)
is equal to p(n) − 1, where p(n) is the number of partitions of n. For instance, for

n = 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . ,

50, . . . , 100, . . . , 200,

the corresponding cardinal numbers are given respectively by

#S(n) = 1, 2, 4, 6, 10, 14, 21, 29, 41, . . . ,

204 225, . . . , 190 569 291, . . . , 3 972 999 029 387.

The asymptotic behavior of #S(n) is given by

#S(n) ≈ 1

4n
√

3
exp

[

√

2n
3 π

]

as n → ∞.

2.2. Definition of δ-invariants. For each given k-tuple (n1, . . . , nk) ∈ S(n),
I defined the δ-invariant δ(n1, . . . , nk) by

δ(n1, . . . , nk) = τ − inf{τ(L1) + · · · + τ(Lk)},

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TpM such that
dim Lj = nj , j = 1, . . . , k. In particular, we have

δ(∅) = τ (k = 0, the trivial δ-invariant),
δ(2) = τ − inf K, where K is the sectional curvature,
δ(n − 1)(p) = max Ric(p).

Remark 2.1. The non-trivial δ-invariants are very different in nature from
the “classical” scalar and Ricci curvatures; simply due to the fact that both scalar
and Ricci curvatures are the “total sum” of sectional curvatures on a Riemannian
manifold. In contrast, the non-trivial δ-invariants are obtained from the scalar
curvature by throwing away a certain amount of sectional curvatures. Consequently,
the non-trivial δ-invariants are very weak intrinsic invariants.

Borrowing a term from biology, δ-invariants are DNA of Riemannian mani-
folds. Results in later sections illustrate that all of our δ-invariants do affect directly
the behavior of Riemannian manifolds.

Remark 2.2. Some other invariants of similar nature, i.e., intrinsic invariants
obtained from scalar curvature by throwing away certain amount of sectional cur-
vature, are also called δ-invariants. For instance, we also have affine δ-invariants,
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Kählerian δ-invariants, submersion δ-invariants, contact δ-invariants, etc. Such δ-
invariants were introduced while we investigated some special families of manifolds.

3. What can we do with δ-invariants?

To apply Nash’s embedding theorem, we ask the following most fundamental
question in the theory of Riemannian submanifolds.

Fundamental Question. What can we conclude from an arbitrary isometric
immersion of a Riemannian manifold in a Euclidean space with any codimension?

That is, “ ∀ arbitrary isometric immersion φ : M → E
m =⇒ ??? ”

Or, more generally,

What can we conclude from an arbitrary isometric immersion between Riemannian
manifolds?

That is, “ ∀ arbitrary isometric immersion φ : M → M̃ =⇒ ??? ”

Remark 3.1. For surfaces in E
3, the equation of Gauss was found in 1827 in

principal, though not explicitly, by Carl F. Gauss (1777–1855); and the equation of
Codazzi was given by Delfino Codazzi (1824–1875) in 1860, independently by Gas-
pare Mainardi (1800–1879) in 1856 and also by Karl M. Peterson (1828–1881) in his
1853 doctoral thesis [ Über die Biegung der Flächen, Dorpat University ]. In 1880,
Aurel E. Voss (1845–1931) extended both equations to Riemannian submanifolds.
The equation of Ricci was discovered by Gregorio Ricci (1853–1925) in 1899.

For so many years since then, the only known solutions to the Fundamental
Question were the equations of Gauss, Codazzi and Ricci, as we have already said
earlier.

3.1. A new general solution to Fundamental Question. By applying
the δ-invariants, we are able to provide the following new optimal general solution
to the Fundamental Question.

Theorem 3.1. For any isometric immersion of a Riemannian n-manifold M
into another Riemannian manifold M̃ , we have

δ(n1, . . . , nk) 6
n2(n + k − 1 − ∑k

j=1 nj)

2(n + k − ∑k
j=1 nj)

H2(3.1)

+
1
2

{

n(n − 1) −
k

∑

j=1

nj(nj − 1)
}

max K̃

for every k-tuple (n1, . . . , nk) ∈ S(n), where H2 denotes the squared mean curvature
and max K̃(p) is the maximum of sectional curvatures of M̃ restricted to 2-plane
sections of TpM .

The equality case of inequality (3.1) holds at a point p ∈ M if and only if the
following two conditions hold:
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(a) there exists an orthonormal basis {e1, . . . , em} of TpM such that the shape
operator A at p takes the form:











Ar
1 . . . 0

...
. . .

... 0

0 . . . Ar
k

0 µrI











, r = n + 1, . . . , m,(3.2)

where I is an identity matrix and Ar
j is a symmetric nj × nj submatrix

satisfying trace (Ar
1) = · · · = trace (Ar

k) = µr.
(b) for any k mutual orthogonal subspaces L1, . . . , Lk of TpM satisfying

δ(n1, . . . , nk) = τ −
∑k

j=1
τ(Lj)

at p, we have K̃(eαi
, eαj

) = max K̃(p) for any αi ∈ ∆i, αj ∈ ∆j with
1 6 i 6= j 6 k + 1, where ∆1, . . . , ∆k+1 are given by

∆1 = {1, . . . , n1}, . . .

∆k = {n1 + · · · + nk−1 + 1, . . . , n1 + · · · + nk},

∆k+1 = {n1 + · · · + nk + 1, . . . , n}.

Definition 3.1. For each k-tuple (n1, . . . , nk) ∈ S(n), we define the normalized
δ-invariant ∆(n1, . . . , nk) of a Riemannian n-manifold by

∆(n1, . . . , nk) =
δ(n1, . . . , nk)
c(n1, . . . , nk)

, c(n1, . . . , nk) =
n2

(

n+k−1−∑k
j=1 nj

)

2
(

n + k − ∑k
j=1 nj

)
.

When the ambient space M̃ is a Euclidean space, Theorem 3.1 becomes

Theorem 3.2. For any isometric immersion of a Riemannian n-manifold M
into a Euclidean space with arbitrary codimension, we have

(3.3) H2
> ∆(n1, . . . , nk)

for every (n1, . . . , nk) ∈ S(n).
The equality case of (3.3) holds at p ∈ M if and only if there is an orthonormal

basis {e1, . . . , em} of TpM such that the shape operator A at p takes the form:

(3.4) Aer
=









A
r
1 . . . 0

.

.

.

.

.

.

.

.

. 0

0 . . . A
r
k

0 µrI









, r = n + 1, . . . , m,

where I is an identity matrix and Ar
j is a symmetric nj × nj submatrix which

satisfies trace (Ar
j) = µr for j = 1, . . . , k.

Remark 3.2. For each (n1, . . . , nk) ∈ S(n), inequality (3.3) is optimal, since
there exists a non-minimal submanifold satisfying the equality case.
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Remark 3.3. Due to the well-known fact that the mean curvature vector field
of an isometric immersion is exactly the tension field, Theorem 3.2 shows that the
amount of tension a submanifold receives at each point from its ambient space is
predominated below by its δ-invariants. Consequently, each δ-invariant does affect
directly the behavior of Riemannian manifolds.

Theorem 3.2 implies immediately the following.

Corollary 3.1. For every isometric immersion of a Riemannian n-manifold
into a Euclidean space with arbitrary codimension, we have H2(p) > ∆̂0(p), where
∆̂0 := max{∆(n1, . . . , nk) : (n1, . . . , nk) ∈ S(n)} is the maximal normalized δ-
invariant.

3.2. Maximum principle. In general, there do not exist direct relationships
between δ-invariants. On the other hand, we have the following maximum principle,
which follows immediately from Theorem 3.2.

Maximum Principle. If an n-dimensional submanifold M of a Euclidean
space satisfies the equality case of (3.3) for some k-tuple (n1, . . . , nk) ∈ S(n),
i.e., H2 = ∆(n1, . . . , nk), then for every (m1, . . . , mj) ∈ S(n) and any j we have
∆(n1, . . . , nk) = ∆̂0 > ∆(m1, . . . , mj).

4. Ideal immersions and best ways of living

What is a “nice immersion” of a Riemannian manifold? In my opinion, it is an
isometric immersion which produces the least possible amount of tension at each
point. For this reason I introduced the notion of ideal immersions in the 1990s.

Definition 4.1. An isometric immersion of a Riemannian n-manifold into a
Euclidean space is called ideal if H2 = ∆̂0 holds identically.

The Maximum Principle yields the following important fact.

Theorem 4.1. If an isometric immersion of a Riemannian n-manifold M in a
Euclidean space satisfies H2 = ∆(n1, . . . , nk) identically for a k-tuple (n1, . . . , nk)
in S(n), then it is an ideal immersion automatically.

Remark 4.1. Theorem 3.2 implies that ideal submanifolds are those which
receive the least amount of tension at each point.

In the following, by a best world we mean a Riemannian space with the highest
degree of homogeneity.

Remark 4.2. According to the work of Sophus Lie (1842–1899), Felix Klein
(1849–1925) and Wilhelm Killing (1847–1923), the family of best worlds consists of
Euclidean spaces, spheres, real projective spaces, and real hyperbolic spaces, i.e.,
the family of real space forms. These spaces have the highest degree of homogeneity,
since their groups of isometries have the maximal possible dimension.

Definition 4.2. A best way of living is an ideal isometric embedding of a
Riemannian manifold into a best world.
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Remark 4.3. It follows from Definition 4.2 that a best way of living is a
very comfortable way of living in a wonderful world which allows maximal degree
of freedom (living in a best world), it preserves shape (isometric, no stretching),
without self-cutting (embedding). Furthermore it receives the least possible amount
of tension at each point from the outside world (ideal).

5. Some applications of δ-invariants

In this section we provide some of the many applications of δ-invariants. Many
more applications can be found in my 2011 book [8].

5.1. Applications to minimal immersions. δ-invariants have many appli-
cations to minimal immersions. As an immediate application of Theorem 3.2, we
have the following solution to Problem 1 concerning Riemannian obstructions to
minimal immersions.

Theorem 5.1. Let M be a Riemannian n-manifold. If there exist a point p
and a k-tuple (n1, . . . , nk) ∈ S(n) with δ(n1, . . . , nk)(p) > 0, then M never admits
a minimal immersion into any Riemannian manifold with non-positive sectional
curvature. In particular, M never admits a minimal immersion into any Euclidean
space for any codimension.

5.2. Applications to spectral theory. By applying Theorem 3.2 and Nash’s
embedding theorem, we discovered the following intrinsic result.

Theorem 5.2. Let M be a compact irreducible homogeneous Riemannian n-
manifold. Then the first nonzero eigenvalue λ1 of the Laplacian ∆ satisfies

λ1 > n ∆(n1, . . . , nk)(5.1)

for every k-tuple (n1, . . . , nk) ∈ S(n).

If k = 0, then (5.1) reduces to the following well-known result of Tadashi
Nagano (1930 – ) obtained in [20]:

λ1 > nρ, where ρ =
2τ

n(n − 1)
is the normalized scalar curvature.

Theorem 5.2 implies immediately the following.

Corollary 5.1. For every compact irreducible homogeneous Riemannian n-
manifold, we have λ1 > n∆̂0.

5.3. Who can live in the wonderland of best livings? Ordinary spheres
in Euclidean spaces are the simplest examples of best ways of living. Besides spheres
there are many other homogeneous spaces which admit best ways of living in some
Euclidean spaces. For instance, the following three compact homogeneous spaces:

SU(3)/T 2, Sp(3)/Sp(1)3, and F4/Spin(8)

admit best ways of living in E
8, E14 and E

26 associated with

(3, 3) ∈ S(6), (3, 3, 3, 3) ∈ S(12), (12, 12) ∈ S(24),
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respectively. The best ways of living for SU(3)/T 2, Sp(3)/Sp(1)3 and F4/Spin(8)
in E

8, E14 and E
26 are given respectively by the corresponding minimal isopara-

metric hypersurfaces in S7, S13 and S25.
Although, it was shown in [9] that for any integer n > 3 there exists Riemnnian

n-manifolds which admit more than one best way of living in a Euclidean space,
not every Riemannian manifold is lucky enough to admit a best way of living in
a Euclidean space. For example, although the unit n-sphere Sn(1) admits a best
way of living in E

n+1; the real projective n-space RP n(1), n > 1, never admits a
best way of living in any Euclidean space no matter how hard it tries (see Corollary
5.2).

Consequently, I proposed in [4] the following two problems:

Existence Problem: What are the necessary and sufficient conditions for a
Riemannian manifold to admit a best way of living in a best world?

Classification Problem: If a Riemannian manifold admits best ways of
living in a best world, what are its best ways of living?

5.4. Two solutions to Existence Problem. By applying λ1 > n∆̂0 given
in Corollary 5.1 and a result from the theory of finite type submanifolds, we have
the following solution for the Existence Problem.

Theorem 5.3. A compact irreducible homogeneous Riemannian n-manifold
admits a best way of living in some Euclidean space if and only if it satisfies the
intrinsic condition: λ1 = n∆̂0.

Corollary 5.2. RP n(1) admits no best ways of living in any Euclidean space.

Proof. For RP n(1) we have λ1 = 2(n + 1) and ∆̂0 = 1. Thus λ1 6= n∆̂0. �

Another simple solution of the Existence Problem is the following.

Theorem 5.4. If a compact Riemannian n-manifold M satisfies

λ1 >
n

v(M)

∫

M

∆̂0 ∗ 1, v(M) = volume of M,

then it never admits a best way of living in any Euclidean space.

5.5. Applications to rigidity theory: Uniqueness problem. If a Rie-
mannian manifold admits a best way of living in a best world and if it is unique, it
gives a rigidity theorem. Otherwise, it admits multiple ways of best living (lucky
one !).

For instance, by applying δ-invariants we proved the following rigidity results.

Theorem 5.5. If M is an open portion of Sn(1), then for every isometric
immersion of M in a Euclidean m-space with arbitrary codimension we have

(5.2) H2 > 1.

The equality case of (5.2) holds identically if and only if M is embedded as an open
portion of an ordinary hypersphere in a totally geodesic E

n+1 ⊂ E
m.
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Theorem 5.6. Let M be an open part of En1−1 × Sn−n1+1(1). Then for every
isometric immersion of M in E

m with arbitrary codimension we have

H2 >

(n − n1 + 1
n

)2
.(5.3)

The equality case of (5.3) holds if and only if M is immersed as an open part
of a spherical hypercylinder E

n1−1 × Sn−n1+1(1) ⊂ E
n1−1 × E

n−n1+2 ⊂ E
m.

Remark 5.1. Rigidity results discovered in this way are quite different from
usual rigidity results, e.g., rigidity in the sense of Aleksandr D. Aleksandrov (1912–
1999). Because rigidity theorems via ideal immersions do not require any assump-
tion on topology or codimension of the submanifolds. On the other hand, (almost)
all other rigidity results do require global conditions as well as assumptions of very
small codimension (e.g., in the theory of convex surfaces à la Aleksandrov).

5.6. Applications to warped products. An application of δ-invariants to
warped products is to obtain the following sharp result.

Theorem 5.7. For every isometric immersion φ : N1 ×f N2 → M̃ of a warped
product N1 ×f N2 into any Riemannian manifold M̃ , the warping function satisfies

∆f

f
6

(n1 + n2)2

4n2
H2 + n1 max K̃, ni = dim Ni, i = 1, 2,

where ∆ is the Laplacian on N1.

This theorem has many immediate consequences. E.g., it yields the following.

Corollary 5.3. Let N1 ×f N2 be a warped product of Riemannian manifolds.
If the warping function f is harmonic, then we have:

(1) N1×f N2 never admits minimal immersion into any Riemannian manifold
of negative sectional curvature;

(2) every minimal immersion of N1×fN2 into any Euclidean space is a warped
product immersion regardless of codimension.

Corollary 5.4. If f ∈ C∞(N1) is an eigenfunction of ∆ with eigenvalue
λ > 0, then every warped product N1 ×f N2 never admits a minimal immersion
into any Riemannian manifold with non-positive sectional curvature.

Corollary 5.5. Let N1 be a compact Riemannian manifold. Then we have:

(1) every warped product N1 ×f N2 never admits a minimal immersion into
any Riemannian manifold of negative sectional curvature;

(2) every warped product N1 ×f N2 never admits any minimal immersion into
any Euclidean space.

5.7. Applications to theory of submersions. A Riemannian submersion
π : M → B is called trivial if it is a direct product of a fiber and the base manifold
B. Two applications of δ-invariants to the theory of submersions are the following.

Theorem 5.8. If a Riemannian manifold M admits a non-trivial Riemannian
submersion with totally geodesic fibers, it cannot be isometrically immersed into any
Riemannian manifold of non-positive sectional curvature as a minimal submanifold.
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Theorem 5.9. If a Riemannian manifold M admits a Riemannian submersion
with totally geodesic fibers, then every minimal immersion of M in a Euclidean
space is the direct product of a minimal immersion of the base manifold and a
minimal immersion of a fiber in Euclidean spaces.

5.8. Applications to affine geometry. δ-invariants can also be applied to
affine geometry. For instance, by applying δ-invariants we have the following.

Theorem 5.10. If the Calabi metric of an improper affine hypersphere in an
affine space is the Riemannian product metric of k Riemannian manifolds, then the
improper affine hypersphere is the Calabi composition of k improper affine spheres.

Theorem 5.11. If the warping function f of a warped product manifold N1 ×f

N2 satisfies ∆f < 0 at some point on N1, then N1 ×f N2 cannot be realized as an
improper affine hypersphere in an affine (n + 1)-space Rn+1.

Theorem 5.12. Every warped product N1 ×f N2 with harmonic warping func-
tion cannot be realized as an elliptic proper affine hypersphere in Rn+1.

5.9. Links between submersions and affine hypersurfaces. By applying
an affine δ-invariant, we discovered the following links between theory of Riemann-
ian submersions and affine differential geometry.

Theorem 5.13. If a Riemannian manifold M can be realized as an elliptic
proper centroaffine hypersphere centered on the origin in some affine space, then
every Riemannian submersion π : M → B with minimal fibers has a non-totally
geodesic horizontal distribution.

Theorem 5.14. If a Riemannian manifold M can be realized as an improper
hypersphere in an affine space, then every Riemannian submersion π : M → B with
non-totally geodesic minimal fibers has non-totally geodesic horizontal distribution.

5.10. Applications to symplectic geometry. An application of δ-invari-
ants to Lagrangian submanifolds is to provide a sharp solution to Problem 2.

Theorem 5.15. Let M be a compact Riemannian n-manifold with null first
Betti number b1(M) or finite fundamental group π1(M). If there exists a k-tuple
(n1, . . . , nk) ∈ S(n) such that δ(n1, . . . , nk) > 0, then M never admits a Lagrangian
isometric immersion into Cn.

Remark 5.2. The assumption on δ(n1, . . . , nk) in Theorem 5.15 is sharp. This
can be seen as follows: Consider the Whitney sphere W n defined by the Whitney
immersion w : Sn → Cn:

w(y0, . . . , yn) =
1 + iy0

1 + y2
0

(y1, . . . , yn)

with y2
0 + y2

1 + · · · + y2
n = 1. This immersion is Lagrangian with a unique self-

intersection point at w(−1, 0, . . . , 0) = w(1, 0, . . . , 0). For each k-tuple (n1, . . . , nk),
we have δ(n1, . . . , nk) > 0 with respect to the induced metric via w. Moreover, we
have δ(n1, . . . , nk) = 0 only at the unique point of self-intersection. Furthermore,
the assumption of #π1(M) < ∞ or b1(M) = 0 is necessary for n > 3 (see [8]).
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The proof of Theorem 5.15 is based on the following result.

Theorem 5.16. Let M be a Lagrangian submanifold of a complex space form
Mn(4c). Then for each k-tuple (n1, . . . , nk) ∈ S(n) we have

δ(n1, . . . , nk) 6
n2

(

n + k − 1 − ∑k
j=1 nj

)

2
(

n + k − ∑k
j=1 nj

)
H2(5.4)

+
1
2

{

n(n − 1) −
k

∑

j=1

nj(nj − 1)
}

c

We have the following result from [6] for Lagrangian submanifolds satisfying the
equality of (5.4); extending a result of [12] to δ(2)-ideal Lagrangian submanifolds.

Theorem 5.17. If a Lagrangian submanifold of a complex space form satisfies
the equality case of (5.4) at a point, then it is minimal at that point.

6. Two recent optimal inequalities involving δ-invariants

for Lagrangian submanifolds

In view of Theorem 5.17, it is very natural to look for optimal inequalities for
non-minimal Lagrangian submanifolds in complex space forms.

6.1. Case I:
∑k

i=1 ni < n. Recently, joint with F. Dillen, J. Van der Veken
and L. Vrancken, we improve inequality (5.4) in [10,13] to the following inequality
for

∑k
i=1 ni < n (see also [11]).

Theorem 6.1. If M is a Lagrangian submanifold of a complex space form
Mn(4c), then for a k-tuple (n1, . . . , nk) ∈ S(n) with

∑k
i=1 ni < n we have

δ(n1, . . . , nk) 6
n2

{

n − ∑k
i=1 ni + 3k − 1 − 6

∑k
i=1(2 + ni)−1

}

2
{

n − ∑k
i=1 ni + 3k + 2 − 6

∑k
i=1(2 + ni)−1

}
H2(6.1)

+
1
2

{

n(n − 1) −
k

∑

i=1

ni(ni − 1)
}

c.

The equality sign of (6.1) holds at a point p ∈ M if and only if there exists an
orthonormal basis {e1, . . . , en} at p such that with respect to this basis the second
fundamental form h takes the following form:

(6.2)

h(eαi
, eβi

) =
∑

γi

hγi

αiβi
Jeγi

+
3δαiβi

2 + ni

λJeµ+1,

ni
∑

αi=1

hγi

αiαi
= 0,

h(eαi
, eαj

) = 0, i 6= j, h(eαi
, eµ+1) =

3λ

2 + ni

Jeαi
, h(eαi

, eu) = 0,

h(eµ+1, eµ+1) = 3λJeµ+1, h(eµ+1, eu) = λJeu, h(eu, ev) = λδuvJeµ+1,

for 1 6 i, j 6 k; µ + 2 6 u, v 6 n and λ = 1
3 hµ+1

µ+1µ+1, where µ = n1 + · · · + nk.

Remark 6.1. For δ(2), inequality (6.1) is due to T. Oprea [ Chen’s inequality
in the Lagrangian case, Colloq. Math. 108 (2007), 163–169 ].
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In [13] we also proved the following.

Theorem 6.2. For every k-tuple (n1, . . . , nk) ∈ S(n), there exists a non-
minimal Lagrangian submanifold which satisfies the equality case of (6.1).

Theorem 6.2 shows that inequality (6.1) cannot be improved further.

6.2. Case II:
∑k

i=1 ni = n. For this case we prove the following inequality
with different coefficient in [13].

Theorem 6.3. Let M be a Lagrangian submanifold of a complex space form
Mn(4c). Then for each (n1, . . . , nk) ∈ S(n) with

∑k
i=1 ni = n we have

δ(n1, . . . , nk) 6
n2

{

k − 1 − 2
∑k

i=2(2 + ni)−1
}

2
{

k − 2
∑k

i=2(2 + ni)−1
}

H2(6.3)

+
1
2

{

n(n − 1) −
k

∑

i=1

ni(ni − 1)
}

c,

where we assume that n1 = minn
i=1{ni}.

If the equality sign of (6.3) holds at a point p ∈ M , the components of the second
fundamental form with respect to some suitable orthonormal basis {e1, . . . , en} for
TpM satisfy the following conditions:

(a) hA
αiαj

= 0 for i 6= j and A 6= αi, αj;
(b) if nj 6= min{n1, . . . , nk}:

hβj

αiαi
= 0 if i 6= j and

∑

αj∈∆j

hβj

αjαj
= 0,

(c) if nj = min{n1, . . . , nk}:
∑

αj∈∆j

hβj

αjαj
= (ni + 2)hβj

αiαi
for any i 6= j and any αi ∈ ∆i.

Remark 6.2. In the case of equality, we do not have information about hγi

αiβi
,

where αi, βi and γi are mutually different indices in the same block ∆i.

The following theorem from [13] implies that inequality (6.3) is sharp.

Theorem 6.4. For each k-tuple (n1. . . . , nk) ∈ S(n) with
∑k

i=1 ni = n, there
exists a Lagrangian submanifold in Mn(4c) satisfying the equality of the improved
inequality (6.3) identically.

This result implies that inequality (6.3) cannot be improved further as well.

Remark 6.3. Lagrangian submanifolds of complex space forms satisfying some
special cases of the improved inequalities (6.1) and (6.3) have been investigated and
classified recently in [1,2,8,10,13–17].
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