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Abstract. We establish some sharp maximal function inequalities for the
Toeplitz type operator, which is related to certain fractional singular inte-
gral operator with general kernel. These results are helpful to investigate the
boundedness of the operator on Lebesgue, Morrey and Triebel–Lizorkin spaces
respectively.

1. Introduction

In recent decades, commutators have attracted a rapidly growing attention of
the researchers in the field of harmonic analysis and have been widely studied by
many authors [7, 19, 20]. In [4, 17, 18], the authors prove that the commutators
generated by the singular integral operators and BMO functions are bounded on
𝐿𝑝(𝑅𝑛) for 1 < 𝑝 < ∞. Chanillo proves a similar result when singular integral
operators are replaced by the fractional integral operators in [2]. The boundedness
for the commutators generated by the singular integral operators and Lipschitz
functions on Triebel–Lizorkin and 𝐿𝑝(𝑅𝑛) (1 < 𝑝 < ∞) spaces are obtained in
[3, 8, 14]. Some singular integral operators with general kernel are introduced, and
the boundedness for the operators and their commutators generated by BMO and
Lipschitz functions are obtained [1, 11]. In [9, 10], some Toeplitz type operators
related to the singular integral operators and strongly singular integral operators
are introduced, and the boundedness for the operators generated by BMO and
Lipschitz functions are established. The main purpose of this paper is to study the
Toeplitz type operators generated by some fractional singular integral operators
with general kernel and the Lipschitz and BMO functions. We will prove the
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sharp maximal inequalities for the Toeplitz type operator 𝑇 𝑏
𝛿 . These results are

helpful to investigate the the 𝐿𝑝-norm inequality, the boundedness of the operator
on Lebesgue, Morrey and Triebel–Lizorkin spaces respectively.

2. Preliminaries

At first, we should introduce some notations in the following. Throughout this
paper, 𝑄 denotes a cube of 𝑅𝑛 with sides parallel to the axes. For any locally
integrable function 𝑓 , the sharp maximal function of 𝑓 is defined by

𝑀#(𝑓)(𝑥) = sup
𝑄∋𝑥

1
|𝑄|

∫︁
𝑄

|𝑓(𝑦) − 𝑓𝑄|𝑑𝑦,

where, 𝑓𝑄 = |𝑄|−1 ∫︀
𝑄

𝑓(𝑥) 𝑑𝑥. It is well known that [7, 19]

𝑀#(𝑓)(𝑥) ≈ sup
𝑄∋𝑥

inf
𝑐∈𝐶

1
|𝑄|

∫︁
𝑄

|𝑓(𝑦) − 𝑐|𝑑𝑦.

We say that 𝑓 belongs to BMO(𝑅𝑛) if 𝑀#(𝑓) belongs to 𝐿∞(𝑅𝑛) and define
‖𝑓‖BMO = ‖𝑀#(𝑓)‖𝐿∞ . It is known [19] that ‖𝑓 − 𝑓2𝑘𝑄‖BMO 6 𝐶𝑘‖𝑓‖BMO. Let

𝑀(𝑓)(𝑥) = sup
𝑄∋𝑥

1
|𝑄|

∫︁
𝑄

|𝑓(𝑦)|𝑑𝑦.

For 𝜂 > 0 we denote 𝑀𝜂(𝑓)(𝑥) = 𝑀(|𝑓 |𝜂)1/𝜂(𝑥). For 0 < 𝜂 < 𝑛 and 1 6 𝑟 < ∞ set

𝑀𝜂,𝑟(𝑓)(𝑥) = sup
𝑄∋𝑥

(︂
1

|𝑄|1−𝑟𝜂/𝑛

∫︁
𝑄

|𝑓(𝑦)|𝑟𝑑𝑦

)︂1/𝑟

.

According to [7], the 𝐴𝑝 weight can be defined as follows, for 1 < 𝑝 < ∞,

𝐴𝑝 =
{︃

𝑤 ∈ 𝐿1
loc(𝑅𝑛) : sup

𝑄

(︂
1

|𝑄|

∫︁
𝑄

𝑤(𝑥) 𝑑𝑥

)︂ (︂
1

|𝑄|

∫︁
𝑄

𝑤(𝑥)−1/(𝑝−1)𝑑𝑥

)︂𝑝−1
< ∞

}︃
and 𝐴1 = {𝑤 ∈ 𝐿𝑝

loc(𝑅𝑛) : 𝑀(𝑤)(𝑥) 6 𝐶𝑤(𝑥), a.e.}.
For 𝛽 > 0 and 𝑝 > 1 let 𝐹̇ 𝛽,∞

𝑝 (𝑅𝑛) be the homogeneous Triebel–Lizorkin
space [14]. For 𝛽 > 0 the Lipschitz space Lip𝛽(𝑅𝑛) is the space of functions 𝑓 such
that

‖𝑓‖Lip𝛽
= sup

𝑥,𝑦∈𝑅𝑛

𝑥̸=𝑦

|𝑓(𝑥) − 𝑓(𝑦)|
|𝑥 − 𝑦|𝛽

< ∞.

Definition 2.1. Let 𝜙 be a positive, increasing function on 𝑅+ and there
exists a constant 𝐷 > 0 such that 𝜙(2𝑡) 6 𝐷𝜙(𝑡) for 𝑡 > 0. Let 𝑓 be a locally
integrable function on 𝑅𝑛. Set, for 1 6 𝑝 < ∞,

‖𝑓‖𝐿𝑝,𝜙 = sup
𝑥∈𝑅𝑛, 𝑑>0

(︂
1

𝜙(𝑑)

∫︁
𝑄(𝑥,𝑑)

|𝑓(𝑦)|𝑝𝑑𝑦

)︂1/𝑝

,

where 𝑄(𝑥, 𝑑) = {𝑦 ∈ 𝑅𝑛 : |𝑥 − 𝑦| < 𝑑}. As usual, the generalized Morrey space
can be defined by 𝐿𝑝,𝜙(𝑅𝑛) = {𝑓 ∈ 𝐿1

loc(𝑅𝑛) : ‖𝑓‖𝐿𝑝,𝜙 < ∞}.
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If 𝜙(𝑑) = 𝑑𝛿, 𝛿 > 0, then 𝐿𝑝,𝜙(𝑅𝑛) = 𝐿𝑝,𝛿(𝑅𝑛) are classical Morrey spaces
[15, 16]. If 𝜙(𝑑) = 1, then 𝐿𝑝,𝜙(𝑅𝑛) = 𝐿𝑝(𝑅𝑛) are Lebesgue spaces [13].

Since Morrey spaces can be regarded as extensions of Lebesgue spaces, it is
natural and important to study the boundedness of operators on the Morrey spaces
[5, 6, 12, 13]. Here we study some singular integral operators, defined as follows [1].

Definition 2.2. Fix 0 < 𝛿 < 𝑛. Let 𝑇𝛿 : 𝑆 → 𝑆′ be a linear operator
such that 𝑇𝛿 is bounded on 𝐿2(𝑅𝑛) and has a kernel 𝐾, that is, there exists a
locally integrable function 𝐾(𝑥, 𝑦) on 𝑅𝑛 × 𝑅𝑛 r {(𝑥, 𝑦) ∈ 𝑅𝑛 × 𝑅𝑛 : 𝑥 = 𝑦} such
that 𝑇𝛿(𝑓)(𝑥) =

∫︀
𝑅𝑛 𝐾(𝑥, 𝑦)𝑓(𝑦) 𝑑𝑦 for every bounded and compactly supported

function 𝑓 , where 𝐾 satisfies: there is a sequence of positive constant numbers
{𝐶𝑗} such that for any 𝑗 > 1,∫︁

2|𝑦−𝑧|<|𝑥−𝑦|
(|𝐾(𝑥, 𝑦) − 𝐾(𝑥, 𝑧)| + |𝐾(𝑦, 𝑥) − 𝐾(𝑧, 𝑥)|) 𝑑𝑥 6 𝐶,

(1)
(︂∫︁

2𝑘|𝑧−𝑦|6|𝑥−𝑦|<2𝑘+1|𝑧−𝑦|
(|𝐾(𝑥, 𝑦) − 𝐾(𝑥, 𝑧)| + |𝐾(𝑦, 𝑥) − 𝐾(𝑧, 𝑥)|)𝑞𝑑𝑦

)︂1/𝑞

6 𝐶𝑘(2𝑘|𝑧 − 𝑦|)−𝑛/𝑞′+𝛿,

where 1 < 𝑞′ < 2 and 1/𝑞 + 1/𝑞′ = 1. We write 𝑇𝛿 ∈ GSIO(𝛿).
Moreover, if 𝑏 is a locally integrable function on 𝑅𝑛, then the Toeplitz type op-

erator related to 𝑇𝛿 can be defined by 𝑇 𝑏
𝛿 =

∑︀𝑚
𝑘=1 𝑇 𝑘,1

𝛿 𝑀𝑏𝑇 𝑘,2, where 𝑇 𝑘,1
𝛿 are 𝑇𝛿 or

±𝐼 (the identity operator), 𝑇 𝑘,2 are the linear operators, 𝑘 = 1,..., 𝑚, 𝑀𝑏(𝑓) = 𝑏𝑓 .

Remark 2.1. We should point out that the classical Calderón–Zygmund sin-
gular integral operator satisfies Definition 2.2 with 𝐶𝑗 = 2−𝑗𝛿 [7, 19].

Remark 2.2. It is obvious that the fractional integral operator with rough
kernel satisfies Definition 2.2 [3], that is, for 0 < 𝛿 < 𝑛, let 𝑇𝛿 be the fractional
integral operator with rough kernel defined by (see [3])

𝑇𝛿𝑓(𝑥) =
∫︁

𝑅𝑛

Ω(𝑥 − 𝑦)
|𝑥 − 𝑦|𝑛−𝛿

𝑓(𝑦) 𝑑𝑦,

where Ω is homogeneous of degree zero on 𝑅𝑛,
∫︀

𝑆𝑛−1 Ω(𝑥′) 𝑑𝜎(𝑥′) = 0 and Ω ∈
Lip𝜀(𝑆𝑛−1) for some 0 < 𝜀 6 1, and there exists a constant 𝑀 > 0 such that for
any 𝑥, 𝑦 ∈ 𝑆𝑛−1, |Ω(𝑥) − Ω(𝑦)| 6𝑀 |𝑥 − 𝑦|𝜀. When Ω ≡ 1, 𝑇𝛿 is the Riesz potential
(fractional integral operator) [2].

Remark 2.3. One can obtain that the commutator [𝑏, 𝑇𝛿](𝑓) = 𝑏𝑇𝛿(𝑓)−𝑇𝛿(𝑏𝑓)
is a particular operator of the Toeplitz type operator 𝑇𝑏. The Toeplitz type opera-
tors 𝑇 𝑏

𝛿 are nontrivial generalizations of commutators.

3. Some Lemmas

We begin with some preliminary lemmas.

Lemma 3.1. [1] Let 𝑇𝛿 be the singular integral operator as Definition 1.2. Then
𝑇𝛿 is bounded from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛) for 1 < 𝑝 < 𝑛/𝛿 and 1/𝑟 = 1/𝑝 − 𝛿/𝑛.
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Lemma 3.2. [14] For 0 < 𝛽 < 1 and 1 < 𝑝 < ∞, we have

‖𝑓‖𝐹̇ 𝛽,∞
𝑝

≈
⃦⃦⃦⃦
sup
𝑄∋·

1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

|𝑓(𝑥)−𝑓𝑄| 𝑑𝑥

⃦⃦⃦⃦
𝐿𝑝

≈
⃦⃦⃦⃦
sup
𝑄∋·

inf
𝑐

1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

|𝑓(𝑥)−𝑐| 𝑑𝑥

⃦⃦⃦⃦
𝐿𝑝

.

Lemma 3.3. [7] Let 0 < 𝑝 < ∞ and 𝑤 ∈
⋃︀

16𝑟<∞ 𝐴𝑟. Then, for any smooth
function 𝑓 for which the left-hand side is finite,∫︁

𝑅𝑛

𝑀(𝑓)(𝑥)𝑝𝑤(𝑥) 𝑑𝑥 6 𝐶

∫︁
𝑅𝑛

𝑀#(𝑓)(𝑥)𝑝𝑤(𝑥) 𝑑𝑥.

Lemma 3.4. [2] Suppose that 0 < 𝜂 < 𝑛, 1 6 𝑠 < 𝑝 < 𝑛/𝜂 and 1/𝑟 = 1/𝑝−𝜂/𝑛.
Then ‖𝑀𝜂,𝑠(𝑓)‖𝐿𝑟 6 𝐶‖𝑓‖𝐿𝑝 .

Lemma 3.5. Let 1 < 𝑝 < ∞, 0 < 𝐷 < 2𝑛. Then, for any smooth function 𝑓
for which the left-hand side is finite, ‖𝑀(𝑓)‖𝐿𝑝,𝜙 6 𝐶‖𝑀#(𝑓)‖𝐿𝑝,𝜙 .

Proof. For any cube 𝑄 = 𝑄(𝑥0, 𝑑) in 𝑅𝑛, we know 𝑀(𝜒𝑄) ∈ 𝐴1 for any cube
𝑄 = 𝑄(𝑥, 𝑑) by [7]. Noticing that 𝑀(𝜒𝑄) 6 1 and 𝑀(𝜒𝑄)(𝑥) 6 𝑑𝑛/(|𝑥 − 𝑥0| − 𝑑)𝑛

if 𝑥 ∈ 𝑄𝑐, by Lemma 3.3, we have, for 𝑓 ∈ 𝐿𝑝,𝜙(𝑅𝑛),∫︁
𝑄

𝑀(𝑓)(𝑥)𝑝𝑑𝑥 =
∫︁

𝑅𝑛

𝑀(𝑓)(𝑥)𝑝𝜒𝑄(𝑥) 𝑑𝑥

6
∫︁

𝑅𝑛

𝑀(𝑓)(𝑥)𝑝𝑀(𝜒𝑄)(𝑥) 𝑑𝑥 6 𝐶

∫︁
𝑅𝑛

𝑀#(𝑓)(𝑥)|𝑝𝑀(𝜒𝑄)(𝑥) 𝑑𝑥

= 𝐶

(︂ ∫︁
𝑄

𝑀#(𝑓)(𝑥)𝑝𝑀(𝜒𝑄)(𝑥) 𝑑𝑥 +
∞∑︁

𝑘=0

∫︁
2𝑘+1𝑄r2𝑘𝑄

𝑀#(𝑓)(𝑥)𝑝𝑀(𝜒𝑄)(𝑥) 𝑑𝑥

)︂

6 𝐶

(︂ ∫︁
𝑄

𝑀#(𝑓)(𝑥)𝑝𝑑𝑥 +
∞∑︁

𝑘=0

∫︁
2𝑘+1𝑄r2𝑘𝑄

𝑀#(𝑓)(𝑥)𝑝 |𝑄|
|2𝑘+1𝑄|

𝑑𝑥

)︂

6 𝐶

(︂ ∫︁
𝑄

𝑀#(𝑓)(𝑥)𝑝𝑑𝑥 +
∞∑︁

𝑘=0

∫︁
2𝑘+1𝑄

𝑀#(𝑓)(𝑥)𝑝2−𝑘𝑛𝑑𝑦

)︂

6 𝐶‖𝑀#(𝑓)‖𝑝
𝐿𝑝,𝜙

∞∑︁
𝑘=0

2−𝑘𝑛𝜙(2𝑘+1𝑑) 6 𝐶‖𝑀#(𝑓)‖𝑝
𝐿𝑝,𝜙

∞∑︁
𝑘=0

(2−𝑛𝐷)𝑘𝜙(𝑑)

6 𝐶‖𝑀#(𝑓)‖𝑝
𝐿𝑝,𝜙𝜙(𝑑),

thus (︂
1

𝜙(𝑑)

∫︁
𝑄

𝑀(𝑓)(𝑥)𝑝𝑑𝑥

)︂1/𝑝

6 𝐶

(︂
1

𝜙(𝑑)

∫︁
𝑄

𝑀#(𝑓)(𝑥)𝑝𝑑𝑥

)︂1/𝑝

and ‖𝑀(𝑓)‖𝐿𝑝,𝜙 6 𝐶‖𝑀#(𝑓)‖𝐿𝑝,𝜙 . This finishes the proof. �

Lemma 3.6. Let 0 < 𝐷 < 2𝑛, 1 6 𝑠 < 𝑝 < 𝑛/𝜂 and 1/𝑟 = 1/𝑝 − 𝜂/𝑛. Then

‖𝑀𝜂,𝑠(𝑓)‖𝐿𝑟,𝜙 6 𝐶‖𝑓‖𝐿𝑝,𝜙 .

The proof of Lemma 3.6 is similar to that of Lemma 3.5 by Lemma 3.4, we
omit the details.
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4. Theorems and Their Proofs

We shall prove the following theorems.

Theorem 4.1. Let the sequence {𝐶𝑗} ∈ 𝑙1, 0 < 𝛽 < 1, 𝑞′ 6 𝑠 < ∞ and
𝑏 ∈ Lip𝛽(𝑅𝑛). Suppose 𝑇𝛿 is a bounded linear operator from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛) for
any 𝑝, 𝑟 with 1 < 𝑝 < 𝑛/𝛿 and 1/𝑟 = 1/𝑝 − 𝛿/𝑛, and has a kernel 𝐾 satisfying (1).
If 𝑇 1

𝛿 (𝑔) = 0 for any 𝑔 ∈ 𝐿𝑢(𝑅𝑛) (1 < 𝑢 < ∞), then there exists a constant 𝐶 > 0
such that, for any 𝑓 ∈ 𝐶∞

0 (𝑅𝑛) and 𝑥̃ ∈ 𝑅𝑛,

𝑀#(𝑇 𝑏
𝛿 (𝑓))(𝑥̃) 6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

Proof. It suffices to prove for 𝑓 ∈ 𝐶∞
0 (𝑅𝑛) and some constant 𝐶0, the follow-

ing inequality holds:

1
|𝑄|

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥) − 𝐶0
⃒⃒
𝑑𝑥 6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

Without loss of generality, we may assume 𝑇 𝑘,1
𝛿 are 𝑇𝛿(𝑘 = 1, . . . , 𝑚). Fix a cube

𝑄 = 𝑄(𝑥0, 𝑑) and 𝑥̃ ∈ 𝑄. Write, for 𝑓1 = 𝑓𝜒2𝑄 and 𝑓2 = 𝑓𝜒(2𝑄)𝑐 ,

𝑇 𝑏
𝛿 (𝑓)(𝑥) = 𝑇

𝑏−𝑏𝑄

𝛿 (𝑓)(𝑥) = 𝑇
(𝑏−𝑏𝑄)𝜒2𝑄

𝛿 (𝑓)(𝑥) + 𝑇
(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐

𝛿 (𝑓)(𝑥) = 𝑔(𝑥) + ℎ(𝑥).

Then
1

|𝑄|

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥) − ℎ(𝑥0)
⃒⃒
𝑑𝑥 6

1
|𝑄|

∫︁
𝑄

|𝑔(𝑥)|𝑑𝑥+ 1
|𝑄|

∫︁
𝑄

|ℎ(𝑥)−ℎ(𝑥0)|𝑑𝑥 = 𝐼1 +𝐼2.

For 𝐼1, choose 1 < 𝑟 < ∞ such that 1/𝑟 = 1/𝑠 − 𝛿/𝑛, by (𝐿𝑠, 𝐿𝑟)-boundedness of
𝑇𝛿 and Hölder’s inequality, we obtain

1
|𝑄|

∫︁
𝑄

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒2𝑄

𝑇 𝑘,2(𝑓)(𝑥)|𝑑𝑥

6

(︂
1

|𝑄|

∫︁
𝑅𝑛

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒2𝑄

𝑇 𝑘,2(𝑓)(𝑥)|𝑟𝑑𝑥

)︂1/𝑟

6 𝐶|𝑄|−1/𝑟

(︂∫︁
𝑅𝑛

|𝑀(𝑏−𝑏𝑄)𝜒2𝑄
𝑇 𝑘,2(𝑓)(𝑥)|𝑠𝑑𝑥

)︂1/𝑠

6 𝐶|𝑄|−1/𝑟

(︂∫︁
2𝑄

(|𝑏(𝑥) − 𝑏𝑄‖𝑇 𝑘,2(𝑓)(𝑥)|)𝑠𝑑𝑥

)︂1/𝑠

6 𝐶|𝑄|−1/𝑟‖𝑏‖Lip𝛽
|2𝑄|𝛽/𝑛|2𝑄|1/𝑠−(𝛽+𝛿)/𝑛

×
(︂

1
|2𝑄|1−𝑠(𝛽+𝛿)/𝑛

∫︁
2𝑄

|𝑇 𝑘,2(𝑓)(𝑥)|𝑠𝑑𝑥

)︂1/𝑠

6 𝐶‖𝑏‖Lip𝛽
𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃),
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thus

𝐼1 6
𝑚∑︁

𝑘=1

1
|𝑄|

∫︁
𝑄

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒2𝑄

𝑇 𝑘,2(𝑓)(𝑥)|𝑑𝑥

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

For 𝐼2, recalling that 𝑠 > 𝑞′, we get, for 𝑥 ∈ 𝑄,
|𝑇 𝑘,1

𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥) − 𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥0)|

6
∫︁

(2𝑄)𝑐

|𝑏(𝑦) − 𝑏2𝑄‖𝐾(𝑥, 𝑦) − 𝐾(𝑥0, 𝑦)‖𝑇 𝑘,2(𝑓)(𝑦)|𝑑𝑦

=
∞∑︁

𝑗=1

∫︁
2𝑗𝑑6|𝑦−𝑥0|<2𝑗+1𝑑

|𝑏(𝑦) − 𝑏2𝑄‖𝐾(𝑥, 𝑦) − 𝐾(𝑥0, 𝑦)‖𝑇 𝑘,2(𝑓)(𝑦)|𝑑𝑦

6 𝐶‖𝑏‖Lip𝛽

∞∑︁
𝑗=1

|2𝑗+1𝑄|𝛽/𝑛

(︂∫︁
2𝑗𝑑6|𝑦−𝑥0|<2𝑗+1𝑑

|𝐾(𝑥, 𝑦) − 𝐾(𝑥0, 𝑦)|𝑞𝑑𝑦

)︂1/𝑞

×
(︂∫︁

2𝑗+1𝑄

|𝑇 𝑘,2(𝑓)(𝑦)|𝑞
′
𝑑𝑦

)︂1/𝑞′

6 𝐶‖𝑏‖Lip𝛽

∞∑︁
𝑗=1

|2𝑗+1𝑄|𝛽/𝑛𝐶𝑗(2𝑗𝑑)−𝑛/𝑞′+𝛿|2𝑗+1𝑄|1/𝑞′−(𝛽+𝛿)/𝑛

×
(︂

1
|2𝑗+1𝑄|1−𝑠(𝛽+𝛿)/𝑛

∫︁
2𝑗+1𝑄

|𝑇 𝑘,2(𝑓)(𝑦)|𝑠𝑑𝑦

)︂1/𝑠

6 𝐶‖𝑏‖Lip𝛽
𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃)

∞∑︁
𝑗=1

𝐶𝑗 6 𝐶‖𝑏‖Lip𝛽
𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃),

thus

𝐼2 6
1

|𝑄|

∫︁
𝑄

𝑚∑︁
𝑘=1

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥) − 𝑇 𝑘,1

𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥0)|𝑑𝑥

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

This completes the proof of Theorem 4.1. �

Theorem 4.2. Let the sequence {2𝑗𝛽𝐶𝑗} ∈ 𝑙1, 0 < 𝛽 < 1, 𝑞′ 6 𝑠 < ∞ and
𝑏 ∈ Lip𝛽(𝑅𝑛). Suppose 𝑇𝛿 is a bounded linear operator from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛) for
any 𝑝, 𝑟 with 1 < 𝑝 < 𝑛/𝛿 and 1/𝑟 = 1/𝑝 − 𝛿/𝑛, and has a kernel 𝐾 satisfying (1).
If 𝑇 1

𝛿 (𝑔) = 0 for any 𝑔 ∈ 𝐿𝑢(𝑅𝑛) (1 < 𝑢 < ∞), then there exists a constant 𝐶 > 0
such that, for any 𝑓 ∈ 𝐶∞

0 (𝑅𝑛) and 𝑥̃ ∈ 𝑅𝑛,

sup
𝑄∋𝑥̃

1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥) − 𝐶0
⃒⃒
𝑑𝑥 6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).
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Proof. It suffices to prove for 𝑓 ∈ 𝐶∞
0 (𝑅𝑛) and some constant 𝐶0, the follow-

ing inequality holds:
1

|𝑄|1+𝛽/𝑛

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥) − 𝐶0
⃒⃒
𝑑𝑥 6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

Without loss of generality, we may assume 𝑇 𝑘,1
𝛿 are 𝑇𝛿(𝑘 = 1, . . . , 𝑚). Fix a cube

𝑄 = 𝑄(𝑥0, 𝑑) and 𝑥̃ ∈ 𝑄. For 𝑓1 = 𝑓𝜒2𝑄 and 𝑓2 = 𝑓𝜒(2𝑄)𝑐 , write

𝑇 𝑏
𝛿 (𝑓)(𝑥) = 𝑇

𝑏−𝑏𝑄

𝛿 (𝑓)(𝑥) = 𝑇
(𝑏−𝑏𝑄)𝜒2𝑄

𝛿 (𝑓)(𝑥) + 𝑇
(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐

𝛿 (𝑓)(𝑥) = 𝑔(𝑥) + ℎ(𝑥)
and

1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥) − ℎ(𝑥0)
⃒⃒
𝑑𝑥 6

1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

|𝑔(𝑥)|𝑑𝑥

+ 1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

|ℎ(𝑥) − ℎ(𝑥0)|𝑑𝑥 = 𝐼3 + 𝐼4.

By using the same argument as in the proof of Theorem 4.1, we get, for 1 < 𝑟 < ∞
with 1/𝑟 = 1/𝑠 − 𝛿/𝑛,

𝐼3 6
𝑚∑︁

𝑘=1

𝐶

|𝑄|1+𝛽/𝑛
|𝑄|1−1/𝑟

(︂∫︁
2𝑄

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒2𝑄

𝑇 𝑘,2(𝑓)(𝑥)|𝑟𝑑𝑥

)︂1/𝑟

6
𝑚∑︁

𝑘=1

𝐶

|𝑄|𝛽/𝑛
|𝑄|−1/𝑟

(︂∫︁
2𝑄

|𝑀(𝑏−𝑏𝑄)𝜒2𝑄
𝑇 𝑘,2(𝑓)(𝑥)|𝑠𝑑𝑥

)︂1/𝑠

6
𝑚∑︁

𝑘=1

𝐶

|𝑄|𝛽/𝑛
|𝑄|−1/𝑟‖𝑏‖Lip𝛽

|2𝑄|𝛽/𝑛

(︂∫︁
2𝑄

|𝑇 𝑘,2(𝑓)(𝑥)|𝑠𝑑𝑥

)︂1/𝑠

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

(︂
1

|2𝑄|1−𝑠𝛿/𝑛

∫︁
2𝑄

|𝑇 𝑘,2(𝑓)(𝑥)|𝑠𝑑𝑥

)︂1/𝑠

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃),

𝐼4 6
𝑚∑︁

𝑘=1

1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

∞∑︁
𝑗=1

∫︁
2𝑗𝑑6|𝑦−𝑥0|<2𝑗+1𝑑

|𝑏(𝑦) − 𝑏2𝑄|

× |𝐾(𝑥, 𝑦) − 𝐾(𝑥0, 𝑦)‖𝑇 𝑘,2(𝑓)(𝑦)|𝑑𝑦𝑑𝑥

6
𝑚∑︁

𝑘=1

𝐶

|𝑄|1+𝛽/𝑛

∫︁
𝑄

∞∑︁
𝑗=1

‖𝑏‖Lip𝛽
|2𝑗+1𝑄|𝛽/𝑛

(︂∫︁
2𝑗+1𝑄

|𝑇 𝑘,2(𝑓)(𝑦)|𝑞
′
𝑑𝑦

)︂1/𝑞′

×
(︂∫︁

2𝑗𝑑6|𝑦−𝑥0|<2𝑗+1𝑑

|𝐾(𝑥, 𝑦) − 𝐾(𝑥0, 𝑦)|𝑞𝑑𝑦

)︂1/𝑞

𝑑𝑥

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

|𝑄|−𝛽/𝑛
∞∑︁

𝑗=1
|2𝑗+1𝑄|𝛽/𝑛𝐶𝑗(2𝑗𝑑)−𝑛/𝑞′+𝛿|2𝑗+1𝑄|1/𝑞′−𝛿/𝑛
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×
(︂

1
|2𝑗+1𝑄|1−𝑠𝛿/𝑛

∫︁
2𝑗+1𝑄

|𝑇 𝑘,2(𝑓)(𝑦)|𝑠𝑑𝑦

)︂1/𝑠

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃)
∞∑︁

𝑗=1
2𝑗𝛽𝐶𝑗

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

This completes the proof of Theorem 4.2. �

Theorem 4.3. Let the sequence {𝑗𝐶𝑗} ∈ 𝑙1, 𝑞′ 6 𝑠 < ∞ and 𝑏 ∈ BMO(𝑅𝑛).
Suppose 𝑇𝛿 is a bounded linear operator from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛) for any 𝑝, 𝑟 with
1 < 𝑝 < 𝑛/𝛿 and 1/𝑟 = 1/𝑝 − 𝛿/𝑛, and has a kernel 𝐾 satisfying (1). If 𝑇 1

𝛿 (𝑔) = 0
for any 𝑔 ∈ 𝐿𝑢(𝑅𝑛) (1 < 𝑢 < ∞), then there exists a constant 𝐶 > 0 such that, for
any 𝑓 ∈ 𝐶∞

0 (𝑅𝑛) and 𝑥̃ ∈ 𝑅𝑛,

𝑀#(𝑇 𝑏
𝛿 (𝑓))(𝑥̃) 6 𝐶‖𝑏‖BMO

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

Proof. It suffices to prove for 𝑓 ∈ 𝐶∞
0 (𝑅𝑛) and some constant 𝐶0, the follow-

ing inequality holds:
1

|𝑄|

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥) − 𝐶0
⃒⃒
𝑑𝑥 6 𝐶‖𝑏‖BMO

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

Without loss of generality, we may assume 𝑇 𝑘,1
𝛿 are 𝑇𝛿 (𝑘 = 1, . . . , 𝑚). Fix a cube

𝑄 = 𝑄(𝑥0, 𝑑) and 𝑥̃ ∈ 𝑄. For 𝑓1 = 𝑓𝜒2𝑄 and 𝑓2 = 𝑓𝜒(2𝑄)𝑐 , similar to the proof of
Theorem 4.1, we have

𝑇 𝑏
𝛿 (𝑓)(𝑥) = 𝑇

𝑏−𝑏𝑄

𝛿 (𝑓)(𝑥) = 𝑇
(𝑏−𝑏𝑄)𝜒2𝑄

𝛿 (𝑓)(𝑥) + 𝑇
(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐

𝛿 (𝑓)(𝑥) = 𝑔(𝑥) + ℎ(𝑥),
1

|𝑄|

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥)−ℎ(𝑥0)
⃒⃒
𝑑𝑥 6

1
|𝑄|

∫︁
𝑄

|𝑔(𝑥)|𝑑𝑥 + 1
|𝑄|

∫︁
𝑄

|ℎ(𝑥)−ℎ(𝑥0)|𝑑𝑥 = 𝐼5+𝐼6.

For 𝐼5, choose 1 < 𝑡 < 𝑠, by Hölder’s inequality and the boundedness of 𝑇𝛿 with
1 < 𝑟 < ∞ and 1/𝑟 = 1/𝑡 − 𝛿/𝑛, we obtain

1
|𝑄|

∫︁
𝑄

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒2𝑄

𝑇 𝑘,2(𝑓)(𝑥)|𝑑𝑥

6

(︂
1

|𝑄|

∫︁
𝑅𝑛

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒2𝑄

𝑇 𝑘,2(𝑓)(𝑥)|𝑟𝑑𝑥

)︂1/𝑟

6 𝐶|𝑄|−1/𝑟

(︂∫︁
𝑅𝑛

|𝑀(𝑏−𝑏𝑄)𝜒2𝑄
𝑇 𝑘,2(𝑓)(𝑥)|𝑡𝑑𝑥

)︂1/𝑡

6 𝐶|𝑄|−1/𝑟

(︂∫︁
2𝑄

|𝑇 𝑘,2(𝑓)(𝑥)|𝑠𝑑𝑥

)︂1/𝑠(︂∫︁
2𝑄

|𝑏(𝑥) − 𝑏𝑄|𝑠𝑡/(𝑠−𝑡)𝑑𝑥

)︂(𝑠−𝑡)/𝑠𝑡

6 𝐶‖𝑏‖BMO

(︂
1

|2𝑄|1−𝑠𝛿/𝑛

∫︁
2𝑄

|𝑇 𝑘,2(𝑓)(𝑥)|𝑠𝑑𝑥

)︂1/𝑠
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6 𝐶‖𝑏‖BMO𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃),
thus

𝐼5 6
𝑙∑︁

𝑘=1

1
|𝑄|

∫︁
𝑄

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒2𝑄

𝑇 𝑘,2(𝑓)(𝑥)|𝑑𝑥 6 𝐶‖𝑏‖BMO

𝑚∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

For 𝐼6, recalling that 𝑠 > 𝑞′, taking 1 < 𝑝 < ∞ with 1/𝑝 + 1/𝑞 + 1/𝑠 = 1, we get,
for 𝑥 ∈ 𝑄,

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥) − 𝑇 𝑘,1

𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥0)|

6
∞∑︁

𝑗=1

∫︁
2𝑗𝑑6|𝑦−𝑥0|<2𝑗+1𝑑

|𝐾(𝑥, 𝑦) − 𝐾(𝑥0, 𝑦)‖𝑏(𝑦) − 𝑏2𝑄‖𝑇 𝑘,2(𝑓)(𝑦)|𝑑𝑦

6
∞∑︁

𝑗=1

(︂∫︁
2𝑗𝑑6|𝑦−𝑥0|<2𝑗+1𝑑

|𝐾(𝑥, 𝑦) − 𝐾(𝑥0, 𝑦)|𝑞𝑑𝑦

)︂1/𝑞

×
(︂∫︁

2𝑗+1𝑄

|𝑏(𝑦) − 𝑏𝑄|𝑝𝑑𝑦

)︂1/𝑝(︂∫︁
2𝑗+1𝑄

|𝑇 𝑘,2(𝑓)(𝑦)|𝑠𝑑𝑦

)︂1/𝑠

6 𝐶‖𝑏‖BMO

∞∑︁
𝑗=1

𝐶𝑗(2𝑗𝑑)−𝑛/𝑞′+𝛿𝑗(2𝑗𝑑)𝑛/𝑝(2𝑗𝑑)𝑛/𝑠−𝛿

×
(︂

1
|2𝑗+1𝑄|1−𝑠𝛿/𝑛

∫︁
2𝑗+1𝑄

|𝑇 𝑘,2(𝑓)(𝑦)|𝑠𝑑𝑦

)︂1/𝑠

6 𝐶‖𝑏‖BMO𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃)
∞∑︁

𝑗=1
𝑗𝐶𝑗 6 𝐶‖𝑏‖BMO𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃),

thus

𝐼6 6
1

|𝑄|

∫︁
𝑄

𝑙∑︁
𝑘=1

|𝑇 𝑘,1
𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥) − 𝑇 𝑘,1

𝛿 𝑀(𝑏−𝑏𝑄)𝜒(2𝑄)𝑐 𝑇 𝑘,2(𝑓)(𝑥0)|𝑑𝑥

6 𝐶‖𝑏‖BMO

𝑙∑︁
𝑘=1

𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))(𝑥̃).

This completes the proof of Theorem 4.3. �

Theorem 4.4. Let the sequence {𝐶𝑗} ∈ 𝑙1, 0 < 𝛽 < min(1, 𝑛 − 𝛿), 𝑞′ < 𝑝 <
𝑛/(𝛽 + 𝛿), 1/𝑟 = 1/𝑝− (𝛽 + 𝛿)/𝑛 and 𝑏 ∈ Lip𝛽(𝑅𝑛). Suppose 𝑇𝛿 is a bounded linear
operator from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛) and has a kernel 𝐾 satisfying (1). If 𝑇 1

𝛿 (𝑔) = 0
for any 𝑔 ∈ 𝐿𝑢(𝑅𝑛) (1 < 𝑢 < ∞) and 𝑇 𝑘,2 are the bounded operators on 𝐿𝑝(𝑅𝑛)
for 1 < 𝑝 < ∞, 𝑘 = 1, . . . , 𝑚, then 𝑇 𝑏

𝛿 is bounded from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛).

Proof. Choose 𝑞′ < 𝑠 < 𝑝 in Theorem 4.1, we have, by Lemma 3.3 and 3.4,
‖𝑇 𝑏

𝛿 (𝑓)‖𝐿𝑟 6 ‖𝑀(𝑇 𝑏
𝛿 (𝑓))‖𝐿𝑟 6 𝐶‖𝑀#(𝑇 𝑏

𝛿 (𝑓))‖𝐿𝑟

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

‖𝑀𝛽+𝛿,𝑠(𝑇 𝑘,2(𝑓))‖𝐿𝑟 6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

‖𝑇 𝑘,2(𝑓)‖𝐿𝑝
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6 𝐶‖𝑏‖Lip𝛽
‖𝑓‖𝐿𝑝 .

This completes the proof. �

Theorem 4.5. Let the sequence {𝐶𝑗} ∈ 𝑙1, 0 < 𝛽 < min(1, 𝑛 − 𝛿), 𝑞′ < 𝑝 <
𝑛/(𝛽 + 𝛿), 1/𝑟 = 1/𝑝 − (𝛽 + 𝛿)/𝑛, 0 < 𝐷 < 2𝑛 and 𝑏 ∈ Lip𝛽(𝑅𝑛). Suppose 𝑇𝛿 is a
bounded linear operator from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛) and has a kernel 𝐾 satisfying (1).
If 𝑇 1

𝛿 (𝑔) = 0 for any 𝑔 ∈ 𝐿𝑢(𝑅𝑛) (1 < 𝑢 < ∞) and 𝑇 𝑘,2 are the bounded operators
on 𝐿𝑝,𝜙(𝑅𝑛) for 1 < 𝑝 < ∞, 𝑘 = 1, . . . , 𝑚, then 𝑇 𝑏

𝛿 is bounded from 𝐿𝑝,𝜙(𝑅𝑛) to
𝐿𝑟,𝜙(𝑅𝑛).

Proof. Choose 𝑞′ < 𝑠 < 𝑝 in Theorem 4.1, we have, by Lemma 3.5 and 3.6,
‖𝑇 𝑏

𝛿 (𝑓)‖𝐿𝑟,𝜙 6 ‖𝑀(𝑇 𝑏
𝛿 (𝑓))‖𝐿𝑟,𝜙 6 𝐶‖𝑀#(𝑇 𝑏

𝛿 (𝑓))‖𝐿𝑟,𝜙

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

‖𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))‖𝐿𝑟,𝜙 6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

‖𝑇 𝑘,2(𝑓)‖𝐿𝑝,𝜙

6 𝐶‖𝑏‖Lip𝛽
‖𝑓‖𝐿𝑝,𝜙 .

This completes the proof. �

Theorem 4.6. Let the sequence {2𝑗𝛽𝐶𝑗} ∈ 𝑙1, 0 < 𝛽 < 1, 𝑞′ < 𝑝 < 𝑛/𝛿,
1/𝑟 = 1/𝑝 − 𝛿/𝑛 and 𝑏 ∈ Lip𝛽(𝑅𝑛). Suppose 𝑇𝛿 is a bounded linear operator
from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛) and has a kernel 𝐾 satisfying (1). If 𝑇 1

𝛿 (𝑔) = 0 for any
𝑔 ∈ 𝐿𝑢(𝑅𝑛) (1 < 𝑢 < ∞) and 𝑇 𝑘,2 are the bounded operators on 𝐿𝑝(𝑅𝑛) for
1 < 𝑝 < ∞, 𝑘 = 1, . . . , 𝑚, then 𝑇 𝑏

𝛿 is bounded from 𝐿𝑝(𝑅𝑛) to 𝐹̇ 𝛽,∞
𝑟 (𝑅𝑛).

Proof. Choose 𝑞′ < 𝑠 < 𝑝 in Theorem 4.2, we have, by Lemma 3.2 and 3.3,

‖𝑇 𝑏
𝛿 (𝑓)‖𝐹̇ 𝛽,∞

𝑟
6 𝐶

⃦⃦⃦⃦
sup
𝑄∋·

1
|𝑄|1+𝛽/𝑛

∫︁
𝑄

⃒⃒
𝑇 𝑏

𝛿 (𝑓)(𝑥) − 𝐶0
⃒⃒
𝑑𝑥

⃦⃦⃦⃦
𝐿𝑟

6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

‖𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))‖𝐿𝑟 6 𝐶‖𝑏‖Lip𝛽

𝑚∑︁
𝑘=1

‖𝑇 𝑘,2(𝑓)‖𝐿𝑝

6 𝐶‖𝑏‖Lip𝛽
‖𝑓‖𝐿𝑝 .

This completes the proof. �

Theorem 4.7. Let the sequence {𝑗𝐶𝑗} ∈ 𝑙1, 𝑞′ < 𝑝 < 𝑛/𝛿, 1/𝑟 = 1/𝑝−𝛿/𝑛 and
𝑏 ∈ BMO(𝑅𝑛). Suppose 𝑇𝛿 is a bounded linear operator from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛)
and has a kernel 𝐾 satisfying (1). If 𝑇 1

𝛿 (𝑔) = 0 for any 𝑔 ∈ 𝐿𝑢(𝑅𝑛) (1 < 𝑢 < ∞)
and 𝑇 𝑘,2 are the bounded operators on 𝐿𝑝(𝑅𝑛) for 1 < 𝑝 < ∞, 𝑘 = 1, . . . , 𝑚, then
𝑇 𝑏

𝛿 is bounded from 𝐿𝑝(𝑅𝑛) to 𝐿𝑟(𝑅𝑛).

Proof. Choose 𝑞′ < 𝑠 < 𝑝 in Theorem 4.3, we have, by Lemma 3.3 and 3.4,
‖𝑇 𝑏

𝛿 (𝑓)‖𝐿𝑟 6 ‖𝑀(𝑇 𝑏
𝛿 (𝑓))‖𝐿𝑝 6 𝐶‖𝑀#(𝑇 𝑏

𝛿 (𝑓))‖𝐿𝑟

6 𝐶‖𝑏‖BMO

𝑚∑︁
𝑘=1

‖𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))‖𝐿𝑟 6 𝐶‖𝑏‖BMO

𝑚∑︁
𝑘=1

‖𝑇 𝑘,2(𝑓)‖𝐿𝑝

6 𝐶‖𝑏‖BMO‖𝑓‖𝐿𝑝 .
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This completes the proof. �

Theorem 4.8. Let the sequence {𝑗𝐶𝑗} ∈ 𝑙1, 𝑞′ < 𝑝 < 𝑛/𝛿, 1/𝑟 = 1/𝑝−𝛿/𝑛, 0 <
𝐷 < 2𝑛 and 𝑏 ∈ BMO(𝑅𝑛). Suppose 𝑇𝛿 is a bounded linear operator from 𝐿𝑝(𝑅𝑛)
to 𝐿𝑟(𝑅𝑛) and has a kernel 𝐾 satisfying (1). If 𝑇 1

𝛿 (𝑔) = 0 for any 𝑔 ∈ 𝐿𝑢(𝑅𝑛)
(1 < 𝑢 < ∞) and 𝑇 𝑘,2 are the bounded operators on 𝐿𝑝,𝜙(𝑅𝑛) for 1 < 𝑝 < ∞,
𝑘 = 1, . . . , 𝑚, then 𝑇 𝑏

𝛿 is bounded from 𝐿𝑝,𝜙(𝑅𝑛) to 𝐿𝑟,𝜙(𝑅𝑛).

Proof. Choose 𝑞′ < 𝑠 < 𝑝 in Theorem 4.3, we have, by Lemma 3.5 and 3.6,

‖𝑇 𝑏
𝛿 (𝑓)‖𝐿𝑟,𝜙 6 ‖𝑀(𝑇 𝑏

𝛿 (𝑓))‖𝐿𝑟,𝜙 6 𝐶‖𝑀#(𝑇 𝑏
𝛿 (𝑓))‖𝐿𝑟,𝜙

6 𝐶‖𝑏‖BMO

𝑚∑︁
𝑘=1

‖𝑀𝛿,𝑠(𝑇 𝑘,2(𝑓))‖𝐿𝑟,𝜙 6 𝐶‖𝑏‖BMO

𝑚∑︁
𝑘=1

‖𝑇 𝑘,2(𝑓)‖𝐿𝑝,𝜙

6 𝐶‖𝑏‖BMO‖𝑓‖𝐿𝑝,𝜙 .

This completes the proof. �

Corollary. Let 𝑇𝛿 ∈ GSIO(𝛿), that is 𝑇𝛿 is the singular integral operator as
Definition 1.2. Then Theorems 4.1–4.8 hold for 𝑇 𝑏

𝛿 .
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