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SHARP FUNCTION INEQUALITIES AND BOUNDNESS
FOR TOEPLITZ TYPE OPERATOR RELATED TO
GENERAL FRACTIONAL SINGULAR
INTEGRAL OPERATOR

Chuangxia Huang and Lanzhe Liu
Communicated by Stevan Pilipovié

ABSTRACT. We establish some sharp maximal function inequalities for the
Toeplitz type operator, which is related to certain fractional singular inte-
gral operator with general kernel. These results are helpful to investigate the
boundedness of the operator on Lebesgue, Morrey and Triebel-Lizorkin spaces
respectively.

1. Introduction

In recent decades, commutators have attracted a rapidly growing attention of
the researchers in the field of harmonic analysis and have been widely studied by
many authors [7,19,20]. In [4,17,18], the authors prove that the commutators
generated by the singular integral operators and BMO functions are bounded on
LP(R"™) for 1 < p < oco. Chanillo proves a similar result when singular integral
operators are replaced by the fractional integral operators in [2]. The boundedness
for the commutators generated by the singular integral operators and Lipschitz
functions on Triebel-Lizorkin and LP(R") (1 < p < o0) spaces are obtained in
[3,8,14]. Some singular integral operators with general kernel are introduced, and
the boundedness for the operators and their commutators generated by BMO and
Lipschitz functions are obtained [1,11]. In [9,10], some Toeplitz type operators
related to the singular integral operators and strongly singular integral operators
are introduced, and the boundedness for the operators generated by BMO and
Lipschitz functions are established. The main purpose of this paper is to study the
Toeplitz type operators generated by some fractional singular integral operators
with general kernel and the Lipschitz and BMO functions. We will prove the
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166 HUANG AND LIU

sharp maximal inequalities for the Toeplitz type operator Tg’ . These results are
helpful to investigate the the LP-norm inequality, the boundedness of the operator
on Lebesgue, Morrey and Triebel-Lizorkin spaces respectively.

2. Preliminaries

At first, we should introduce some notations in the following. Throughout this
paper, Q denotes a cube of R"™ with sides parallel to the axes. For any locally
integrable function f, the sharp maximal function of f is defined by

#

M7 (f)(x) = sup |Q|/ [f(y) = foldy,
where, fo =|Q|™" [, f(z)dz. It is well known that [7, 19]

# in — c|dy.

M)~ s ink o [ 150) — clay

Q>x ¢€C

We say that f belongs to BMO(R™) if M#(f) belongs to L>°(R™) and define
[ fllBMo = IM#(f)] L. It is known [19] that || f — forgllBMo < CFK||f|lBMo- Let

M@ = s [ 1wy
D =51 J, 1
For 1 > 0 we denote M, (f)(x) = M(|f|")}/"(x). For 0 <n <mnand 1 <7 < 00 set

My (1)@ = 500 (ot A f(y)|rdy>1/r.

Q3x
According to [7], the A, weight can be defined as follows, for 1 < p < oo,

A, = {w € LL.(R"): sup <Q| / w(z) dx) <612|/Qw(x)1/(p1)dx>pl < oo}

and A; = {w e LY (R™) : M(w)(z) < Cw(x), a.c.}.
For > 0 and p > 1 let Ff?‘x’(R") be the homogeneous Triebel-Lizorkin
space [14]. For 3 > 0 the Lipschitz space Lipg(R") is the space of functions f such

that
[f(z) — f(y)]
ip, = Sup —————="— < 0.
”.f”Lng e pR” |JJ — y‘g
r#y
DEFINITION 2.1. Let ¢ be a positive, increasing function on R and there
exists a constant D > 0 such that ¢(2t) < Dy(t) for t > 0. Let f be a locally

integrable function on R™. Set, for 1 < p < o0,

1 1/10
fllee = sup (/ Iy pdy) ;
|| HL z€R", d>0 @(d) Q(m,d)| ( )|

where Q(z,d) = {y € R" : |x — y| < d}. As usual, the generalized Morrey space
can be defined by LP?(R™) = {f € LL (R"™) : || f||zre < 00}
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If p(d) = d° & > 0, then LP¥(R™) = LP9(R"™) are classical Morrey spaces
[15,16]. If p(d) = 1, then LP*(R™) = LP(R"™) are Lebesgue spaces [13].

Since Morrey spaces can be regarded as extensions of Lebesgue spaces, it is
natural and important to study the boundedness of operators on the Morrey spaces
[5,6,12,13]. Here we study some singular integral operators, defined as follows [1].

DEFINITION 2.2. Fix 0 < § < n. Let T5 : S — S’ be a linear operator
such that Ts is bounded on L?(R") and has a kernel K, that is, there exists a
locally integrable function K(z,y) on R™ x R™ \ {(z,y) € R™ x R" : x = y} such
that Ts(f)(z) = fR" K(z,y)f(y) dy for every bounded and compactly supported
function f, where K satisfies: there is a sequence of positive constant numbers
{C;} such that for any j > 1,

/2| —2|<o— |(|K(x’y) — K(z,2)| + [K(y,2) - K(z,2)) dz < C,

1/q
1 K(z,y) — K(x,z K(y,z)— K(z,z)|)4d
( ) (~/2k|z—y<|x—y|<2k+1|z_y(| ( y> ( )| + | (y ) ( )|) y)

< Cr(2Mz = y)) 00,
where 1 < ¢’ <2 and 1/¢+1/¢' = 1. We write Ts € GSIO().

Moreover, if b is a locally integrable function on R™, then the Toeplitz type op-
erator related to Ts can be defined by 7% = Y/ | ng’leTkg, where Tf’l are T5 or
+17 (the identity operator), T*:2 are the linear operators, k = 1,...,m, My(f) = bf.

REMARK 2.1. We should point out that the classical Calderén—Zygmund sin-
gular integral operator satisfies Definition 2.2 with C; = 277° [7,19].

REMARK 2.2. It is obvious that the fractional integral operator with rough
kernel satisfies Definition 2.2 [3], that is, for 0 < ¢ < n, let T5 be the fractional
integral operator with rough kernel defined by (see [3])

Qz —y)
Tsf(z) Z/ o —g? (y) dy,

r—y

where Q is homogeneous of degree zero on R", [q,_, Q(2')do(z') = 0 and Q €
Lip_(S™~!) for some 0 < £ < 1, and there exists a constant M > 0 such that for
any x,y € S"71 |Q(z) — Q(y)| < M|z —y[*. When Q = 1, T; is the Riesz potential
(fractional integral operator) [2].

REMARK 2.3. One can obtain that the commutator [b, T5](f) = bT5(f)—T5(bf)
is a particular operator of the Toeplitz type operator T;. The Toeplitz type opera-
tors T(? are nontrivial generalizations of commutators.

3. Some Lemmas
We begin with some preliminary lemmas.

LEMMA 3.1. [1] Let Ty be the singular integral operator as Definition 1.2. Then
Ts is bounded from LP(R™) to L"(R™) for 1 <p<mn/§ and 1/r =1/p—§/n.
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LEMMA 3.2. [14] For 0 < 3 <1 and 1 < p < oo, we have

1
Zuapwl/cg|f(x)fQ|dx supmf |Q|1+5/n/|f —cldx

LEMMA 3.3. [7] Let 0 < p < 00 and w € ¢, oo Ar- Then, for any smooth
function f for which the left-hand side is finite,

~
~

Lpr

1l ppoe =

Lr

M(f)(@pw(z)de < C | M*(f)(@)Pw(e) de.
R™ R"

LEMMA 3.4. [2] Suppose that0 <n<n,l<s<p<n/nandl/r=1/p—n/n.
Then || My,s(f)llz- < Cl|f]lze-

LEMMA 3.5. Let 1 < p < o0, 0 < D < 2™. Then, for any smooth function f
for which the left-hand side is finite, | M (f)||Lo.e < C||M¥* ()| Lree-

PRrROOF. For any cube Q = Q(zo,d) in R™, we know M (xq) € A; for any cube
Q@ = Q(z,d) by [7]. Noticing that M(xq) < 1 and M(xg)(z) < d"/(|x — zo| — d)"
if z € Q°, by Lemma 3.3, we have, for f € LP¥(R"),

/ M(f)apPde = [ M(f)(@)xq(x) da

Rn

< M(f)( "M (xq)(z)dx < C - M7 (f)(2)[P M (xq)(x) dz

_C</M# pMXQ d$+2/k+Q ‘o
QN2

(/ M# pdx—i_Z/QkHQ\QkQ M#(f)(a;)P|2k|?1|Q|dx>

#(F)()" M(x0)(x) da:)

k=0
M#(f)(z)Pdx + / M#(f)(z)P2~ ’mdy)
<o [prwurary [
< C||M#(f) LWZQ o@b T d) < CIMH* ()50 Y (27
k=0 k=0

< CIM# ()00 0(d),

thus
1/ p 1/p
( / M(f de> ( / M#(f de>

and ||M(f)||re < C||M#(f)||Lre. This finishes the proof. O
LEMMA 3.6. Let 0 < D < 2", 1<s<p<n/nandl/r=1/p—n/n. Then
HMn,s( )| LmY X C”fHLp’“"

The proof of Lemma 3.6 is similar to that of Lemma 3.5 by Lemma 3.4, we
omit the details.
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4. Theorems and Their Proofs

We shall prove the following theorems.

THEOREM 4.1. Let the sequence {C;} € I', 0 < B <1, ¢ < s < oo and
b € Lipg(R™). Suppose Ts is a bounded linear operator from LP(R™) to L"(R™) for
any p,r with 1 <p<n/d and 1/r =1/p—35/n, and has a kernel K satisfying (1).
If T} (g) =0 for any g € L“(R™) (1 < u < 00), then there exists a constant C > 0
such that, for any f € C§°(R™) and & € R™,

MH(T2(F))(@) < Clbllin, > Mps.o(T(£))(@).
k=1
PRrROOF. It suffices to prove for f € C§°(R"™) and some constant Cp, the follow-
ing inequality holds:
1 - -
01 L [P Col o < Clblu, 3 Mo (T2
k=1

Without loss of generality, we may assume T’ f 1 are Ts(k=1,...,m). Fix a cube
Q = Q(wg,d) and T € Q. Write, for f1 = fx2q and fo = fXx(20)e,

T(f)(x) = Ty (f)(@) = T P00 (f) (@) + T "OXCD° (£ (@) = g(a) + h(x).
Then

i b xX) — X XL L X XL L XI)— X xr =

a1 L @ = nao)| s < 7 [ lot@las+ gy [ ) -heolde = 5ot

For Iy, choose 1 < r < oo such that 1/r = 1/s — d/n, by (L?, L")-boundedness of
Ts and Hoélder’s inequality, we obtain

1
ol /Q T My TH2(F) (1)

1/r

1

< ( / |T§“’1M<bbmwa’“Q(f)(x)rdx)
A e

1/s
<clQr ( /R |M<b_bQ)X2QT’“’2<f><x>|de)

1/s
<clQr ( / RUCE bQ||T’“’2<f><x>|>de)

< CIQIY |BllLip, [2Q17/™2Q| /o~ P/

1 1/s
g <|2Q|1—S(ﬁ+5)/n / IT’“’Q(f)(x)Fdz)

2Q
< CbllLip, Ma+s.5(T™2(£)) (@),
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thus

L<), */ T3 My s T2 (f) () dac
—[Ql Jg

< OlbllLip, Z Mg y5.5(T*(f)(&)-
k=1

For I, recalling that s > ¢', we get, for x € Q,
k, 5 k, s
‘T(S 1M(b_bQ)X(2Q)CTk Q(f)(l') - T(S 1M(b—bQ)X(2Q)ch 2(f)("EO)|

< / 1b(y) — bag | K (,9) — K (0, 1) |T*2(f) (9)\dy
(2Q)¢

-y / 1b(w) — baall K (2 5) — K (20, )| T*(/)(w)\dy

i=1 Jd<|y—xo|<2ittd

oo

1/q
< Olbluip, 3127 QPP ( [ Ky - K(xo,ywy)
27 d<|y—wo|<2i+1d

i=1
1/q
k,2 q'd
([ )

< CHb”LipB Z |2j+1Q‘6/an(2jd)_"/q/+5|2j+1Q‘1/q/_(5+5)/n

=1

1 b L\
x (|2j+1Q|18([5+6)/n /WQ'T ()] dy>

< OlIblleip, Mps,s(T*(1)(E) Y Cj < Clbllip, Mo+s,5(TH*()(@),
j=1

thus

1 N ok k
s @ /Q Z |T5 ’1M(b—bQ)x<2Q>cTk’Q(f)(x) — T ’lM(b—bQ)qu)CTkjg(f)(xo)ldm
k=1

< ClIbllLip, Y Mpys.s(T*?(£))(E).

k=1
This completes the proof of Theorem 4.1. O

THEOREM 4.2. Let the sequence {2/°C;} € I, 0 < B < 1, ¢ < s < o0 and
b € Lipg(R"). Suppose Ts is a bounded linear operator from LP(R™) to L"(R"™) for
any p,r with 1 <p <n/d and 1/r =1/p—§/n, and has a kernel K satisfying (1).
If T} (g) =0 for any g € L*(R™) (1 < u < 00), then there exists a constant C > 0
such that, for any f € C§°(R™) and & € R™,

T /Q T3 (@) = Coldo < Cllbluip, Y Mso(T"*(£)(@).

Q37 k=1
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PRrROOF. It suffices to prove for f € C§°(R"™) and some constant Cp, the follow-
ing inequality holds:

1 -
gt 1T = Gl do < Clblg, 3 Mo (T(1)(0),
k=1
Without loss of generality, we may assume 7, (Sk 1 are Ty (k=1,...,m). Fix a cube

Q = Q(xo,d) and T € Q. For f; = fxaq and fo = fx(2q)c, Write
T2(f) (@) = Ty "2 (f)(x) = TP () (@) + T "DXCD° (f)(2) = g(x) + h(x)

and

1 1
e L T~ haw)|de < e [ o)l

|Q|1+ﬁ/n/ |h xo)‘dl'—I3+I4

By using the same argument as in the proof of Theorem 4.1, we get, for 1 < r < oo
with 1/r =1/s —d/n,

m 1/r
Y ol ( ] ) T Mo-sgpnaa T 1)@ )

k=1
m C 1/r 1/s
m / 1/s
1/r B/n k,2
< el ol 20 ([ @)

1/s
C||b|LlpBZ(2QI1 a7 Il

g C”bHLipﬁ ZMés Tk’Z(f))(jj)’

I4 / / b y —b2
Z| ‘1+5/n Z 2Jd<\y—a:0|<21'+1d‘ (v) Ql

k=1
x K (x,y) = K(xo, y)||T*2(f)(y)|dyda

m

< 15l |2j+1c2|5/”(/
Z@Hﬁ/n/ 2 1lhir, g

27

1/q
X (/ | K (z,y) K(fco,y)lqdy) dx
27d<|y—xo|<2it1d

m o0
< Clluin, Yo 1QIH/m ST RIHIQIInCy(2id) /o o Qi =i

k=1 j=1

f2 ’ 1/q
[T*2(f)(W)|* dy
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1 1/s
S — k2 sd
X <|2J+1Q156/n /2j+1Q ()] y)

< Olblluip, D Mss(T2(£))(@) Y 2°C;

k=1

< ClIbllLip, Y Ms,o(T*2(£))(&).

k=1
This completes the proof of Theorem 4.2. O
THEOREM 4.3. Let the sequence {jC;} € I, ¢ < s < oo and b € BMO(R™).
Suppose Ty is a bounded linear operator from LP(R™) to L"(R™) for any p,r with
1<p<n/§and1l/r=1/p—5&/n, and has a kernel K satisfying (1). If T3 (g) =0
forany g € L*(R") (1 < u < 00), then there exists a constant C > 0 such that, for
any f € C°(R™) and & € R,

M*(TY(1))(&) < Clbllsmo D Ms o(T*?(f))(%).

k=1
PrOOF. It suffices to prove for f € C§°(R™) and some constant Cj, the follow-
ing inequality holds:

@/Q |T§)(f)(9€) - Co’ dx < C||bllBmo ZMé,s(Tk’2(f))(i).

k=1

Without loss of generality, we may assume Tf’l are Ty (k=1,...,m). Fix a cube
Q = Q(xo0,d) and T € Q. For fi = fx2q and fo = fx(2q)e, similar to the proof of
Theorem 4.1, we have

T2 (f)(z) = Té’ bQ(f)(w) = TP (f) (@) + TPV (£ () = g(a) + h(z),

|Q|/ T (f) h(zo)| dz < |Q|/ lg(z |dx—|—|Q‘/|h h(zo)|dz = Is+I6.

For I, choose 1 < t < s, by Holder’s inequality and the boundedness of Ts with
l<r<ooand 1l/r=1/t —§/n, we obtain

1
ol /Q T Myt o T2 (f) ()

1 1/r
< (g | 1T Mg o T (D@
@l Ju

1/t
<clQr ( / |M<b_bQ>X2QT’“2<f><x>|tdx>

1/s (s—t)/st
<cior( ) ) ([ bl - ol

1 1/s
< Cllhoo (g [ 1Tt
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< C|lbllsyo Ms s (TH?())(F),
thus

l 1 m
<y */ T35 Myt T () (@)|da < Clbllmanio Y Mo (T()) (%)
22701 Jq

k=1
For I, recalling that s > ¢, taking 1 < p < oo with 1/p+1/q+1/s = 1, we get,
for x € Q,

\Tf’lM(b—bQ)x(zQ)CTm(f)(x) - Tf’lM(b—bQ)X@@cTk’z(f)(xoﬂ

oo

< /2 K (2,y) — K (20, )lIb(y) = bag | T5*(f)(y)ldy

j=1 Y27 d<|y—zo|<29H1d

oo

1/q
< ( / K (z,y) — K(xo,ynqdy)
j=1 27d<|y—xo|<27t1d

1/p 1/s
([ pw=varar) ([ )

Hb”BMOZC 2]d —n/q'+6 (2Jd)n/p(2]d)n/s 5

k,2 s
% (|21+1Q|1 s6/n /J‘+1Q " (f)(y)|sdy>

CIbllsymo Ms.«(T*2(£))(&) > 5C; < ClIbllpvoMs,s(TH2(f))(%),
j=1

thus

l
1 k ; k, :
Is < @ /Q Z |T6 712\4(bbe)X(2Q)cT‘I“Q(f)(x) - T6 lM(bbe)X(QQ)cTk72(f)(x0)|dx
k=1 l

< Clbllsyo > Ms.o(TH2(f))(2).

k=1

This completes the proof of Theorem 4.3. O

THEOREM 4.4. Let the sequence {C;} € I*, 0 < B < min(l,n —4), ¢ <p <
n/(B+6), 1/r =1/p—(B+0)/n and b € Lipg(R"). Suppose Ts is a bounded linear
operator from LP(R™) to L"(R") and has a kernel K satisfying (1). If T§(g) =0
for any g € L*(R™) (1 < u < o) and T*? are the bounded operators on LP(R™)
for1<p<oo, k=1,...,m, then T} is bounded from LP(R") to L"(R").

PROOF. Choose ¢’ < s < p in Theorem 4.1, we have, by Lemma 3.3 and 3.4,

T3 ()l < IM(T2)) |- < CIM#(TZ()L

< Olblluip, Y 1Mp4s.s(T2(f))llLr < ClbllLip, Z IT™2(£)llze

k=1 k=1
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< CllblLip, 11 -
This completes the proof. O

THEOREM 4.5. Let the sequence {C;} € I', 0 < B < min(l,n — ), ¢ <p <
n/(B+0), 1/r=1/p—(B+0)/n, 0 <D < 2" and b € Lipg(R"). Suppose Ts is a
bounded linear operator from LP(R™) to L"(R™) and has a kernel K satisfying (1).
If Ti(g) =0 for any g € L“(R") (1 < u < 00) and T*? are the bounded operators
on LP¥(R™) for 1 < p < oo, k=1,...,m, then T¢ is bounded from LP*¥(R™) to
L™%(R").

ProoF. Choose ¢’ < s < p in Theorem 4.1, we have, by Lemma 3.5 and 3.6,
IT5 ()llzre < IM(TZ)zre < CIMFTZ)) 2o

< Ollblleip, D I1Mss (T2 (f))l|zre < Clbllip, Y NT™2(f)l| 2o
k=1

k=1
< Cllbllip, 1 f]l oo

This completes the proof. O

THEOREM 4.6. Let the sequence {27°C;} € I', 0 < B < 1, ¢ < p < n/d,
l/r = 1/p—§d/n and b € Lipg(R"™). Suppose Ts is a bounded linear operator
from LP(R™) to L"(R") and has a kernel K satisfying (1). If T (g) = 0 for any
g € L*R") (1 < u < 00) and T*? are the bounded operators on LP(R") for
l<p<oo, k=1,...,m, then T} is bounded from LP(R™) to F>°(R").

PRrRoOF. Choose ¢’ < s < p in Theorem 4.2, we have, by Lemma 3.2 and 3.3,

1
T gzoe < Clup e /Q IT2(£)(@) - Col da

LT

< Ollbleip, D I1Mss(T2(f))llzr < CllbllLip, Y IT5*() 2o
k=1 k=1

< ClbllLip, [1F ]l zo-
This completes the proof. O

THEOREM 4.7. Let the sequence {jC;} €', ¢ <p<n/s,1/r=1/p—§/n and
b € BMO(R™). Suppose Ts is a bounded linear operator from LP(R™) to L"(R™)
and has a kernel K satisfying (1). If T{(g) = 0 for any g € L*(R") (1 < u < 00)
and T*? are the bounded operators on LP(R™) for 1 <p < oo, k=1,...,m, then
T? is bounded from LP(R™) to L"(R").

PRrROOF. Choose ¢’ < s < p in Theorem 4.3, we have, by Lemma 3.3 and 3.4,
T3 (Nl < IMTS) e < CUMPF(TZ ()| e

< Ollbllsmo Y 1Moo (T*?(F) e < Cllbllsao Y IT*2(f)l|zs

k=1 =1
< Clpllsmoll £l ze-
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This completes the proof. O

D

to

THEOREM 4.8. Let the sequence {jC;} € 1*, ¢ <p<n/§, 1/r=1/p—6/n, 0 <
< 2" and b € BMO(R™). Suppose Ty is a bounded linear operator from LP(R™)
L"(R™) and has a kernel K satisfying (1). If T}(g) = 0 for any g € L*(R™)

(1 < u < o0) and T*? are the bounded operators on LP¥(R"™) for 1 < p < oo,
k=1,...,m, then T? is bounded from LP¥(R™) to L™?(R").
PRroOF. Choose ¢’ < s < p in Theorem 4.3, we have, by Lemma 3.5 and 3.6,
IT5 (A)llzre < NIMTZ))zre < CIMFTZ)) e
< Clbllemo Y 1Ms.o(TH2())[zre < Cllbllayo D ITH(f)l|zre
k=1 k=1
< Clbllsmoll fllzee-
This completes the proof. O

COROLLARY. Let Ty € GSIO(9), that is Ts is the singular integral operator as

Definition 1.2. Then Theorems 4.1-4.8 hold for Tg’,

10.

11.

12.

13.

14.
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