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Abstract. We study the geometry of warped product submanifolds of Lorentz-
ian 𝛽-Kenmotsu manifolds. We obtain a characterization result for CR-warped
products.

1. Introduction

The notion of warped product manifolds was introduced by Bishop and O’Neill
[2] and then it was studied by many mathematicians and physicists. These man-
ifolds are the generalization of the Riemannian product manifolds. Chen [4] has
studied the geometry of warped product submanifolds in Kaehler manifold and
showed that the warped product submanifold of the type 𝑁⊥ ×𝑓 𝑁⊤ is trivial.
Later, many research articles have recently appeared exploring the existence or
nonexistence of warped product submanifolds in known spaces [1, 6, 9].

Matsumoto [8] introduced the notion of Lorentzian almost paracontact metric
manifolds. Later on, many geometers studied submanifolds of Lorentzian almost
paracontact manifolds [5, 10].

As Kenmotsu manifolds are themselves warped product spaces, it is interesting
to study warped product submanifolds in Kenmotsu manifolds. In this paper we
consider the warped product submanifolds of the types 𝑀 = 𝑁⊥ ×𝑓 𝑁⊤ and 𝑀 =
𝑁⊤ ×𝑓 𝑁⊥ in an arbitrary Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ , where 𝑁⊤ and 𝑁⊥
are the invariant and anti-invariant submanifolds of 𝑀̄ , respectively.

2. Preliminaries

Let 𝑀̄ be a (2𝑛 + 1)-dimensional manifold of class 𝐶∞ endowed with an endo-
morphism 𝜑 of its tangent bundle 𝑇𝑀̄ , a vector field 𝜉, which is called the structure
vector field, a 1-form 𝜂 and a Lorentzian metric 𝑔 with signature (−, +, · · · , +) sat-
isfying:
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𝜑2𝑋 = 𝑋 + 𝜂(𝑋)𝜉, 𝜂(𝜉) = −1, 𝜑(𝜉) = 0, 𝜂 ∘ 𝜑 = 0,(2.1)
𝑔(𝜑𝑋, 𝜑𝑌 ) = 𝑔(𝑋, 𝑌 ) + 𝜂(𝑋)𝜂(𝑌 ), 𝜂(𝑋) = 𝑔(𝑋, 𝜉).(2.2)

for any vector fields 𝑋, 𝑌 on 𝑀̄ . Then such a structure (𝜑, 𝜉, 𝜂, 𝑔) is termed as
Lorentzian paracontact structure and the manifold 𝑀̄ with a Lorentzian paracontact
structure is called a Lorentzian paracontact manifold [8].

Our purpose is to define the warped product submanifolds of a Lorentzian
𝛽-Kenmotsu manifold, that is a manifold with a paracontact structure and a com-
patible Lorentzian metric 𝑔, (𝑀̄2𝑛+1, 𝜑, 𝜉, 𝜂, 𝑔) satisfying (2.1) and (2.2) with the
following additional condition:

(2.3) (∇̄𝑋𝜑)𝑌 = 𝛽{𝑔(𝜑𝑋, 𝑌 )𝜉 + 𝜂(𝑌 )𝜑𝑋},

for any 𝑋, 𝑌 ∈ 𝑇𝑀̄ , where ∇̄ is the Levi–Civita connection with respect to the
Lorentzian metric 𝑔. Thus, a Lorentzian paracontact manifold satisfying (2.3) is
called a Lorentzian 𝛽-Kenmotsu manifold [10]. From (2.3), it is easy to obtain that

(2.4) ∇̄𝑋𝜉 = 𝛽{𝑋 + 𝜂(𝑋)𝜉}

Now, let 𝑀 be a submanifold of 𝑀̄ . Let 𝑇𝑀 be the Lie algebra of vector fields
in 𝑀 and 𝑇 ⊥𝑀 the set of all vector fields normal to 𝑀 . If ∇ is the Levi–Civita
connection on 𝑀 , then Gauss–Weingarten formulas are given by

∇̄𝑋𝑌 = ∇𝑋𝑌 + ℎ(𝑋, 𝑌 )(2.5)
∇̄𝑋𝑁 = −𝐴𝑁 𝑋 + ∇⊥

𝑋𝑁(2.6)

for any 𝑋, 𝑌 ∈ 𝑇𝑀 and any 𝑁 ∈ 𝑇 ⊥𝑀 , where ∇⊥ is the induced connection in the
normal bundle, ℎ is the second fundamental form of 𝑀 and 𝐴𝑁 is the Weingarten
endomorphism associated with 𝑁 . The second fundamental form ℎ and the shape
operator 𝐴 are related by

(2.7) 𝑔(𝐴𝑁 𝑋, 𝑌 ) = 𝑔(ℎ(𝑋, 𝑌 ), 𝑁)

where 𝑔 denotes the metric on 𝑀̄ as well as the induced metric on 𝑀 [11].
For any 𝑋 ∈ 𝑇𝑀 , we write

(2.8) 𝜑𝑋 = 𝑃𝑋 + 𝐹𝑋

where 𝑃𝑋 is the tangential component of 𝜑𝑋 and 𝐹𝑋 is the normal component of
𝜑𝑋, respectively. Similarly, for any vector field 𝑁 normal to 𝑀 , we put

(2.9) 𝜑𝑁 = 𝐵𝑁 + 𝐶𝑁

where 𝐵𝑁 and 𝐶𝑁 are tangential and normal components of 𝜑𝑁 , respectively.
The covariant derivatives of the tensor fields 𝑃 and 𝐹 are defined as

(∇̄𝑋𝑃 )𝑌 = ∇𝑋𝑃𝑌 − 𝑃∇𝑋𝑌,(2.10)
(∇̄𝑋𝐹 )𝑌 = ∇⊥

𝑋𝐹𝑌 − 𝐹∇𝑋𝑌(2.11)

for all 𝑋, 𝑌 ∈ 𝑇𝑀 .
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A submanifold 𝑀 , of a Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ is called CR-
submanifold if it admits a differentiable invariant distribution 𝐷 whose orthogonal
complementary distribution 𝐷⊥ is anti-invariant i.e., 𝑇𝑀 = 𝐷 ⊕ 𝐷⊥ ⊕ ⟨𝜉⟩ with
𝜑(𝐷𝑝) ⊆ 𝐷𝑝 and 𝜑(𝐷⊥

𝑝 ) ⊂ 𝑇 ⊥
𝑝 𝑀 , for every 𝑝 ∈ 𝑀 . A CR-submanifold is known

to be invariant, anti-invariant and proper if 𝐷⊥ = 0, 𝐷 = 0 and 𝐷 ̸= 0 ̸= 𝐷⊥,
respectively.

Note that 𝜉 is time like vector field and all vector field in 𝐷 ⊕ 𝐷⊥ are space
like.

Let 𝑀 be an 𝑚-dimensional CR-submanifold of (2𝑛+1)-dimensional Lorentzian
𝛽-Kenmotsu manifold (𝑀̄2𝑛+1, 𝜑, 𝜉, 𝜂, 𝑔). Then, 𝐹 (𝑇𝑝𝑀) is a subspace of 𝑇 ⊥

𝑝 𝑀 .
Then for every 𝑝 ∈ 𝑀 , there exists an invariant subspace 𝜇𝑝 of 𝑇𝑝𝑀̄ such that

𝑇𝑝𝑀̄ = 𝑇𝑝𝑀 ⊕ 𝐹 (𝑇𝑝𝑀) ⊕ 𝜇𝑝.

3. Warped Product Submanifolds

The study of warped product manifolds was initiated by Bishop and O’Neill
[2]. They defined these manifolds as follows:

Definition 3.1. Let (𝐵, 𝑔1) and (𝐹, 𝑔2) be two semi-Riemannian manifolds
with metric 𝑔1 and 𝑔2 respectively and 𝑓 a positive differentiable function on 𝐵.
The warped product of 𝐵 and 𝐹 is the manifold 𝐵 ×𝑓 𝐹 = (𝐵 × 𝐹, 𝑔), where

𝑔 = 𝑔1 + 𝑓2𝑔2.

More explicitly, if 𝑈 is tangent to 𝑀 = 𝐵 ×𝑓 𝐹 at (𝑝, 𝑞), then

‖𝑈‖2 = ‖𝑑𝜋1𝑈‖2 + 𝑓2(𝑝)‖𝑑𝜋2𝑈‖2

where 𝜋𝑖(𝑖 = 1, 2) are the canonical projections of 𝐵×𝐹 onto 𝐵 and 𝐹 , respectively.

A warped product manifold 𝐵 ×𝑓 𝐹 is said to be trivial if the warping function
𝑓 is constant. We recall that on a warped product manifold, one has

(3.1) ∇𝑈 𝑉 = ∇𝑉 𝑈 = (𝑈 ln 𝑓)𝑉

for any vector fields 𝑈 tangent to 𝐵 and 𝑉 tangent to 𝐹 [2].
Throughout the paper, we denote by 𝑁⊤ and 𝑁⊥, the invariant and anti-

invariant submanifolds of a Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ , respectively. Then
their warped product CR-submanifolds are one of the following forms:

(i) 𝑀 = 𝑁⊥ ×𝑓 𝑁⊤, (ii) 𝑀 = 𝑁⊤ ×𝑓 𝑁⊥.

For case (i), when 𝜉 ∈ 𝑇𝑁⊤, we have the following theorem.

Theorem 3.1. There does not exist a warped product CR-submanifold 𝑀 =
𝑁⊥ ×𝑓 𝑁⊤ of a Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ such that 𝑁⊤ is an invariant
submanifold tangent to 𝜉 and 𝑁⊥ is an anti-invariant submanifold of 𝑀̄ .

Proof. Let 𝑀 = 𝑁⊥ ×𝑓 𝑁⊤ be a warped product CR-submanifold of a
Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ such that 𝑁⊤ is an invariant submanifold
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tangent to 𝜉 and 𝑁⊥ is an anti-invariant submanifold of 𝑀̄ . Then by equation
(3.1), we get

∇𝑋𝑍 = ∇𝑍𝑋 = (𝑍 ln 𝑓)𝑋
for any vector fields 𝑍 and 𝑋 tangent to 𝑁⊥ and 𝑁⊤, respectively.

In particular,
(3.2) ∇𝑍𝜉 = (𝑍 ln 𝑓)𝜉,

whereas by (2.4), (2.5) and the fact that 𝜉 is tangent to 𝑁⊤, we have
(3.3) ∇𝑍𝜉 = 𝛽𝑍, ℎ(𝑍, 𝜉) = 0.

It follows from (3.2) and (3.3) that 𝑍 ln 𝑓 = 0, for all 𝑍 ∈ 𝑇𝑁⊥ i.e., 𝑓 is constant
for all 𝑍 ∈ 𝑇𝑁⊥. This completes the proof. �

Now, the other case, when 𝜉 tangent to 𝑁⊥ is dealt in the following two results.

Lemma 3.1. Let 𝑀 = 𝑁⊥ ×𝑓 𝑁⊤ be a warped product CR-submanifold of a
Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ such that 𝜉 is tangent to 𝑁⊥. Then

(i) 𝜉 ln 𝑓 = 𝛽, (ii) 𝑔(ℎ(𝑋, 𝜑𝑋), 𝐹𝑍) = −{𝛽𝜂(𝑍) + 𝑍 ln 𝑓}‖𝑋‖2,

for any 𝑋 ∈ 𝑇𝑁⊤ and 𝑍 ∈ 𝑇𝑁⊥.

Proof. If 𝜉 ∈ 𝑇𝑁⊥ then for any 𝑋 ∈ 𝑇𝑁⊤, we have
(3.4) ∇𝑋𝜉 = (𝜉 ln 𝑓)𝑋.

On the other hand, from (2.4) and the fact that 𝜉 is tangent to 𝑁⊥, we have
∇̄𝑋𝜉 = 𝛽𝑋. Using (2.5), we obtain
(3.5) ∇𝑋𝜉 = 𝛽𝑋, ℎ(𝑋, 𝜉) = 0.

By equations (3.4) and (3.5), it follows that 𝜉 ln 𝑓 = 𝛽. Now, for any 𝑋 ∈ 𝑇𝑁⊤
and 𝑍 ∈ 𝑇𝑁⊥, we have (∇̄𝑋𝜑)𝑍 = ∇̄𝑋𝜑𝑍 − 𝜑∇̄𝑋𝑍. Using (2.3), (2.6), (2.8), (2.9)
and by the orthogonality of two distributions, we derive

𝛽𝜂(𝑍)𝜑𝑋 = −𝐴𝐹 𝑍𝑋 + ∇⊥
𝑋𝐹𝑍 − 𝑃∇𝑋𝑍 − 𝐹∇𝑋𝑍 − 𝐵ℎ(𝑋, 𝑍) − 𝐶ℎ(𝑋, 𝑍).

Equating the tangential components, we get
−𝛽𝜂(𝑍)𝜑𝑋 = 𝐴𝐹 𝑍𝑋 + 𝑃∇𝑋𝑍 + 𝐵ℎ(𝑋, 𝑍).

Taking the product with 𝜑𝑋 and using (2.2) and (3.1), we derive
−𝛽𝜂(𝑍)‖𝑋‖2 = 𝑔(𝐴𝐹 𝑍𝑋, 𝜑𝑋) + (𝑍 ln 𝑓)𝑔(𝑃𝑋, 𝜑𝑋) + 𝑔(𝐵ℎ(𝑋, 𝑍), 𝜑𝑋)

= 𝑔(ℎ(𝑋, 𝜑𝑋), 𝐹𝑍) + (𝑍 ln 𝑓)𝑔(𝜑𝑋, 𝜑𝑋) + 𝑔(𝜑ℎ(𝑋, 𝑍), 𝜑𝑋).
Then from (2.2), we obtain

�(3.6) 𝑔(ℎ(𝑋, 𝜑𝑋), 𝐹𝑍) = −{𝛽𝜂(𝑍) + 𝑍 ln 𝑓}‖𝑋‖2.

Theorem 3.2. Let 𝑀 = 𝑁⊥ ×𝑓 𝑁⊤ be a warped product CR-submanifold of a
Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ such that 𝜉 is tangent to 𝑁⊥. If ℎ(𝑋, 𝜑𝑋) ∈ 𝜇
the invariant normal subbundle of 𝑀 , then 𝑍 ln 𝑓 = −𝛽𝜂(𝑍) for all 𝑋 ∈ 𝑇𝑁⊤ and
𝑍 ∈ 𝑇𝑁⊥.

Proof. The assertion follows from formula (3.6) by using the given fact. �
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For the warped product of the type 𝑁⊤ ×𝑓 𝑁⊥, we have the following theorem.

Theorem 3.3. There does not exist a warped product CR-submanifold 𝑀 =
𝑁⊤ ×𝑓 𝑁⊥ of a Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ such that 𝜉 is tangent to 𝑁⊥.

Proof. As 𝜉 ∈ 𝑇𝑁⊥, then by formula (3.1), we have

(3.7) ∇𝑋𝜉 = (𝑋 ln 𝑓)𝜉,

for any 𝑋 ∈ 𝑇𝑁⊤. Whereas from (2.4), (2.5) and the fact that 𝜉 ∈ 𝑇𝑁⊥, we have

(3.8) ∇𝑋𝜉 = 𝛽𝑋, ℎ(𝑋, 𝜉) = 0

From (3.7) and (3.8), it follows that 𝑋 ln 𝑓 = 0, for all 𝑋 ∈ 𝑇𝑁⊤, and this means
that 𝑓 is constant on 𝑁⊤. This proves the theorem. �

The remaing case, when 𝜉 ∈ 𝑇𝑁⊤ is dealt with the following two theorems.

Theorem 3.4. Let 𝑀 = 𝑁⊤ ×𝑓 𝑁⊥ be a warped product CR-submanifold of a
Lorentzian 𝛽-Kenmotsu manifold 𝑀̄ such that 𝜉 is tangent to 𝑁⊤. Then (∇̄𝑋𝐹 )𝑍
lies in the invariant normal subbundle for each 𝑋 ∈ 𝑇𝑁⊤ and 𝑍 ∈ 𝑇𝑁⊥.

Proof. For any 𝑋 ∈ 𝑇𝑁⊤ and 𝑍 ∈ 𝑇𝑁⊥, we have

𝑔(𝜑∇̄𝑋𝑍, 𝜑𝑍) = 𝑔(∇̄𝑋𝑍, 𝑍) = 𝑔(∇𝑋𝑍, 𝑍).

Using (3.1), we get

(3.9) 𝑔(𝜑∇̄𝑋𝑍, 𝜑𝑍) = (𝑋 ln 𝑓)‖𝑍‖2.

On the other hand, for any 𝑋 ∈ 𝑇𝑁⊤ and 𝑍 ∈ 𝑇𝑁⊥, we have

(∇̄𝑋𝜑)𝑍 = ∇̄𝑋𝜑𝑍 − 𝜑∇̄𝑋𝑍.

Using (2.3) and the fact that 𝜉 is tangent to 𝑁⊤, the left-hand side of the above
equation is identically zero, then we get

(3.10) 𝜑∇̄𝑋𝑍 = ∇̄𝑋𝜑𝑍.

Taking the product with 𝜑𝑍 in (3.10) and making use of formula (2.6), we obtain

𝑔(𝜑∇̄𝑋𝑍, 𝜑𝑍) = 𝑔(∇⊥
𝑋𝐹𝑍, 𝐹𝑍).

Then from (2.11), we derive 𝑔(𝜑∇̄𝑋𝑍, 𝜑𝑍) = 𝑔((∇̄𝑋𝐹 )𝑍, 𝐹𝑍) + 𝑔(𝐹∇𝑋𝑍, 𝐹𝑍).
Using (3.1), we get

𝑔(𝜑∇̄𝑋𝑍, 𝜑𝑍) = (𝑋 ln 𝑓)𝑔(𝐹𝑍, 𝐹𝑍) + 𝑔((∇̄𝑋𝐹 )𝑍, 𝐹𝑍)
= (𝑋 ln 𝑓)𝑔(𝜑𝑍, 𝜑𝑍) + 𝑔((∇̄𝑋𝐹 )𝑍, 𝐹𝑍).

Therefore by (2.2), we obtain

(3.11) 𝑔(𝜑∇̄𝑋𝑍, 𝜑𝑍) = (𝑋 ln 𝑓)‖𝑍‖2 + 𝑔((∇̄𝑋𝐹 )𝑍, 𝐹𝑍).

Thus (3.9) and (3.11) imply

(3.12) 𝑔((∇̄𝑋𝐹 )𝑍, 𝐹𝑍) = 0.
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Also, as 𝑁⊤ is an invariant submanifold then 𝜑𝑊 ∈ 𝑇𝑁⊤ for any 𝑊 ∈ 𝑇𝑁⊤, thus
on using (2.11) and the fact that the product of tangential component with normal
is zero, we obtain

(3.13) 𝑔((∇̄𝑋𝐹 )𝑍, 𝜑𝑊 ) = 0.

Hence from (3.12) and (3.13), it follows that (∇̄𝑋𝐹 )𝑍 ∈ 𝜇, for all 𝑋 ∈ 𝑇𝑁⊤ and
𝑍 ∈ 𝑇𝑁⊥. Thus, the proof is complete. �

Theorem 3.5. A proper CR-submanifold 𝑀 of a Lorentzian 𝛽-Kenmotsu man-
ifold 𝑀̄ is locally a CR-warped product if and only if the shape operator of 𝑀
satisfies

(3.14) 𝐴𝜑𝑍𝑋 = (𝜑𝑋𝜇)𝑍, 𝑋 ∈ 𝐷 ⊕ ⟨𝜉⟩, 𝑍 ∈ 𝐷⊥

for some function 𝜇 on 𝑀 satisfying 𝑉 (𝜇) = 0, for each 𝑉 ∈ 𝐷⊥.

Proof. Let 𝑀 = 𝑁⊤ ×𝑓 𝑁⊥ be a CR-warped product submanifold of a Lor-
entzian 𝛽-Kenmotsu manifold 𝑀̄ with 𝜉 ∈ 𝑇𝑁⊤, then for any 𝑋 ∈ 𝑇𝑁⊤ and
𝑍, 𝑊 ∈ 𝑇𝑁⊥, we have

𝑔(𝐴𝜑𝑍𝑋, 𝑊 ) = 𝑔(ℎ(𝑋, 𝑊 ), 𝜑𝑍) = 𝑔(∇̄𝑊 𝑋, 𝜑𝑍) = 𝑔(𝜑∇̄𝑊 𝑋, 𝑍)
= 𝑔(∇̄𝑊 𝜑𝑋, 𝑍) − 𝑔((∇̄𝑊 𝜑)𝑋, 𝑍).

Using (2.3), (3.1) and the fact that 𝜉 is tangent to 𝑁⊤, the above equation yields

(3.15) 𝑔(𝐴𝜑𝑍𝑋, 𝑊 ) = (𝜑𝑋 ln 𝑓)𝑔(𝑍, 𝑊 ).

Further, we have 𝑔(ℎ(𝑋, 𝑌 ), 𝐹𝑍) = 𝑔(∇̄𝑋𝑌, 𝜑𝑍) = 𝑔(𝜑∇̄𝑋𝑌, 𝑍) = −𝑔(𝜑𝑌, ∇̄𝑋𝑍),
for each 𝑋, 𝑌 ∈ 𝑇𝑁⊤ and 𝑍 ∈ 𝑇𝑁⊥. Using (3.1), we obtain 𝑔(ℎ(𝑋, 𝑌 ), 𝐹𝑍) = 0.
Taking into account this fact in (3.15), we obtain (3.14).

Conversely, suppose that 𝑀 is a proper CR-submanifold of a Lorentzian 𝛽-
Kenmotsu manifold 𝑀̄ satisfying (3.14), then for any 𝑋, 𝑌 ∈ 𝐷 ⊕ ⟨𝜉⟩,

𝑔(ℎ(𝑋, 𝑌 ), 𝜑𝑍) = 𝑔(𝐴𝜑𝑍𝑋, 𝑌 ) = 0.

This implies that 𝑔(∇̄𝑋𝜑𝑌, 𝑍) = 0, that is, 𝑔(∇𝑋𝑌, 𝑍) = 0. This means 𝐷 ⊕ ⟨𝜉⟩ is
integrable and its leaves are totally geodesic in 𝑀 . Now, for any 𝑍, 𝑊 ∈ 𝐷⊥ and
𝑋 ∈ 𝐷 ⊕ ⟨𝜉⟩, we have

𝑔(∇𝑍𝑊, 𝜑𝑋) = 𝑔(∇̄𝑍𝑊, 𝜑𝑋) = 𝑔(𝜑∇̄𝑍𝑊, 𝑋)
= 𝑔(∇̄𝑍𝜑𝑊, 𝑋) − 𝑔((∇̄𝑍𝜑)𝑊, 𝑋).

Then, using (2.3) and (2.6), we obtain 𝑔(∇𝑍𝑊, 𝜑𝑋) = −𝑔(𝐴𝜑𝑊 𝑍, 𝑋). Thus from
(2.7), we arrive at 𝑔(∇𝑍𝑊, 𝜑𝑋) = −𝑔(ℎ(𝑍, 𝑋), 𝜑𝑊 ). Again using (2.7) and (3.14),
we obtain

(3.16) 𝑔(∇𝑍𝑊, 𝜑𝑋) = −𝑔(𝐴𝜑𝑊 𝑋, 𝑍) = −(𝜑𝑋𝜇)𝑔(𝑍, 𝑊 ).

Let 𝑁⊥ be a leaf of 𝐷⊥ and ℎ⊥ be the second fundamental form of the immersion
of 𝑁⊥ into 𝑀 . Then for any 𝑍, 𝑊 ∈ 𝐷⊥, we have

(3.17) 𝑔(ℎ⊥(𝑍, 𝑊 ), 𝜑𝑋) = 𝑔(∇𝑍𝑊, 𝜑𝑋).
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Hence, from (3.16) and (3.17), we conclude that
𝑔(ℎ⊥(𝑍, 𝑊 ), 𝜑𝑋) = −(𝜑𝑋𝜇)𝑔(𝑍, 𝑊 ).

This means that integral manifold 𝑁⊥ of 𝐷⊥ is totally umbilical in 𝑀 . Since
𝑉 (𝜇) = 0 for each 𝑉 ∈ 𝐷⊥, which implies that the integral manifold of 𝒟⊥ is an
extrinsic sphere in 𝑀 , this means that the curvature vector field is nonzero and
parallel along 𝑁⊥. Hence by virtue of a result in [7], 𝑀 is locally a warped product
𝑁⊤ ×𝑓 𝑁⊥, where 𝑁⊤ and 𝑁⊥ denote the integral manifolds of the distributions
𝐷 ⊕ ⟨𝜉⟩ and 𝐷⊥, respectively and 𝑓 is the warping function. �
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