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ABSTRACT. A graph is a cactus if any two of its cycles have at most one
common vertex. In this paper, we determine the first sixteen largest Laplacian
spectral radii together with the corresponding graphs among all connected
cacti with n vertices and k cycles, where n > 2k + 8.

1. Introduction

Let G = (V, E) be a simple connected graph with vertex set V= {vy,v2,...,v,}
and edge set E. Denote by d(v;) the degree of the vertex v; of G. Let A(G) be the
adjacency matrix and L(G) = D(G) — A(G) the Laplacian matrix of the graph G,
where D(G) = diag(d(v1),d(vz2),...,d(vy)) denotes the diagonal matrix of vertex
degrees of G. It is easy to see that L(G) is a singular, semi-positive, symmetric
matrix and its rows sum to 0. Denote its eigenvalues by

pi(G) = p2(G) = -+ = pn(G) = 0,

which are always enumerated in non-increasing order. We denote the largest eigen-
value p1(G) of L(G) by p(G) and call it the Laplacian spectral radius of G. Also,
let ¢(G, ) be the characteristic polynomial of G, i.e., ¢(G,A) = det(AI — L(G)).
There are a lot of relations between the Laplacian spectral radius and numer-
ous graph invariants, and the Laplacian spectral radius of a graph has numerous
applications in theoretical chemistry, combinatorial optimization, communication
networks, etc. For related reference, one may see [14]. Besides, from the known
fact that 11 (G) + pn—1(G) = n, we can see that the Laplacian spectral radius is
of relevance to the algebraic connectivity of a graph which is a good parameter to
measure how well a graph is connected. There is a good deal work on algebraic
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connectivity for graphs (see [1] and references therein), and particular attention
has been paid to algebraic connectivity for unicyclic graphs (see [3] for example).

Recently, the problem concerning graphs with maximal or minimal Laplacian
spectral radius of a given class of graphs has been studied extensively. For related
results, one may refer to [4-13] and the references therein.

A graph is a cactus, or a treelike graph, if any two of its cycles have at most
one common vertex. Cacti have been studied by several authors, for example, one
may see [2,15]. Let T, 1 denote the set of all connected cacti with n vertices and k
cycles.

When k = 1, 7,1 is the set of all unicyclic graphs of order n. Let T; (i =
1-4,6,8-11,13-19) be the unicyclic graphs with n vertices shown in Fig. 2. Let
TeTy1and T ¢ {T1,T5,T3,T,}. Guo [7] proved that

n=pu(T1) > p(T2) > p(Ts) > p(Ty) > p(T).
Let T € 7;1)1 and T ¢ {Tl,TQ,T37T4,T6,Tg,Tg,T107T117T17}. Liu, Shao and Yuan
[11] proved that
1(Te) > w(Ts) > w(To) > p(Tro) > p(T11) = p(Ti7) > w(T).
Let T € Tpy and T ¢ {11,152, T3, T4, T, Ty, Ty, Tho, T11, Ti7, Th3-The, Ths, Ti9}. Liu
and Liu [12] proved that
w(Tiz) > p(Tha) = p(Tis) = p(Tho) > pu(Ths) > p(Tre) > (7).

In this paper, we consider the cases when k > 2, and determine the first sixteen
largest Laplacian spectral radii together with the corresponding graphs in 7, .

2. Preliminaries

For v € V(G), N(v) denotes the set of all neighbors of vertex v in G. Then
d(v) = [N(v)|. A denotes the maximum degree of G and § denotes the minimum
degree of G. Let G1,Ga, ..., G2 be the cacti with n vertices and k cycles shown
in Fig. 1.

LEMMA 2.1 (13). We have u(G) < max{d(v) + m(v) : v € V'}, where m(v) =
D uen(w) Aw)/d(v).

LEMMA 2.2. Suppose k > 1 and G € Ty, with A <n—4. If n > 2k + 8, then
w(G) <n—2.

PRrROOF. By Lemma 2.1, we only need to prove that max{d(v) + m(v) : v €
V(G)} < n—2. Suppose max{d(v) +m(v) : v € V(G)} occurs at the vertex u. We
consider the following three cases.

Case 1. d(u) = 1. Suppose v € N(u), then
du) +m(u) =d(u) +dv) <1l+n—-4<n-2.
Case 2. d(u) = 2. Suppose v,w € N(u). Note that G is a cactus, then
|N(v) N N(w)| £ 2 and |N(v) UN(w)| < n. Therefore

d(v) + d(w) nt2 _

d(u) +m(u) =2+ 5 <2+ 5 <n—2.
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Case 3. 3 < d(u) < n—4. Note that 3 < d(u) < n —4, then

2m — d(u) — 3 2m —3
d m(u) < d 2 Y d(w) -1+ 2
(u) +m(u) (u) + ) (u) + 0w
Next we shall prove that d(u)—l—i——zg(ﬂ:)g < n—2. Equivalently, d(u)(n—1—d(u))

> 2m — 3. Once this is proved, we are done. Let f(z) = (n — 1 — x)z.
When z € [3, 271], since f'(z) =n—1—2z > 0, then

flx) =2 fB)=3n—-4)>22n+k—-1)—3=2m - 3.
When z € [251,n — 4], since f/(z) =n — 1 — 2z <0, then
flx)zfn—4)=3n—-4)=22n+k—-1)—3=2m—3. O
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By combing the above discussion, the conclusion follows.

LEMMA 2.3 (4). Let v be a vertex in a connected graph G and suppose that s
(s = 2) new paths (with equal length k) P; : vvigvige—1y...vi1, (i = 1,2,...,5;
k > 1) are attached to G at v, respectively, to form a new graph G¥, where
Viks Vi(k—1)s- - -, Vi1, (i = 1,2,...,s) are distinct new vertices. Let G*. et
be the graph obtained from G* by adding t; (0 < t; < @) edges among ver-
tices v1i, V2, - -, vsi(1 < i < k), respectively. If A(GF) > s+ 3, then we have
/L(Gg;tl,tg,...,tk) = U(Glsc)-

Let T1,T5,...,T16 be the graphs with n vertices shown in Fig. 2. Then from
Lemma 2.3, we can obtain easily the following lemma.

LEMMA 2.4. u(G1) = w(Th), p(Ge) = u(Tz), m(G3) = w(T3), p(Ga) = pu(T),
w(Gs) = w(Ts), u(Ge) = u(Ts), 1(G7) = u(T7), (Gs) = u(Ts), p(Go) = u(Gio) =
w(Ty), u(Gi1) = u(Th), u(Gi2) = u(Giz) = w(Ti1), (Gra) = p(Ti2), (Gis) =
w(Ti3), i(Gie) = p(Grr) = u(Gis) = w(Tia), (Gro) = p(T1s), u(G20) = p(Tis)-

LEMMA 2.5 (6). Let G be a connected graph on n wvertices with at least one
edge; then u(G) = A(G) + 1, where A(G) is the mazimum degree of the graph G,
with equality if and only if A(G) =n — 1.
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LEMMA 2.6. Let n > 10. Thenn = u(Ty) > w(Tz) > p(Ts) > w(Ty) > w(Ts) >
w(Te) > p(T7) > p(Ts) > w(To) > p(Tro) > p(Ti1) > w(Trz) > p(Tis) > p(Tia) >
w(T5) > p(Tie).

PRrROOF. From [7] we have n = p(Th) > p(T2) > p(Ts) > wp(Ty), and p(T;) is
the largest root of the equation h;(A) = 0 (i = 2, 3,4), respectively, where

ha(A) = A — (n 4+ 5)A% + (6n + 4)A? — (10n — 4)\ + 4n,
ha(\) = A — (n 4+ 5)A% + (6n 4 3)A% — (9n — 5)\ + 3n,
ha(A) = A — (n 4+ 5)A% + (6n + 4)A? — (10n — 6)\ + 3n.

It is not difficult to calculate recursively that

H(Ts; A) = A = 1)"78(X3 — 62 + 10X — 4)hs(N),
$(Te; ) = MA = 1)"he(N),
O(Tr; A) = AN = 1) Shr(N),
O(Ts; A) = AN = 2)(A = 1)" Ths(N),
¢(To; A) = A(A = 1)"hg(N),
d(T0; A) = AA = 2)(A = 1) Chyo(N),
P(Ti;A) = AA = )" hi(N),
d(Th2; A) = A(A = 1)"Phia(N),
P(Tiz; A) = AA = 1) Thiz(N),
$(T1a3 A) = AA = 3)(A = 1)"T(A2 = 3A + 1)h1a(N)
P(Tis; A) = AA = 1)" s (N),
O(Ti6; A) = AA = 3)(A = 1)" Chys(N),
where
hs(A\) = A — (n+4)N\3 + (6n — 2)A? — (10n — 12)\ + 4n,
he(A) = A* — (n 4+ 5)A% + (Tn — 1)A% — (13n — 19)\ + 4n,
hr(A) = A7 — (n 4 10)X° + (12n 4 31)\° — (55n + 14)A* + (121n — 85)\®
— (132n — 128)\% 4 (661 — 44)\ — 12n,
hs(N) = A% — (n 4+ 5)A* + (Tn + 1)A* — (15n — 17)A? + (10n — 8)\ — 2n,
ho(A) = A* — (n 4+ 5)A° + (Tn — 3)A% — (11n — 17)\ + 3n,
hio(N) = At — (n + 4)X3 + (6n — 4)\? — (8n — 12)\ + 2n,
hit(A) = At — (n +5)A* + (Tn — 1)A* — (13n — 21)A + 3n,
hia(A) = A7 — (n + 10)A% + (12n + 30)A° — (54n + 8)A* + (114n — 93)A\®
— (117n — 126)\* 4 (54n — 39)\ — 9In,
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hi3(A\) = A% — (n 4+ T)A% + (9n + 10)A* — (28n — 18)A3 + (36n — 42)\?
— (18n — 14)\ + 3n,
his(A) = A% — (n+ 1A% + (3n — 5)\ — n,

his(A\) = A° — (n 4 6)A* 4 (8n 4+ 4)A® — (20n — 22)A% + (17n — 26)\ — 3n,
his(A) = A — (n + 3)A3 + (5n — 4)A? — (6n — 10)\ + n.
Since n = p(T;) > A(T;) +1 =2 n—2 > 8, it follows that u(7;) is the largest

root of the equation h;(\) = 0(i = 5, ..., 16) respectively. Next we shall divide the
proof into the next 11 steps.

(1) u(Ty) > p(Ts). Tt is easy to see that hg(A) = hs(A) — (A2(A — 6) + 6\ +n)
and hq(p(T5)) < 0. So we have p(Ty) > pu(Ts).
(2) 1(T5) > p(Ts). Note that hs(A) = he(A) + 71 (N), where

Y1(A) = AN = (n+ DA +3n-7).
Let a; denote the maximum root of v;(A) = 0. Since v1(—1) < 0, 71(2) > 0,
m(n—2) <0,y (n—1)>0, it is easy to see that n —2 < oy <n — 1.

Note that hg(X) = (A—=4)y1 (A)+(2A2 = (n+9)A+4n), then hg(A) > 0 for A > «
Thus p(Ts) < a. Note that limy_,o 11 (A) = 400, thus hs(1(T5)) = 11 (u(Ts)) <0
This implies that p(T5) > wu(Ts).

(3) 1(T6) > p(T7). It is easy to see that h7(A) = v2(A)he(A) + v3(A), where

Y2 (A) = A =12A=3), 43(\) = A2)\? =8\ —n + 13).
Since u(T7) > n —2 > 8, it follows that y2(u(77)) > 0 and ~3(u(T7)) > 0. This
implies that he(u(T )) < 0. Thus p(T6) > p(Tr).

(4) u(T7) > u(Tg). Tt is easy to see that h7(\) = (A2 — 5X + 5)hs(\) — v4(N),
where

Ya(A) = A — (0 +3)A% + (5n — 3)A? — (6n — 4)\ + 2n
=A2(A? — (n 4+ 3)A +5n — 10) + (TA? — (6n — 4)\ + 2n).
It is easy to see that 4 ((Ts)) > 0. So we have h7(1(T3)) < 0, thus u(T7) > u(Ts).

(5) From [11] we have u(Tg) > p(To) > p(Tho)-

(6) 1(Tho) > p(Th1). Note that hig(A) = h11(A) + v5(A), where

Y5(A) = AN — (n+3)A% + (5n — 9\ —n.
Let ay denote the maximum root of v5(A) = 0. Since y5(—00) < 0, 75(3) =
B> 0,95(n—2)<0,95(n—1)>0,thusn—2<ay <n-—1

Note that h11(A) = (A — 2)v5(X) + 2A2 — (2n — 3)A + n, then hii(az) = 203 —

(2n —3)ag +n > 0 and h11(A) > 0 for A > as. Thus u(T11(A)) < as. Note

that limy—, 00 5(A) = 400, thus hig(u(T11)) = v5(u(T11)) < 0. This implies that
w(Tro) > p(Th1), because limy 00 h19(A) = 400.

(7) (Th1) > p(Thi2). Note that hiz(A) = v6(A)h11(X) — y7(N), where
Y6(A) = A3 = B5A% 46X — 4,97(\) = 2X\3 — (4n — 4)A\? + (160 — 45)\ — 3n.
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It is easy to see that v(u(T12)) > 0. Note that v7(—o0) < 0, 7(1) > 0,
v7(n—1) <0, v7(n —2) < 0, y7(+00) > 0 and n — 2 < p(Th2) < n—1. It
follows that v7(u(T12)) < 0. So we have hy1(u(T12)) < 0, thus u(Ti1) > p(Th2).

(8) /L(Tlg) > /J,(T13). Note that hlg()\) = ()\ — 3)]7,13()\) — ’78()\), where
18(A) = A’ — (n+ A + (6n — 3)A% — (In — 14)A? + (3n — 3)\.
We also have hi2(\) = (A — 3)%95(A\) — 79()), where
Yo(A) = 4\t — (3n + 21)A% + (18n + 18)A% — (27n — 12)A + 9n
=3\ — (3n—6)A3 + A2(\2 — 27\ + 18n — 15) + 3302 — (27n — 12)A + 9n.

It is easy to see that y9(A) > 0 for A > p(Th2). So we have y5(A\) > 0 for A > p(Th2).
Thus hlg()\) >0 for A > ,U(T12) It follows that M(le) > ,U(Tlg)

(9) /J,(T13) > /J,(T14). Note that hlg()\) = ()\3 - 6)\2 + 9\ — 3)h14()\) — A Itis
easy to see that hiz(u(T14)) < 0. Thus p(Tis) > p(T14).

(10) u(T14) > pu(Tis). Note that hi5(A) = (A2 —B5X+4)h14(N) + (A2 — 6\ +n).
It is easy to see that his(u(T15)) < 0. Thus p(T14) > pu(Ths).

(11) u(T15) > u(The). Note that his(A) = (A —3)h16(A) = A(N2 —nA+2n —4).
It is easy to see that his(u(Ti6)) < 0. Thus u(Tis) > p(The)-

By combining the above discussion, we have u(Ty) > u(Ts) > w(Ts) > p(Ty) >

w(Ts) > w(Ty) > p(Tio) > w(Tu) > w(Ti2) > p(Tis) > p(Twa) > w(Tis) >
1#(T1e)- O

3. Main results

THEOREM 3.1. Let G be a connected cactus with n vertices and k cycles, and
G1,Go,...,Gy be the cacti with n vertices and k cycles shown in Fig. 1, where
k>2andn > 2k +8.

(1) If G ¢ {G1,...,Ga}, then u(G) < n—2 < u(Gay).

(2) n = p(Gr) > w(G2) > u(Gs) > uw(Ga) > p(Gs) > p(Gs) > p(Gr) >
1w(Gs) > w(Go) = u(Gro) > w(Gu1) > p(Gi2) = w(Giz) > u(Gua) > u(Gis) >
1(Gi6) = p(Gir) = u(Gis) > p(Gio) > 1(Gao), and p(Gy) is the largest root of the
equation f;(A\) =00 = 2,...,20) respectively, where

foON) =2 = (n +5)A3 + (6n + 4)A2 — (10n — )\ + 4n,

f3(0) =X — (n 4+ 5)A% + (6n + 3)A* — (9n — 5)\ + 3n,

FaN) =2 = (n +5)A3 + (6n + 4)A2 — (10n — 6)\ + 3n,

F5(0) =X — (n+ 4N + (6n — 2)A? — (100 — 12)\ + 4n,

fo(A) = A — (n +5)X3 + (Tn — 1)A? — (13n — 19)\ + 4n,

Fr() = A" = (n+10)A% + (12n + 31)A5 — (55n + 14)A* + (121n — 85)\®
— (132n — 128)A% + (66n — 44)\ — 12n,

fs(0) =X — (n+5)A* + (Tn + 1A% — (15n — 17)A? + (10n — 8)\ — 2n,

fo(N) = fio(A\) = X = (n 4+ 5)A% 4 (Tn — 3)A\% — (11n — 17)\ + 3n,
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fi1(A) =M = (n+ 4N + (6n — 4)A% — (8n — 12)\ + 2n,

fi2(\) = f13(>\) M= (n 45X+ (Tn — 1)A% — (13n — 21)\ + 3n,

FraQN) = X7 — (0 +10)A8 + (12n + 30)\° — (54n + 8)A* 4 (114n — 93)\3
— (117n — 126)A% + (54n — 39)\ — 9n,

Fis(N) = X6 — (0 + T)A° 4 (9n + 10)A* — (28n — 18)A® + (36n — 42)\?
— (18n — 14)\ + 3n,

fie(N) = fir(A) = fis(\) = X° = (n + DX* + (3n — 5)A —

Ffro(N) = A% — (n 4+ 6)A* + (8n 4+ 4)X3 — (20n — 22)\2 + (17n — 26)\ — 3n,

f2000) = At = (0 +3)A° + (5n — 4)A% — (6n — 10)A + n.

PROOF. It is easy to check that G1, Go, ..., Gy are all the cacti with n vertices,
k cycles and maximum degree greater than n — 4. Then A(G) < n — 4 for G ¢
{G1,...,Ga}. By Lemma 2.2, we have u(G) < n — 2. By Lemmas 2.4 and 2.6,
1(G20) = p(The) is the largest root of the equation

f20(A) = hig(N) = A — (n + 3)A3 + (5n — 4)A% — (6n — 10)A +n = 0.
Since hig(n —2) = —n +4 < 0, it follows that p(Ga9) > n — 2. Thus
w(G) <n—2 < p(Go).

This completes the proof of (1).
The proof of (2) follows from Lemma 2.4, Lemma 2.6 and the proof of Lemma
2.6 immediately. O
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