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Abstract. Reinhold Baer asked the relationship between certain properties
in a nonempty set 𝑃 with a partial operation (called an “add" by Baer [1]). The
first paper in our sequence [Paper I] answered his question for a special type
of an add called a pregroup by Stallings [12]. This paper [Paper II] answers
an analogous question for a wider class of adds.

1. Introduction

Let 𝑃 be a nonempty set with a partial operation, called an “add" by Baer [1].
Formally, a partial operation on 𝑃 is a mapping 𝑚 : 𝐷 → 𝑃 where 𝐷 ⊆ 𝑃 × 𝑃 .
If (𝑎, 𝑏) belongs to 𝐷, we denote 𝑚(𝑎, 𝑏) by 𝑎𝑏 and say that 𝑎𝑏 is defined or exists.
[Baer [1] denoted 𝑚(𝑎, 𝑏) by 𝑎+𝑏.] We also say that a sequence 𝑋 = [𝑎1, 𝑎2, . . . , 𝑎𝑛]
is defined if each pair 𝑎1𝑎2, 𝑎2𝑎3, . . . , 𝑎𝑛−1𝑎𝑛 is defined. By a triple in 𝑋, we mean
a subsequence [𝑎𝑖, 𝑎𝑖+1, 𝑎𝑖+2]. The universal group 𝐺(𝑃 ) of an add 𝑃 is the group
with presentation: 𝐺(𝑃 ) = gp(𝑃 ; operation 𝑚) That is, 𝑃 is the set of generators,
and the defining relations are of the form 𝑎𝑏 = 𝑐 where 𝑚(𝑎, 𝑏) = 𝑐. 𝑃 is said to
be group-embeddable or simply embeddable if 𝑃 can be embedded in its universal
group 𝐺(𝑃 ).

Next follows classical examples of embeddable adds.
Example 1.1. Let 𝐾 and 𝐿 be groups with isomorphic subgroups 𝐴 or, equiv-

alently, which intersect in a subgroup 𝐴. Then the amalgam 𝑃 = 𝐾 ∪𝐴 𝐿 is an
add which is embeddable in 𝐺(𝑃 ) = 𝐾 *𝐴 𝐿, the free product of 𝐾 and 𝐿 with 𝐴
amalgamated.

Example 1.2. Let 𝐾, 𝐻, 𝐿 be groups. Suppose 𝐾 and 𝐻 have isomorphic
subgroups 𝐴, and suppose 𝐻 and 𝐿 have isomorphic subgroups 𝐵. Then the
amalgam 𝑃 = 𝐾 ∪𝐴 𝐻 ∪𝐵 𝐿 is an add which is embeddable in 𝐺(𝑃 ) = 𝐾 *𝐴 𝐻 *𝐵 𝐿,
the free product of 𝐾, 𝐻, 𝐿 with subgroups 𝐴 and 𝐵 amalgamated.
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Example 1.3. Let 𝑇 = (𝐾𝑖; 𝐴𝑟𝑠) be a tree graph of groups with vertex groups
𝐾𝑖, and with edge groups 𝐴𝑟𝑠. [Here 𝐴𝑟𝑠 is a subgroup of vertex groups 𝐾𝑟 and
𝐾𝑠.] Let 𝑃 =

⋃︀
𝑖(𝐾𝑖; 𝐴𝑟𝑠), the amalgam of the groups in 𝑇 . Then 𝑃 is an add

which is embeddable in 𝐺(𝑃 ) = *(𝐾𝑖; 𝐴𝑟𝑠), the tree product of the vertex groups
𝐾𝑖 with the 𝐴𝑟𝑠 amalgamated.

Example 1.4. Let 𝐺 = (𝐾𝑖; 𝐴𝑟𝑠) be a graph of groups with vertex groups 𝐾𝑖

and with edge groups 𝐴𝑟𝑠. Again 𝐴𝑟𝑠 is a subgroup of vertex groups 𝐾𝑟 and 𝐾𝑠.
Let 𝑃 =

⋃︀
𝑖(𝐾𝑖; 𝐴𝑟𝑠). Then 𝑃 is an add but, when the graph is not a tree, 𝑃 need

not be embeddable in 𝐺(𝑃 ) = *(𝐾𝑖; 𝐴𝑟𝑠), the free product of groups 𝐾𝑖 with the
𝐴𝑟𝑠 amalgamated. In fact, there are examples where 𝐺(𝑃 ) = {𝑒}.

Let 𝑃 be an add. Then 𝑃 will be called a pree if it satisfies the following three
axioms of Stallings [12]:
[P1] (Identity) There exists 1 ∈ 𝑃 such that for all 𝑎, we have 1𝑎 and 𝑎1 are defined

and 1𝑎 = 𝑎1 = 𝑎.
[P2] (Inverses) For each 𝑎 ∈ 𝑃 , there exists 𝑎−1 in 𝑃 such that 𝑎𝑎−1 and 𝑎−1𝑎 are

defined,and 𝑎𝑎−1 = 𝑎−1𝑎 = 1.
[P4] (Weak Associative Law) If 𝑎𝑏 and 𝑏𝑐 are defined, then (𝑎𝑏)𝑐 is defined if and

only if 𝑎(𝑏𝑐) is defined, in which case (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐). [We then say that the
triple 𝑎𝑏𝑐 = (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) is defined.]

Remark. Stallings also listed the following axiom:
[P3] If 𝑎𝑏 is defined, then 𝑏−1𝑎−1 is defined and (𝑎𝑏)−1 = 𝑏−1𝑎−1.

However, one can show that [P3] follows from [P1], [P2], and [P4] (see [3]).
Thus [P3] is true in a pree 𝑃 .

The following is also true in a pree 𝑃 (See, e.g., Paper I [7]):

Proposition. If 𝑎𝑏 is defined, then (𝑎𝑏)𝑏−1 is defined and (𝑎𝑏)𝑏−1 = 𝑎. Du-
ally, if 𝑎𝑏 is defined, then 𝑎−1(𝑎𝑏) is defined and 𝑎−1(𝑎𝑏) = 𝑏.

Each add 𝑃 in the above examples are prees. Example 1.4 shows that a pree
𝑃 need not be embeddable in its universal group 𝐺(𝑃 ).

Stallings [12] invented the name “pregroup" for a pree 𝑃 which also satisfies
the following axiom:
[T1]=[P5] If 𝑎𝑏, 𝑏𝑐, and 𝑐𝑑 are defined, then 𝑎𝑏𝑐 or 𝑏𝑐𝑑 is defined.

Theorem A. (Stallings, 1971) A pregroup 𝑃 is embedded in 𝐺(𝑃 ).

We note that a pregroup is a generalization of the add in Example 1.1, but
not of the add 𝑃 = 𝐾 ∪𝐴 𝐻 ∪𝐵 𝐿 in Example 1.2. For example, let 𝑥 ∈ 𝐾 r 𝐴,
𝑦 ∈ 𝐿r𝐵, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Then 𝑥𝑎, 𝑎𝑏, and 𝑏𝑦 are defined in 𝑃 , but neither 𝑥𝑎𝑏 nor
𝑎𝑏𝑦 need be defined. However the add 𝑃 in Example 1.2 does satisfies the axiom:
[T2] If 𝑎𝑏, 𝑏𝑐, 𝑐𝑑, 𝑑𝑒 are defined, then 𝑎𝑏𝑐, 𝑏𝑐𝑑, or 𝑐𝑑𝑒 is defined.

Notation: Let 𝐴 be a set of axioms for an add 𝑃 . We will let 𝐴-pree denote a
pree 𝑃 which also satisfies the axioms 𝐴. Thus a pregroup is a T1-pree.
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[We note that in Paper I [10], the term pree was used synonymously for an
add, and hence a pree did not include axioms [P1], [P2], [P4]. However here a pree
𝑃 denotes an add which does satisfy axioms [P1], [P2], [P4]. Also, in Paper I, we
denoted an 𝐴-pree by 𝐴-pregroup.]

Consider now Baer’s Postulate XI (Consists of three parts):
(a) If 𝑎𝑏, 𝑏𝑐, 𝑐𝑑 exist, then 𝑎(𝑏𝑐) or (𝑏𝑐)𝑑 exist.
(b) If 𝑏𝑐, 𝑐𝑑 and 𝑎(𝑏𝑐) exist, then 𝑎𝑏 or (𝑏𝑐)𝑑 exist.
(c) If 𝑎𝑏, 𝑏𝑐 and (𝑏𝑐)𝑑 exist, then 𝑎(𝑏𝑐) or 𝑐𝑑 exist.
Baer then states: “In certain instances it is possible to deduce properties (b),

(c) from (a); but whether or not this is true in general, the author does not know."
The content of the following, given in four parts, appears in Paper I [10]; the

first two parts answer Baer’s question.

Theorem T1. In a pree 𝑃 , axiom T1 is equivalent to each of the following
axioms:

(1) [B1-1] If 𝑏𝑐, 𝑐𝑑, 𝑎(𝑏𝑐) are defined, then 𝑎𝑏 or (𝑏𝑐)𝑑 is defined.
(2) [B1-2] If 𝑎𝑏, 𝑏𝑐, (𝑏𝑐)𝑑 are defined, then 𝑎(𝑏𝑐) or 𝑐𝑑 is defined.
(3) [B1-3] If 𝑎𝑏, (𝑎𝑏)𝑐, ((𝑎𝑏)𝑐)𝑑 are defined, then 𝑏𝑐 or 𝑐𝑑 is defined.
(4) [B1-4] If 𝑐𝑑, 𝑏(𝑐𝑑), 𝑎(𝑏(𝑐𝑑)) are defined, then 𝑎𝑏 or 𝑏𝑐 is defined

Note [T1] is Baer’s Part (a), [B1-1] is Baer’s Part (b) and [B1-2] is Baer’s
Part (c).

Here we generalize Theorem T1 using the axiom [T2] instead of [T1].

Theorem T2. In a pree 𝑃 , axiom [T2] is equivalent to each of the following
axioms:

(1) [B2-1] If 𝑏𝑐, 𝑐𝑑, 𝑎(𝑏𝑐), (𝑐𝑑)𝑒 are defined, then 𝑎𝑏, (𝑏𝑐)𝑑, or 𝑑𝑒 is defined.
(2) [B2-2] If 𝑎𝑏, (𝑎𝑏)𝑐, 𝑑𝑒, 𝑐(𝑑𝑒) are defined, then 𝑏𝑐, 𝑐𝑑, or (𝑎𝑏)𝑐(𝑑𝑒) is defined.

2. Proof of Theorem T2

First we restate axioms [T2], [B2-1], [B2-2] using different letters. Here 𝑎𝑖 and
𝑏𝑖 are in the pree 𝑃 .
[T2] If 𝑋 = [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5] is defined, then a triple in 𝑋 is defined.
[B2-1] If 𝑏2𝑏3, 𝑏3𝑏4, 𝑏1(𝑏2𝑏3), (𝑏3𝑏4)𝑏5 are defined, then 𝑏1𝑏2, (𝑏2𝑏3)𝑏4, or 𝑏4𝑏5 is

defined.
[B2-2] If 𝑏1𝑏2, (𝑏1𝑏2)𝑏3, 𝑏4𝑏5, 𝑏3(𝑏4𝑏5) are defined, then 𝑏2𝑏3, 𝑏3𝑏4, or (𝑏1𝑏2)𝑏3(𝑏4𝑏5)

is defined.

Proof that [T2] and [B2-1] are equivalent. (1) Assume [T2] holds. Sup-
pose the hypothesis of [B2-1] holds, that is, suppose 𝑏2𝑏3, 𝑏3𝑏4, 𝑏1(𝑏2𝑏3), (𝑏3𝑏4)𝑏5 are
defined. Let 𝑎1 = 𝑏1, 𝑎2 = 𝑏2𝑏3, 𝑎3 = 𝑏−1

3 , 𝑎4 = 𝑏3𝑏4, 𝑎5 = 𝑏5. Then the hypothesis
of [T2] holds, that is, [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5] is defined. By [T2], one of the following is
defined: 𝑎1𝑎2𝑎3 = 𝑏1𝑏2, 𝑎2𝑎3𝑎4 = (𝑏2𝑏3)𝑏4, or 𝑎3𝑎4𝑎5 = 𝑏4𝑏5. This is the conclusion
of [B2-1]. Thus [T2] implies [B2-1].

(2) Assume [B2-1] holds. Suppose the hypothesis of [T2] holds, that is, suppose
[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5] is defined. Let 𝑏1 = 𝑎1, 𝑏2 = 𝑎2𝑎3, 𝑏3 = 𝑎−1

3 , 𝑏4 = 𝑎3𝑎4, 𝑏5 = 𝑎5.
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Then the hypothesis of [B2-1] holds, that is, 𝑏2𝑏3, 𝑏3𝑏4, 𝑏1(𝑏2𝑏3), (𝑏3𝑏4)𝑏5 are defined.
By [B2-1], one of the following is defined: 𝑏1𝑏2 = 𝑎1𝑎2𝑎3, (𝑏2𝑏3)𝑏4 = 𝑎2𝑎3𝑎4, or
𝑏4𝑏5 = 𝑎3𝑎4𝑎5 This is the conclusion of [T2]. Thus [B2-1] implies [T2].

By (1) and (2), [T2] and [B2-1] are equivalent in a pree 𝑃 . �

Proof that [T2] and [B2-2] are equivalent. (1) Assume [T2] holds. Sup-
pose the hypothesis of [B2-2] holds, that is, suppose 𝑏1𝑏2, (𝑏1𝑏2)𝑏3, 𝑏4𝑏5, 𝑏3(𝑏4𝑏5)
are defined. Let 𝑎1 = 𝑏−1

1 , 𝑎2 = 𝑏1𝑏2, 𝑎3 = 𝑏3, 𝑎4 = 𝑏4𝑏5, 𝑎5 = 𝑏−1
5 . Then the

hypothesis of [T2] holds, that is, [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5] is defined. By [T2], one of the
following is defined: 𝑎1𝑎2𝑎3 = 𝑏2𝑏3, 𝑎2𝑎3𝑎4 = (𝑏1𝑏2)𝑏3(𝑏4𝑏5), or 𝑎3𝑎4𝑎5 = 𝑏3𝑏4.
This is the conclusion of [B2-2]. Thus [T2] implies [B2-2].

(2) Assume [B2-2] holds. Suppose the hypothesis of [T2] holds, that is, suppose
[𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5] is defined. Let 𝑏1 = 𝑎−1

1 , 𝑏2 = 𝑎1𝑎2, 𝑏3 = 𝑎3, 𝑏4 = 𝑎4𝑎5, 𝑏5 =
𝑎−1

5 . Then the hypothesis of [B2-2] holds, that is, 𝑏1𝑏2, (𝑏1𝑏2)𝑏3, 𝑏4𝑏5, 𝑏3(𝑏4𝑏5) are
defined. By [B2-2], one of the following is defined: 𝑏2𝑏3 = 𝑎1𝑎2𝑎3, 𝑏3𝑏4 = 𝑎3𝑎4𝑎5,
or (𝑏1𝑏2)𝑏3(𝑏4𝑏5) = 𝑎2𝑎3𝑎4 This is the conclusion of [T2]. Thus [B2-2] implies [T2].

By (1) and (2), [T2] and [B2-1] are equivalent in a pree 𝑃 . �

Accordingly, Theorem T2 is proved.

3. Previous Results

Many authors have generalized the Stallings pregroup [T1-pree] by giving a
weaker set of axioms than [P5]=[T1] which also guarantees that a pree 𝑃 is embed-
dable in 𝐺(𝑃 ). First we restate these axioms, which also appear in Paper I, and
then we restate the relevant Theorem B which also appears in Paper I.
[Sn, 𝑛 > 4] (Baer 1953) Suppose 𝑎1𝑎−1

2 , 𝑎2𝑎−1
3 , . . . , 𝑎𝑛𝑎−1

1 are defined. Then, for
some 𝑖, 𝑎𝑖𝑎

−1
𝑖+2 (mod 𝑛) is defined.

[K] (Kushner 1988) If 𝑎𝑏, 𝑏𝑐, 𝑐𝑑 and (𝑎𝑏)(𝑐𝑑) are defined, then 𝑎𝑏𝑐 or 𝑏𝑐𝑑 is defined.
[Tn] (Kushner and Lipschutz 1993) If 𝑋 = [𝑎1, 𝑎2, . . . , 𝑎𝑛+3] is defined, then a triple

in 𝑋 is defined.
[L] (Lipschutz 1994) Suppose 𝑎𝑏, 𝑏𝑐, 𝑐𝑑 are defined, but [𝑎𝑏, 𝑐𝑑] and [𝑎, 𝑏𝑐, 𝑑] are

reduced. If (𝑎𝑏)𝑧 and 𝑧−1(𝑐𝑑) are defined, then 𝑏𝑧 and 𝑧−1𝑐 are defined.
[M] (Baer (1950 and Lipschutz 1994) Equivalent fully reduced words have the same

length.
We note that the axiom [Tn] holds in the tree pree 𝑃 in Example 1.3 when

the tree has diameter 6 𝑛. Thus [T2] holds for a star graph, that is, a graph of
diameter 2. We also note that Axiom [M] is analogous to the following axiom of
Baer [1, page 684]: “Similar irreducible vectors have the same length".

Theorem B. Each of the following prees 𝑃 is embeddable in 𝐺(𝑃 ):
(1) Sn-pree (Baer 1953, [1]);
(2) KT2-pree (Kushner and Lipschutz 1988, [7]);
(3) T2-pree (Kushner 1978, [6], and Hoare 1992, [4]);
(4) KT3-pree (Kushner and Lipschutz 1993, [8];
(5) KLM-pree (Lipschutz 1994, [9]);
(6) KL-pree = S4S5-pree (Gilman 1998, [2], and Hoare 1998, [5]).
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We note that Gilman and Hoare proved (6) independently. In fact, Gilman [2]
proved (6) using small-cancellation theory, and Hoare [5] proved (6) by showing
that [M] follows from [K] and [L].

4. Generalizations

One of the purposes in this paper is to generalize Theorem T2. We have the
following axioms:
[T6] Suppose 𝑋 = [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9] is defined. Then a triple in 𝑋 is

defined.
[B6-1] Suppose all the following are defined: (1) 𝑏2𝑏3, 𝑏3𝑏4, 𝑏1(𝑏2𝑏3), (𝑏3𝑏4)𝑏5,

(2) 𝑏6𝑏7, 𝑏7𝑏8, 𝑏5(𝑏6𝑏7), (𝑏7𝑏8)𝑏9. Then one of the following is defined:
𝑏1𝑏2, (𝑏2𝑏3)𝑏4, 𝑏4𝑏5, (𝑏3𝑏4)𝑏5(𝑏6𝑏7), 𝑏5𝑏6, (𝑏6𝑏7)𝑏8, or 𝑏8𝑏9

[B6-2] Suppose all the following are defined: (1) 𝑏1𝑏2, (𝑏1𝑏2)𝑏3, 𝑏4𝑏5, 𝑏3(𝑏4𝑏5),
(2) 𝑏5𝑏6, (𝑏5𝑏6)𝑏7, 𝑏8𝑏9, 𝑏7(𝑏8𝑏9). Then one of the following is defined:
𝑏2𝑏3, (𝑏1𝑏2)𝑏3(𝑏4𝑏5), 𝑏3𝑏4, (𝑏4𝑏5)𝑏6, 𝑏6𝑏7, (𝑏5𝑏6)𝑏7(𝑏8𝑏9), or 𝑏7𝑏8,

(Note that (2), in both cases, can be obtained from (1) by adding 4 to each
subscript.)

Theorem T6. (1) In a pree 𝑃 , axiom [T6] is equivalent to [B6-1]. (2) In a
pree 𝑃 , axiom [T6] is equivalent to [B6-2].

Proof of Theorem T6(1). (1) Proof that [T6] implies [B6-1]. Assume [T6]
holds. Suppose the hypothesis of [B6-1] holds, that is, the following are defined:
𝑏2𝑏3, 𝑏3𝑏4, 𝑏1(𝑏2𝑏3), (𝑏3𝑏4)𝑏5, 𝑏6𝑏7, 𝑏7𝑏8, 𝑏5(𝑏6𝑏7), (𝑏7𝑏8)𝑏9 Let 𝑎1 = 𝑏1, 𝑎2 = 𝑏2𝑏3,
𝑎3 = 𝑏−1

3 , 𝑎4 = 𝑏3𝑏4, 𝑎5 = 𝑏5, 𝑎6 = 𝑏6𝑏7, 𝑎7 = 𝑏−1
7 , 𝑎8 = 𝑏7𝑏8, 𝑎9 = 𝑏9. Then the

hypothesis of [T6] holds, that is, [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9] is defined. By [T6],
one of the following is defined: 𝑎1𝑎2𝑎3 = 𝑏1𝑏2, 𝑎2𝑎3𝑎4 = (𝑏2𝑏3)𝑏4, 𝑎3𝑎4𝑎5 = 𝑏4𝑏5,
𝑎4𝑎5𝑎6 = (𝑏3𝑏4)𝑏5(𝑏6𝑏7), 𝑎5𝑎6𝑎7 = 𝑏5𝑏6, 𝑎6𝑎7𝑎8 = (𝑏6𝑏7)𝑏8, or 𝑎7𝑎8𝑎9 = 𝑏8𝑏9. This
is the conclusion of [B6-1]. Thus [T6] implies [B6-1].

(2) Proof that [B6-1] implies [T6]. Assume [B6-1] holds. Suppose the hypothesis
of [T6] holds, that is, suppose [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9] is defined. Let 𝑏1 = 𝑎1,
𝑏2 = 𝑎2𝑎3, 𝑏3 = 𝑎−1

3 , 𝑏4 = 𝑎3𝑎4, 𝑏5 = 𝑎5, 𝑏6 = 𝑎6𝑎7, 𝑏7 = 𝑎−1
7 , 𝑏8 = 𝑎7𝑎8, 𝑏9 = 𝑎9.

Then the hypothesis of [B6-1] holds, that is, the following are defined: 𝑏2𝑏3, 𝑏3𝑏4,
𝑏1(𝑏2𝑏3), (𝑏3𝑏4)𝑏5, 𝑏6𝑏7, 𝑏7𝑏8, 𝑏5(𝑏6𝑏7), (𝑏7𝑏8)𝑏9. By [B6-1], one of the following is
defined: 𝑏1𝑏2 = 𝑎1𝑎2𝑎3, (𝑏2𝑏3)𝑏4 = 𝑎2𝑎3𝑎4, 𝑏4𝑏5 = 𝑎3𝑎4𝑎5, (𝑏3𝑏4)𝑏5(𝑏6𝑏7) = 𝑎4𝑎5𝑎6,
𝑏5𝑏6 = 𝑎5𝑎6𝑎7, (𝑏6𝑏7)𝑏8 = 𝑎6𝑎7𝑎8, or 𝑏8𝑏9 = 𝑎7𝑎8𝑎9. This is the conclusion of [T2].
Thus [B2-1] implies [T2].

By (1) and (2), Theorem T6(1) is proved. �

Proof of Theorem T6(2). (1) Proof that [T6] implies [B6-2]. Assume [T6]
holds. Suppose the hypothesis of [B6-2] holds, that is, that the following are defined:
𝑏1𝑏2, (𝑏1𝑏2)𝑏3, 𝑏4𝑏5, 𝑏3(𝑏4𝑏5), 𝑏5𝑏6, (𝑏5𝑏6)𝑏7, 𝑏8𝑏9, 𝑏7(𝑏8𝑏9). Let 𝑎1 = 𝑏−1

1 , 𝑎2 = 𝑏1𝑏2,
𝑎3 = 𝑏3, 𝑎4 = 𝑏4𝑏5, 𝑎5 = 𝑏−1

5 , 𝑎6 = 𝑏5𝑏6, 𝑎7 = 𝑏7, 𝑎8 = 𝑏8𝑏9, 𝑎9 = 𝑏−1
9 . Then

the hypothesis of [T6] holds, that is, [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9] is defined. By
[T6], one of the following is defined: 𝑎1𝑎2𝑎3 = 𝑏2𝑏3, 𝑎2𝑎3𝑎4 = (𝑏1𝑏2)𝑏3(𝑏4𝑏5),
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𝑎3𝑎4𝑎5 = 𝑏3𝑏4, 𝑎4𝑎5𝑎6 = (𝑏4𝑏5)𝑏6, 𝑎5𝑎6𝑎7 = 𝑏6𝑏7, 𝑎6𝑎7𝑎8 = (𝑏5𝑏6)𝑏7(𝑏8𝑏9), or
𝑎7𝑎8𝑎9 = 𝑏7𝑏8. This is the conclusion of [B6-2]. Thus [T6] implies [B6-2].

(2) Proof that [B6-2] implies [T6]. Assume [B6-2] holds. Suppose the hy-
pothesis of [T6] holds, that is, suppose [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9] is defined.
Let 𝑏1 = 𝑎−1

1 , 𝑏2 = 𝑎1𝑎2, 𝑏3 = 𝑎3, 𝑏4 = 𝑎4𝑎5, 𝑏5 = 𝑎−1
5 , 𝑏6 = 𝑎5𝑎6, 𝑏7 = 𝑎7,

𝑏8 = 𝑎8𝑎9, 𝑏9 = 𝑎−1
9 . Then the hypothesis of [B6-2] holds, that is, the following are

defined: 𝑏1𝑏2, (𝑏1𝑏2)𝑏3, 𝑏4𝑏5, 𝑏3(𝑏4𝑏5), 𝑏5𝑏6, (𝑏5𝑏6)𝑏7, 𝑏8𝑏9, 𝑏7(𝑏8𝑏9). By [B6-2], one
of the following is defined: 𝑏2𝑏3 = 𝑎1𝑎2𝑎3, (𝑏1𝑏2)𝑏3(𝑏4𝑏5) = 𝑎2𝑎3𝑎4, 𝑏3𝑏4 = 𝑎3𝑎4𝑎5,
(𝑏4𝑏5)𝑏6 = 𝑎4𝑎5𝑎6, 𝑏6𝑏7 = 𝑎5𝑎6𝑎7, (𝑏5𝑏6)𝑏7(𝑏8𝑏9) = 𝑎6𝑎7𝑎8, or 𝑏7𝑏8 = 𝑎7𝑎8𝑎9. This
is the conclusion of [T6]. Thus [B6-2] implies [T]. By (1) and (2), Theorem T6(2)
is proved. �

Accordingly, Theorem T6 is proved.

5. Questions

We have shown that the proof of Theorem T6 is very similar to the proof of
Theorem T2. Likely, one can prove an analogous Theorem Tm where m≡2 (mod 4).

Question 1. Find a generalization of T2 for other Tm, especially [T3], [T4],
and [T5].

The following transitive order relation on a pregroup 𝑃 is due to Stallings (see
[11]). Let 𝐿(𝑥) = {𝑎 ∈ 𝑃 ; 𝑎𝑥 is defined.}. Put 𝑥 6 𝑦 if 𝐿(𝑦) ⊆ 𝐿(𝑥), and put 𝑥 < 𝑦
if 𝐿(𝑦) ⊆ 𝐿(𝑥) and 𝐿(𝑦) ̸= 𝐿(𝑥). The following theorem is due to Hoare [5] and
Rimlinger [11].

Theorem C. The following conditions on a pree 𝑃 are equivalent:
(1) [T1] If 𝑋 = [𝑤, 𝑥, 𝑦, 𝑧] is defined, then 𝑤𝑥𝑦 or 𝑥𝑦𝑧 is defined.
(2) If 𝑥−1𝑎 and 𝑎−1𝑦 are defined but 𝑥−1𝑦 is not defined, then 𝑎 < 𝑥 and 𝑎 < 𝑦.
(3) If 𝑥−1𝑦 is defined, then 𝑥 6 𝑦 or 𝑦 6 𝑥.

Question 2. Find an analogous Theorem C2 for the axiom [T2].

We note that the following axioms are a direct generalization of axioms B1-3
and B1-4. [B2-3] If 𝑎𝑏, (𝑎𝑏)𝑐, ((𝑎𝑏)𝑐)𝑑, (((𝑎𝑏)𝑐)𝑑)𝑒 are defined, then 𝑏𝑐, 𝑐𝑑, or 𝑑𝑒 is
defined. [B2-4] If 𝑑𝑒, 𝑐(𝑑𝑒), 𝑏(𝑐(𝑑𝑒)), 𝑎(𝑏(𝑐(𝑑𝑒))) are defined, then 𝑎𝑏, 𝑏𝑐, or 𝑐𝑑 is
defined.

Question 3. What role, if any, do the axioms [B2-3] and [B2-4], and the
analogous axioms [Bn-3] and [Bn-4], play in the embedding of a pree 𝑃 in its
universal group 𝐺(𝑃 )?

Question 4. Find alternate generalizations of [B2-3] and [B2-4], and the role
they would play in the embedding of a pree 𝑃 in its universal group 𝐺(𝑃 ).
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