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Abstract. We extend some results from [14] and [19], concerning wave-front
sets of Fourier–Lebesgue and modulation space types, to a broader class of
spaces of ultradistributions. We relate these wave-front sets one to another
and to the usual wave-front sets of ultradistributions.

Furthermore, we give a description of discrete wave-front sets by intro-
ducing the notion of discretely regular points, and prove that these wave-front
sets coincide with corresponding wave-front sets in [19]. Some of these inves-
tigations are based on the properties of the Gabor frames.

1. Introduction

Wave-front sets with respect to Fourier–Lebesgue and modulation spaces were
introduced in [19] and studied further in [18, 20, 21]. Among other properties, it
was proved that wave-front sets of Fourier–Lebesgue and modulation spaces coin-
cide, and that the usual wave-front sets with respect to smoothness (cf. [13, Sections
8.1–8.3]) can be obtained as wave-front sets of sequences of Fourier–Lebesgue or
modulation spaces. Discrete versions of wave-front sets of Fourier–Lebesgue and
modulation spaces, related to those wave-front sets in [24], were introduced and
studied in [14]. In particular, it was proved that these wave-front sets agree with
corresponding wave-front sets in [19].

In this paper we put questions from [14,19] in a broader context, where we allow
the involved distributions to be Beurling or Roumieu type ultradistributions. This
is done by relaxing a polynomial type conditions on the involved weight functions,
into a subexponential type condition. An important benefit is that the families
of Fourier–Lebesgue and modulation spaces in [14, 19] are significantly enlarged,
since growth/decay properties of these weights are crucial concerning growth and

2010 Mathematics Subject Classification: Primary 35A18, 35S30, 42B05, 35H10.
Key words and phrases: Wave-front sets, weighted Fourier–Lebesgue spaces, ultradistribut-

ions.
1



2 JOHANSSON, PILIPOVIĆ, TEOFANOV AND TOFT

regularity limitations on the involved distributions. For example, in this extended
situation, the modulation spaces might contain positive functions growing subex-
ponentially. We refer to [11,27] for a review of these facts.

In this section we set the stage with a brief overview of basic notions. Then,
in Section 2 we introduce wave-front sets of a Beurling type ultradistribution with
respect to weighted Fourier–Lebesgue space and show that they satisfy appropriate
micro-local properties, Theorem 2.1. Then, in subsection 2.1 we show that the most
common wave-front sets of ultradistributions given in [12,17,22] can be described
within our approach, Proposition 2.1.

An important part of our investigations is to establish identification properties
between wave-front sets of Fourier–Lebesgue and modulation space types. This is
the subject of Theorem 3.1 in Section 3. Although we follow the framework of [19],
we note that several new problems appear when dealing with ultradistributions. For
example, several properties of the wave-front sets depend on properties of the short-
time Fourier transform in the framework of ultradistributions, cf. Proposition 3.2.

Finally, in Section 4 we introduce discrete versions of wave-front sets of ultra-
distributions and prove their invariance properties (cf. Theorem 4.2). The main
ideas of our approach can be traced back to [14], see also [24, 25]. In order to
be self-contained, we could not avoid certain repetitions of [14]. However, here
we provide additional explanations of the construction and introduce the notion of
discretely regular points. We believe that the results in form of series, established
when introducing discrete wave-front sets, might be useful for numerical analysis of
micro-local properties of functions and ultradistributions. For example, we use Ga-
bor frames for the description of discrete wave-front sets and note that the Gabor
frame coefficients give information on micro-local properties of the signal in such
way. (See [7,8] for numerical treatment of Gabor frame theory.)

Since compactly supported smooth functions are used in the process of mi-
crolocalization we are limited to the use of weights with almost exponential growth
at infinity described by the Beurling–Domar condition. We refer to subsection 1.1
for the notions and to [10] for a discussion on the role of weights in time-frequency
analysis.

Our investigation can therefore be considered as the starting point in the study
of analytic wave-front sets and pseudodifferential operators with ultrapolynomial
symbols, also known as symbol-global type operators. This will be done in a sepa-
rate paper, [15].

1.1. Basic notions and notation. In this subsection we collect some nota-
tion and notions which will be used in the sequel.

We put N = {0, 1, 2, . . . }, ⟨𝑥⟩ = (1 + |𝑥|2)1/2, for 𝑥 ∈ R𝑑, and 𝐴 . 𝐵 to
indicate 𝐴 6 𝑐𝐵 for a suitable constant 𝑐 > 0. The symbol 𝐵1 →˓ 𝐵2 denotes
the continuous and dense embedding of the topological vector space 𝐵1 into 𝐵2.
The scalar product in 𝐿2 is denoted by (·, ·)𝐿2 = (·, ·). Translation and modulation
operators are given by 𝑇𝑥𝑓(𝑡) = 𝑓(𝑡− 𝑥) and 𝑀𝜉𝑓(𝑡) = 𝑒𝑖⟨𝜉,𝑡⟩𝑓(𝑡).

1.1.1. Weights. In general, a weight function is a nonnegative function in 𝐿∞
loc.

Definition 1.1. Let 𝜔, 𝑣 be nonnegative functions. Then
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(1) 𝑣 is called submultiplicative if 𝑣(𝑥+ 𝑦) 6 𝑣(𝑥)𝑣(𝑦), for each 𝑥, 𝑦 ∈ R𝑑;
(2) 𝜔 is called 𝑣-moderate if 𝜔(𝑥+ 𝑦) . 𝑣(𝑥)𝜔(𝑦), for each 𝑥, 𝑦 ∈ R𝑑.

For a given submultiplicative weight 𝑣 the set of all 𝑣-moderate weights will be
denoted by M𝑣.

If 𝑣 is even and 𝜔 ∈ M𝑣, then 1/𝑣 . 𝜔 . 𝑣, 𝜔 ̸= 0 everywhere and 1/𝜔 ∈ M𝑣.
In the sequel 𝑣 will always stand for an even submultiplicative function. Sub-

multiplicativity implies that 𝑣 is dominated by an exponential function, i.e.,
𝑣 6 𝐶𝑒𝑘|·| for some 𝐶, 𝑘 > 0.

Let 𝑠 > 1. By M{𝑠}(R𝑑) we denote the set of all weights which are moderate
with respect to a weight 𝑣 which satisfies 𝑣 6 𝐶𝑒𝑘|·|1/𝑠 for some positive constants
𝐶 and 𝑘. The weight 𝑣 satisfy the Beurling–Domar non-quasi-analyticity condition
which takes the form

∑︀∞
𝑛=0

1
𝑛2 log 𝑣(𝑛𝑥) < ∞, 𝑥 ∈ R𝑑. We refer to [10] for more

facts about such weights.
1.1.2. Test function spaces and their duals. Next we introduce spaces of test

functions and their duals in the context of spaces of ultradistributions. These test
function spaces correspond to the spaces 𝐶∞

0 , S and 𝐶∞ in the distribution theory
in [12,26]. We start by giving the definition of Gelfand-Shilov type spaces.

Definition 1.2. Let 𝑠 > 1 and 𝐴 > 0. We denote by 𝒮𝑠𝐴(R𝑑) the space of all
functions 𝜙 ∈ 𝐶∞(R𝑑) such that the norm

‖𝜙‖𝑠,𝐴 = sup
𝛼,𝛽∈N𝑑

0

sup
𝑥∈R𝑑

(︂
𝐴|𝛼+𝛽|

𝛼!𝑠𝛽!𝑠 ⟨𝑥⟩|𝛼||𝜙(𝛽)(𝑥)|
)︂

is finite. Then the spaces 𝒮(𝑠)(R𝑑) and 𝒮{𝑠}(R𝑑) are given by

𝒮(𝑠)(R𝑑) =
⋂︁
𝐴>0

𝒮𝑠𝐴(R𝑑) 𝒮{𝑠}(R𝑑) =
⋃︁
𝐴>0

𝒮𝑠𝐴(R𝑑).

The topologies for 𝒮(𝑠)(R𝑑) and 𝒮{𝑠}(R𝑑) are given by the projective and inductive
limit, respectively, i.e.,

𝒮(𝑠)(R𝑑) = proj lim
𝐴→∞

𝒮𝑠𝐴(R𝑑), 𝒮{𝑠}(R𝑑) = ind lim
𝐴→0

𝒮𝑠𝐴(R𝑑).

We note that 𝒮𝐴(R𝑑) is a Banach space, for every 𝐴 > 0, and its dual is denoted
by (𝒮𝐴)′(R𝑑). Then the Gelfand-Shilov type distribution spaces (𝒮(𝑠))′(R𝑑) and
(𝒮{𝑠})′(R𝑑) are defined as

(𝒮(𝑠))′(R𝑑) =
⋃︁
𝐴>0

(𝒮𝑠𝐴)′(R𝑑), (𝒮{𝑠})′(R𝑑) =
⋂︁
𝐴>0

(𝒮𝑠𝐴)′(R𝑑).

These spaces are the strong dual spaces of 𝒮(𝑠)(R𝑑) and 𝒮{𝑠}(R𝑑), and are called
the spaces of tempered ultradistributions of Beurling type and Roumieu type, re-
spectively. If 𝑠 > 𝑡, then

𝒮(𝑡)(R𝑑) →˓ 𝒮{𝑡}(R𝑑) →˓ 𝒮(𝑠)(R𝑑) →˓ 𝒮{𝑠}(R𝑑)

→˓ (𝒮{𝑠})′(R𝑑) →˓ (𝒮(𝑠))′(R𝑑) →˓ (𝒮{𝑡})′(R𝑑) →˓ (𝒮(𝑡))′(R𝑑).
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In order to perform (micro-)local analysis we use the following test function
spaces on open sets, cf. [16].

Definition 1.3. Let 𝑋 be an open set in R𝑑. For a given compact set 𝐾 ⊂ 𝑋,
𝑠 > 1 and 𝐴 > 0 we denote by ℰ𝑠𝐴,𝐾(𝑋) the space of all 𝜙 ∈ 𝐶∞(𝑋) such that the
norm

(1.1) ‖𝜙‖𝑠,𝐴,𝐾 = sup
𝛽∈N𝑛

0

sup
𝑥∈𝐾

𝐴|𝛽|

𝛽!𝑠 |𝜙(𝛽)(𝑥)|

is finite.
The space of functions 𝜙 ∈ 𝐶∞(𝑋) such that (1.1) holds and supp𝜙 ⊆ 𝐾 is

denoted by 𝒟𝑠
𝐴(𝐾).

Let (𝐾𝑛)𝑛 be a sequence of compact sets such that𝐾𝑛 ⊂⊂ 𝐾𝑛+1 and
⋃︀
𝐾𝑛=𝑋.

Then

ℰ(𝑠)(𝑋) = proj lim
𝑛→∞

(proj lim
𝐴→∞

ℰ𝑠𝐴,𝐾𝑛
)(𝑋),

ℰ{𝑠}(𝑋) = proj lim
𝑛→∞

(ind lim
𝐴→0

ℰ𝑠𝐴,𝐾𝑛
)(𝑋),

𝒟(𝑠)(𝑋) = ind lim
𝑛→∞

(proj lim
𝐴→∞

𝒟𝑠
𝐴(𝐾𝑛)),

𝒟{𝑠}(𝑋) = ind lim
𝑛→∞

(ind lim
𝐴→0

𝒟𝑠
𝐴(𝐾𝑛)).

Obviously, 𝒟(𝑠)(𝑋) (𝒟{𝑠}(𝑋) resp.) are subspaces of ℰ(𝑠)(𝑋) (of ℰ{𝑠}(𝑋) resp.)
whose elements are compactly supported. We also remark that a usual notation
for the space 𝒟{𝑠}(𝑋) is 𝐺𝑠0(𝑋) (cf. [22]).

Remark 1.1. Let * denote (𝑠) or {𝑠}. Then 𝒟*, 𝒮* and ℰ* correspond to 𝐶∞
0 ,

S and 𝐶∞, respectively, and 𝒟* ⊆ 𝐶∞
0 , 𝒮* ⊆ S and ℰ* ⊆ 𝐶∞.

The spaces of linear functionals over 𝒟(𝑠)(𝑋) and 𝒟{𝑠}(𝑋), denoted by
(𝒟(𝑠))′(𝑋) and (𝒟{𝑠})′(𝑋) respectively, are called the spaces of ultradistributions
of Beurling and Roumieu type respectively, while the spaces of linear functionals
over ℰ(𝑠)(𝑋) and ℰ{𝑠}(𝑋), denoted by (ℰ(𝑠))′(𝑋) and (ℰ{𝑠})′(𝑋), respectively are
called the spaces of ultradistributions of compact support of Beurling and Roumieu
type respectively, [16]. We have

(ℰ{𝑠})′(𝑋) ⊆ (ℰ(𝑠))′(𝑋), (ℰ(𝑠))′(𝑋) ⊆ (ℰ(𝑠))′(R𝑑) and (ℰ{𝑠})′(𝑋) ⊆ (ℰ{𝑠})′(R𝑑).

Clearly,

(ℰ{𝑠})′(R𝑑) ⊆ (𝒮{𝑠})′(R𝑑) ⊆ (𝒟{𝑠})′(R𝑑)

(ℰ(𝑠))′(R𝑑) ⊆ (𝒮(𝑠))′(R𝑑) ⊆ (𝒟(𝑠))′(R𝑑).

Any ultra-distribution with compact support can be viewed as an element of
(𝒮(1))′(R𝑑). More generally, by similar arguments as in the distribution theory
in [12], it follows that ℰ* are exactly those elements in 𝒮* or 𝒟* with compact
support.
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1.1.3. Fourier–Lebesgue spaces. The Fourier transform F is a linear and con-
tinuous mapping on S ′(R𝑑) which takes the form

(F𝑓)(𝜉) = ̂︀𝑓(𝜉) ≡ (2𝜋)−𝑑/2
∫︁

R𝑑

𝑓(𝑥)𝑒−𝑖⟨𝑥,𝜉⟩ 𝑑𝑥

when 𝑓 ∈ 𝐿1(R𝑑). It is a homeomorphism on (𝒮{𝑠})′(R𝑑) (on (𝒮(𝑠))′(R𝑑) resp.)
which restricts to a homeomorphism on 𝒮{𝑠}(R𝑑) (on 𝒮(𝑠)(R𝑑) resp.) and to a
unitary operator on 𝐿2(R𝑑).

Let 𝑞 ∈ [1,∞], 𝑠 > 1 and 𝜔 ∈ M{𝑠}(R𝑑). The (weighted) Fourier–Lebesgue
space F𝐿𝑞(𝜔)(R

𝑑) is the inverse Fourier image of 𝐿𝑞(𝜔)(R
𝑑), i.e., F𝐿𝑞(𝜔)(R

𝑑) consists
of all 𝑓 ∈ (𝒮(𝑠))′(R𝑑) such that ‖𝑓‖F𝐿𝑞

(𝜔)
≡ ‖ ̂︀𝑓 · 𝜔‖𝐿𝑞 is finite. If 𝜔 = 1, then the

notation F𝐿𝑞 is used instead of F𝐿𝑞(𝜔). We note that if 𝜔(𝜉) = ⟨𝜉⟩𝑠, then F𝐿𝑞(𝜔)
is the Fourier image of the Bessel potential space 𝐻𝑝

𝑠 .

Remark 1.2. Whenever it is convenient, we permit an 𝑥 dependence for the
weight 𝜔 in the definition of Fourier–Lebesgue spaces. More precisely, for each
𝜔 ∈ M{𝑠}(R2𝑑) we let F𝐿𝑞(𝜔) be the set of all ultradistributions 𝑓 such that

‖𝑓‖F𝐿𝑞

(𝜔)
≡ ‖ ̂︀𝑓 𝜔(𝑥, ·)‖𝐿𝑞

is finite. Since 𝜔 is 𝑣-moderate, it follows that different choices of 𝑥 give rise to
equivalent norms. Therefore the condition ‖𝑓‖F𝐿𝑞

(𝜔)
< ∞ is independent of 𝑥, and

it follows that F𝐿𝑞(𝜔)(R
𝑑) is independent of 𝑥 although ‖ · ‖F𝐿𝑞

(𝜔)
might depend

on 𝑥.

2. Wave-front sets of Fourier–Lebesgue type
in spaces of Beurling type ultradistributions

In this section we introduce wave-front sets of Fourier–Lebesgue type in spaces
of ultradistributions of Beurling type.

Let 𝑠 > 1, 𝑞 ∈ [1,∞], and Γ ⊆ R𝑑 r 0 be an open cone. If 𝑓 ∈ (𝒮(𝑠))′(R𝑑) and
𝜔 ∈ M{𝑠}(R2𝑑) we define

(2.1) |𝑓 |F𝐿𝑞,Γ
(𝜔)

= |𝑓 |F𝐿𝑞,Γ
(𝜔),𝑥

≡
(︂ ∫︁

Γ
| ̂︀𝑓(𝜉)𝜔(𝑥, 𝜉)|𝑞𝑑𝜉

)︂1/𝑞

(with obvious interpretation when 𝑞 = ∞). We note that | · |F𝐿𝑞,Γ
(𝜔),𝑥

defines a semi-

norm on (𝒮(𝑠))′(R𝑑) which might attain the value +∞. Since 𝜔 is 𝑣-moderate it
follows that different 𝑥 ∈ R𝑑 gives rise to equivalent seminorms |𝑓 |F𝐿𝑞,Γ

(𝜔),𝑥

. Fur-
thermore, if Γ = R𝑑 r 0, 𝑓 ∈ F𝐿𝑞(𝜔)(R

𝑑) and 𝑞 < ∞, then |𝑓 |F𝐿𝑞,Γ
(𝜔),𝑥

agrees with
the Fourier–Lebesgue norm ‖𝑓‖F𝐿𝑞

(𝜔),𝑥
of 𝑓 .

For the sake of notational convenience we set

(2.2) ℬ = F𝐿𝑞(𝜔) = F𝐿𝑞(𝜔)(R
𝑑), and | · |ℬ(Γ) = | · |F𝐿𝑞,Γ

(𝜔),𝑥

.
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We let Θℬ(𝑓) = ΘF𝐿𝑞

(𝜔)
(𝑓) be the set of all 𝜉 ∈ R𝑑 r 0 such that |𝑓 |ℬ(Γ) < ∞, for

an open conical neighbourhood Γ = Γ𝜉 of 𝜉. We also let Σℬ(𝑓) be the complement
of Θℬ(𝑓) in R𝑑 r 0. Then Θℬ(𝑓) and Σℬ(𝑓) are open, respectively closed, subsets
in R𝑑 r 0, which are independent of the choice of 𝑥 ∈ R𝑑 in (2.1).

Definition 2.1. Let 𝑠 > 1, 𝑞 ∈ [1,∞], ℬ be as in (2.2), and let 𝑋 be an
open subset of R𝑑. If 𝜔 ∈ M{𝑠}(R2𝑑), then the wave-front set of 𝑓 ∈ (𝒟(𝑠))′(𝑋),
WFℬ(𝑓) ≡ WFF𝐿𝑞

(𝜔)
(𝑓) with respect to ℬ consists of all pairs (𝑥0, 𝜉0) in𝑋×(R𝑑r0)

such that 𝜉0 ∈ Σℬ(𝜙𝑓) holds for each 𝜙 ∈ 𝒟(𝑠)(𝑋) such that 𝜙(𝑥0) ̸= 0.

We note that WFℬ(𝑓) is a closed set in R𝑑 × (R𝑑 r 0), since it is obvious that
its complement is open. We also note that if 𝑥 ∈ R𝑑 is fixed and 𝜔0(𝜉) = 𝜔(𝑥, 𝜉),
then WFℬ(𝑓) = WFF𝐿𝑞

(𝜔0)
(𝑓), since Σℬ is independent of 𝑥.

The following theorem shows that wave-front sets with respect to F𝐿𝑞(𝜔) satisfy
appropriate micro-local properties. It also shows that such wave-front sets are
decreasing with respect to the parameter 𝑞, and increasing with respect to the
weight 𝜔.

Theorem 2.1. Let 𝑠 > 1, 𝑞, 𝑟 ∈ [1,∞], 𝑋 be an open set in R𝑑 and 𝜔, 𝜗 ∈
M{𝑠}(R2𝑑) be such that 𝑟 6 𝑞, and 𝜔(𝑥, 𝜉) . 𝜗(𝑥, 𝜉). Also let ℬ be as in (2.2) and
put ℬ0 = F𝐿𝑟(𝜗)(R𝑑). If 𝑓 ∈ (𝒟(𝑠))′(𝑋) and 𝜙 ∈ 𝒟(𝑠)(𝑋), then

WFℬ(𝜙𝑓) ⊆ WFℬ0(𝑓).

Proof. By the definitions it is sufficient to prove Σℬ(𝜙𝑓) ⊆ Σℬ0(𝑓) when
𝜙 ∈ 𝒟(𝑠)(𝑋), 𝜗 = 𝜔, and 𝑓 ∈ (ℰ(𝑠))′(R𝑑), since the statement only involves local
assertions. For the same reasons we may assume that 𝜔(𝑥, 𝜉) = 𝜔(𝜉) is independent
of 𝑥. Finally, we prove the assertion for 𝑟 ∈ [1,∞). The case 𝑟 = ∞ follows by
similar arguments and is left to the reader.

Choose open cones Γ1 and Γ2 in R𝑑 such that Γ2 ⊆ Γ1. We will use the fact
that if 𝑓 ∈ (ℰ(𝑠))′(R𝑑), then | ̂︀𝑓(𝜉)𝜔(𝜉)| . 𝑒𝑁0|𝜉|1/𝑠 for some 𝑁0 > 0 and prove that
for every 𝑁 > 0, there exist 𝐶𝑁 > 0 such that

(2.3) |𝜙𝑓 |ℬ(Γ2) 6 𝐶𝑁
(︁

|𝑓 |ℬ0(Γ1) + sup
𝜉∈R𝑑

(︀
| ̂︀𝑓(𝜉)𝜔(𝜉)|𝑒−𝑁 |𝜉|1/𝑠)︀)︁

when Γ2 ⊆ Γ1.

Since 𝜔 ∈ M{𝑠}(R2𝑑) by letting 𝐹 (𝜉) = | ̂︀𝑓(𝜉)𝜔(𝜉)| and 𝜓(𝜉) = |̂︀𝜙(𝜉)𝑣(𝜉)| we get

|𝜙𝑓 |ℬ(Γ2) =
(︂ ∫︁

Γ2

|F (𝜙𝑓)(𝜉)𝜔(𝜉)|𝑞𝑑𝜉
)︂1/𝑞

.

(︂ ∫︁
Γ2

(︂ ∫︁
R𝑑

𝜓(𝜉 − 𝜂)𝐹 (𝜂) 𝑑𝜂
)︂𝑞

𝑑𝜉

)︂1/𝑞
. 𝐽1 + 𝐽2,
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where

𝐽1 =
(︂ ∫︁

Γ2

(︂ ∫︁
Γ1

𝜓(𝜉 − 𝜂)𝐹 (𝜂) 𝑑𝜂
)︂𝑞

𝑑𝜉

)︂1/𝑞
,

𝐽2 =
(︂ ∫︁

Γ2

(︂ ∫︁
{Γ1

𝜓(𝜉 − 𝜂)𝐹 (𝜂) 𝑑𝜂
)︂𝑞

𝑑𝜉

)︂1/𝑞
.

Let 𝑞0 be chosen such that 1/𝑟0+1/𝑟 = 1+1/𝑞, and let 𝜒Γ1 be the characteristic
function of Γ1. Then Young’s inequality gives

𝐽1 6

(︂ ∫︁
R𝑑

(︂ ∫︁
Γ1

𝜓(𝜉 − 𝜂)𝐹 (𝜂) 𝑑𝜂
)︂𝑞

𝑑𝜉

)︂1/𝑞

= ‖𝜓 * (𝜒Γ1𝐹 )‖𝐿𝑞 6 ‖𝜓‖𝐿𝑟0 ‖𝜒Γ1𝐹‖𝐿𝑟 = 𝐶𝜓|𝑓 |ℬ0(Γ1),

where 𝐶𝜓 = ‖𝜓‖𝐿𝑞0 < ∞. If 𝜙 ∈ 𝒟(𝑠)(𝑋), then for every 𝑁 > 0 there exist 𝐶𝑁 > 0
such that
(2.4) 𝜓(𝜉) = |̂︀𝜙(𝜉)𝑣(𝜉)| 6 𝐶𝑁𝑒−(𝑁+𝑘)|𝜉|1/𝑠

𝑒𝑘|𝜉|1/𝑠

6 𝐶𝑁𝑒
−𝑁 |𝜉|1/𝑠

.

In order to estimate 𝐽2, we note that Γ2 ⊆ Γ1 implies that

(2.5) |𝜉 − 𝜂|1/𝑠 > 2𝑐max(|𝜉|1/𝑠, |𝜂|1/𝑠) > 𝑐(|𝜉|1/𝑠 + |𝜂|1/𝑠), 𝜉 ∈ Γ2, 𝑒𝑡𝑎 /∈ Γ1

holds for some constant 𝑐 > 0, since this is true when 1 = |𝜉| > |𝜂|. A combination
of (2.4) and (2.5) implies that for every 𝑁1 > 0 we have

𝜓(𝜉 − 𝜂) . 𝐶𝑒−2𝑁1(|𝜉|1/𝑠+|𝜂|1/𝑠).

This gives

𝐽2 .

(︂ ∫︁
Γ2

(︂ ∫︁
{Γ1

𝑒−2𝑁1(|𝜉|1/𝑠+|𝜂|1/𝑠)𝐹 (𝜂) 𝑑𝜂
)︂𝑟

𝑑𝜉

)︂1/𝑟

.

(︂ ∫︁
Γ2

(︂ ∫︁
{Γ1

𝑒−2𝑁1(|𝜉|1/𝑠+|𝜂|1/𝑠)𝑒𝑁1|𝜂|1/𝑠

(𝑒−𝑁1|𝜂|1/𝑠

𝐹 (𝜂)) 𝑑𝜂
)︂𝑟

𝑑𝜉

)︂1/𝑟

. sup
𝜂∈R𝑑

|𝑒−𝑁1|𝜂|1/𝑠

𝐹 (𝜂))|,

which proves (2.3) and the result follows. �

Next we modify the definitions from [19] concerning wave-front sets with re-
spect to sequences of spaces. Let 𝜔𝑗 ∈ M{𝑠}(R2𝑑) and 𝑞𝑗 ∈ [1,∞] when 𝑗 belongs
to some index set 𝐽 , and let ℬ be the array of spaces, given by
(2.6) (ℬ𝑗) ≡ (ℬ𝑗)𝑗∈𝐽 , where ℬ𝑗 = F𝐿

𝑞𝑗

(𝜔𝑗) = F𝐿
𝑞𝑗

(𝜔𝑗)(R
𝑑), 𝑗 ∈ 𝐽.

If 𝑠 > 1, 𝑓 ∈ (𝒟(𝑠))′(R𝑑), and (ℬ𝑗) is given by (2.6), then we let Θsup
(ℬ𝑗)(𝑓)

be the set of all 𝜉 ∈ R𝑑 r 0 such that for some Γ = Γ𝜉 and each 𝑗 ∈ 𝐽 it holds
|𝑓 |ℬ𝑗(Γ) < ∞. We also let Θinf

(ℬ𝑗)(𝑓) be the set of all 𝜉 ∈ R𝑑 r 0 such that for some
Γ = Γ𝜉 and some 𝑗 ∈ 𝐽 it holds |𝑓 |ℬ𝑗(Γ) < ∞. Finally we let Σsup

(ℬ𝑗)(𝑓) and Σinf
(ℬ𝑗)(𝑓)

be the complements in R𝑑 r 0 of Θsup
(ℬ𝑗)(𝑓) and Θinf

(ℬ𝑗)(𝑓) respectively.
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Definition 2.2. Let 𝐽 be an index set, 𝑞𝑗 ∈ [1,∞], 𝜔𝑗 ∈ M{𝑠}(R2𝑑) when
𝑗 ∈ 𝐽 , (ℬ𝑗) be as in (2.6), and let 𝑋 be an open subset of R𝑑.

(1) The wave-front set of 𝑓 ∈ (𝒟(𝑠))′(𝑋), of sup-type with respect to (ℬ𝑗),
WF sup

(ℬ𝑗)(𝑓), consists of all pairs (𝑥0, 𝜉0) in 𝑋 × (R𝑑 r 0) such that 𝜉0 ∈
Σsup

(ℬ𝑗)(𝜙𝑓) holds for each 𝜙 ∈ 𝒟(𝑠)(𝑋) such that 𝜙(𝑥0) ̸= 0;
(2) The wave-front set of 𝑓 ∈ (𝒟(𝑠))′(𝑋), of inf-type with respect to (ℬ𝑗),

WF inf
(ℬ𝑗)(𝑓) consists of all pairs (𝑥0, 𝜉0) in 𝑋 × (R𝑑 r 0) such that 𝜉0 ∈

Σinf
(ℬ𝑗)(𝜙𝑓) holds for each 𝜙 ∈ 𝒟(𝑠)(𝑋) such that 𝜙(𝑥0) ̸= 0.

Remark 2.1. We recall that if 𝑓 ∈ D ′(R𝑑), and 𝜔𝑗(𝑥, 𝜉) = ⟨𝜉⟩𝑗 for 𝑗 ∈ 𝐽 = N,
then it follows that WF sup

(ℬ𝑗)(𝑓) in Definition 2.2 is equal to the standard wave front
set WF(𝑓) in Chapter VIII in [12].

2.1. Comparisons to other types of wave-front sets. Let 𝜔 ∈ M{𝑠}(R2𝑑)
be moderated with respect to a weight of polynomial growth at infinity and let
𝑓 ∈ 𝒟′(𝑋). Then WFF𝐿𝑞

(𝜔)
(𝑓) in Definition 2.1 is the same as the wave-front

set introduced in [19, Definition 3.1]. Therefore, the information on regularity
in the background of wave-front sets of Fourier–Lebesgue type in Definition 2.1
might be compared to the information obtained from the classical wave-front sets,
cf. Example 4.9 in [19].

Next we compare the wave-front sets introduced in Definition 2.1 to the wave-
front sets in spaces of ultradistributions given in [12,17,22].

Let 𝑠 > 1 and let 𝑋 be an open subset of R𝑑. The ultradistribution 𝑓 ∈
(𝒟(𝑠))′(𝑋) (𝑓 ∈ (𝒟{𝑠})′(𝑋)) is (𝑠)-micro-regular ({𝑠}-micro-regular) at (𝑥0, 𝜉0) if
there exists 𝜙 ∈ 𝒟(𝑠)(𝑋) (𝜙 ∈ 𝒟{𝑠}(𝑋)) such that 𝜙(𝑥) = 1 in a neighborhood of
𝑥0 and an open cone Γ which contains 𝜉0 such that

(2.7) |F (𝜙𝑓)(𝜉)| . 𝑒−𝑁 |𝜉|1/𝑠

, 𝜉 ∈ Γ,

for each 𝑁 > 0 (for some 𝑁 > 0). The (𝑠)-wave-front set ({𝑠}-wave-front set) of 𝑓 ,
WF(𝑠)(𝑓) (WF{𝑠}(𝑓)) is defined as the complement in 𝑋 × R𝑑 r 0 of the set of all
(𝑥0, 𝜉0) where 𝑓 is (𝑠)-micro-regular ({𝑠}-micro-regular), cf. [22, Definition 1.7.1].

The {𝑠}-wave-front set WF{𝑠}(𝑓) can be found in [17] and agrees with certain
wave-front set WF𝐿(𝑓) introduced in [12, Chapter 8.4].

Remark 2.2. Let 𝑠 > 1, 𝑋 ⊆ R𝑑 be open, 𝑓 ∈ (𝒟{𝑠})′(𝑋), 𝜙 ∈ ℰ{𝑠}(𝑋) and
𝜙0 ∈ 𝒟(𝑠)(𝑋) be such that 𝜙(𝑥) = 1 in a neighborhood supp𝜙0. Also let Γ0,Γ be
open cones such that Γ0 ⊆ Γ. If (2.7) holds for some 𝑁 > 0, then it follows by
straightforward computations, using similar arguments as in the proof of Theorem
2.1 that (2.7) is still true for some 𝑁 > 0 after 𝜙 has been replaced by 𝜙0. Hence
it follows that the following conditions are equivalent:

(1) (𝑥0, 𝜉0) ̸∈ WF{𝑠}(𝑓);
(2) for some 𝜙 ∈ 𝒟{𝑠}(𝑋), such that 𝜙(𝑥) = 1 in a neighborhood of 𝑥0, a

conical neighborhood Γ of 𝜉 and for some 𝑁 > 0, it follows that (2.7)
holds;
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(3) for some 𝜙 ∈ 𝒟(𝑠)(𝑋), such that 𝜙(𝑥) = 1 in a neighborhood of 𝑥0, a
conical neighborhood Γ of 𝜉 and for some 𝑁 > 0, it follows that (2.7)
holds.

Consequently we may always choose 𝜙 in 𝒟(𝑠)(𝑋) in the definition of WF{𝑠}(𝑓),
when 𝑓 ∈ (𝒟{𝑠})′(𝑋).

Proposition 2.1. Let 𝑠 > 1, and let ℬ𝑗 be the same as in (2.6) with 𝑞𝑗 ∈ [1,∞]
and 𝜔𝑗(𝜉) ≡ 𝑒𝑗|𝜉|1/𝑠 . Then the following is true:

(1) if 𝑓 ∈ (𝒟{𝑠})′(R𝑑), then

WF inf
(ℬ𝑗)(𝑓) =

⋂︁
𝑗>0

WFℬ𝑗
(𝑓) = WF{𝑠}(𝑓) ⊆ WF(𝑠)(𝑓);

(2) if 𝑓 ∈ (𝒟(𝑠))′(R𝑑), then

WF(𝑠)(𝑓) =
⋃︁
𝑗>0

WFℬ𝑗
(𝑓) ⊆ WF sup

(ℬ𝑗)(𝑓).

Proof. Let Γ ⊆ R𝑑 r 0 be a cone, 𝜀 > 0 and let 𝑟, 𝑞 ∈ [1,∞] be such that
𝑟 6 𝑞. Then Hölder’s inequality implies that |𝑓 |F𝐿𝑟

(𝜔𝑗 )(Γ) 6 𝐶|𝑓 |F𝐿𝑞

(𝜔𝑗+𝜀)(Γ), for a
constant 𝐶 > 0 which only depends on 𝜀 > 0 and 𝑑. A combination of this fact
and (2.3) then shows that if 𝐶𝑗 = F𝐿∞

(𝜔𝑗)(R𝑑), then⋂︁
𝑗>0

WFℬ𝑗
(𝑓) =

⋂︁
𝑗>0

WF𝒞𝑗
(𝑓),

⋃︁
𝑗>0

WFℬ𝑗
(𝑓) =

⋃︁
𝑗>0

WF𝒞𝑗
(𝑓)

WF inf
(ℬ𝑗)(𝑓) = WF inf

(𝒞𝑗)(𝑓), WF sup
(ℬ𝑗)(𝑓) = WF sup

(𝒞𝑗)(𝑓).

Hence we may assume that 𝑞𝑗 = ∞, for every 𝑗. The result is now a straightforward
consequence of the definitions. The proof is complete. �

3. Wave-front sets with respect to modulation spaces

In this section we define wave-front sets with respect to modulation spaces, and
show that they coincide with wave-front sets of Fourier–Lebesgue types.

3.1. Modulation spaces. In this subsection we consider properties of mod-
ulation spaces which will be used in microlocal analysis of ultradistributions.

Let 𝑠 > 1 and let 𝜑 ∈ 𝒮(𝑠)(R𝑑) be fixed. Then the short-time Fourier transform
(STFT) of 𝑓 ∈ 𝒮(𝑠)(R𝑑) with respect to the window 𝜑 is given by

𝑉𝜑𝑓(𝑥, 𝜉) = (2𝜋)−𝑑/2
∫︁

R𝑑

𝑓(𝑦)𝜑(𝑦 − 𝑥) 𝑒−𝑖⟨𝜉,𝑦⟩𝑑𝑦.

The map (𝑓, 𝜑) ↦→ 𝑉𝜑𝑓 from 𝒮(𝑠)(R𝑑)×𝒮(𝑠)(R𝑑) to 𝒮(𝑠)(R2𝑑) extends uniquely
to a continuous mapping from (𝒮(𝑠))′(R𝑑) × (𝒮(𝑠))′(R𝑑) to (𝒮(𝑠))′(R2𝑑) by duality.

Moreover, if 𝜑 ∈ 𝒮(𝑠)(R𝑑) r 0 fixed and 𝑓 ∈ (𝒮(𝑠))′(R𝑑), then
(3.1) 𝑓 ∈ 𝒮(𝑠)(R𝑑) ⇐⇒ 𝑉𝜑𝑓 ∈ 𝒮(𝑠)(R2𝑑).

We refer to [11, 27] for the proofs, as well as more details on STFT in the
context of Gelfand–Shilov spaces.
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Now we recall the definition of modulation spaces. Let 𝑠 > 1, 𝜔 ∈ M{𝑠}(R2𝑑),
𝑝, 𝑞 ∈ [1,∞], and the window 𝜑 ∈ 𝒮(𝑠)(R𝑑)r0 be fixed. Then the modulation space
𝑀𝑝,𝑞

(𝜔)(R
𝑑) is the set of all ultra-distributions 𝑓 ∈ (𝒮(𝑠))′(R𝑑) such that

‖𝑓‖𝑀𝑝,𝑞

(𝜔)
= ‖𝑓‖𝑀𝑝,𝑞,𝜑

(𝜔)
≡ ‖𝑉𝜑𝑓 𝜔‖𝐿𝑝,𝑞

1
< ∞.

Here ‖ · ‖𝐿𝑝,𝑞
1

is the norm given by

‖𝐹‖𝐿𝑝,𝑞
1

≡
(︂ ∫︁

R𝑑

(︂ ∫︁
R𝑑

|𝐹 (𝑥, 𝜉)|𝑝𝑑𝑥
)︂𝑞/𝑝

𝑑𝜉

)︂1/𝑞
,

when 𝐹 ∈ 𝐿1
loc(R2𝑑) (with obvious interpretation when 𝑝 = ∞ or 𝑞 = ∞). Fur-

thermore, the modulation space 𝑊 𝑝,𝑞
(𝜔)(R

𝑑) consists of all 𝑓 ∈ (𝒮(𝑠))′(R𝑑) such that

‖𝑓‖𝑊𝑝,𝑞

(𝜔)
= ‖𝑓‖𝑊𝑝,𝑞,𝜑

(𝜔)
≡ ‖𝑉𝜑𝑓 𝜔‖𝐿𝑝,𝑞

2
< ∞,

where ‖ · ‖𝐿𝑝,𝑞
2

is the norm given by

‖𝐹‖𝐿𝑝,𝑞
2

≡
(︂ ∫︁

R𝑑

(︂ ∫︁
R𝑑

|𝐹 (𝑥, 𝜉)|𝑞𝑑𝜉
)︂𝑝/𝑞

𝑑𝑥

)︂1/𝑝
,

when 𝐹 ∈ 𝐿1
loc(R2𝑑).

If 𝜔 = 1, then the notations 𝑀𝑝,𝑞 and 𝑊 𝑝,𝑞 are used instead of 𝑀𝑝,𝑞
(𝜔) and 𝑊 𝑝,𝑞

(𝜔)
respectively. Moreover we set 𝑀𝑝

(𝜔) = 𝑊 𝑝
(𝜔) = 𝑀𝑝,𝑝

(𝜔) and 𝑀𝑝 = 𝑊 𝑝 = 𝑀𝑝,𝑝. We
note that 𝑀𝑝,𝑞 are modulation spaces of classical forms, while 𝑊 𝑝,𝑞 are classical
forms of Wiener amalgam spaces. (See [3] concerning the terminology.)

If 𝑠 > 1, 𝑝, 𝑞 ∈ [1,∞] and 𝜔 ∈ M{𝑠}(R2𝑑), then one can show that the spaces
F𝐿𝑞(𝜔)(R

𝑑), 𝑀𝑝,𝑞
(𝜔)(R

𝑑) and 𝑊 𝑝,𝑞
(𝜔)(R

𝑑) are locally the same, in the sense that

F𝐿𝑞(𝜔)(R
𝑑) ∩ (ℰ(𝑠))′(R𝑑) = 𝑀𝑝,𝑞

(𝜔)(R
𝑑) ∩ (ℰ(𝑠))′(R𝑑) = 𝑊 𝑝,𝑞

(𝜔)(R
𝑑) ∩ (ℰ(𝑠))′(R𝑑).

This follows by similar arguments as in [23] (and replacing the space of polynomially
moderated weights P(R2𝑑) with M{𝑠}(R2𝑑)). Later on we extend these properties
in the context of wave-front sets and recover the equalities above.

The proof of the next proposition concerning topological questions of modula-
tion spaces, and properties of the adjoint of the short-time Fourier transform 𝑉 *

𝜑 𝐹 ,
can be found in [1]. Here we recall that ⟨𝑉 *

𝜑 𝐹, 𝑓⟩ ≡ ⟨𝐹, 𝑉𝜑𝑓⟩, 𝑓 ∈ 𝒮(𝑠)(R𝑑), when
𝑠 > 1, 𝜔 ∈ M{𝑠}(R2𝑑), 𝜑 ∈ 𝒮(𝑠) r 0 and 𝐹 (𝑥, 𝜉) ∈ 𝐿𝑝,𝑞(𝜔)(R

2𝑑).

Proposition 3.1. Let 𝑠 > 1, 𝜔 ∈ M{𝑠}(R2𝑑), 𝑝, 𝑞 ∈ [1,∞], and 𝜑, 𝜑1 ∈
𝒮(𝑠)(R𝑑), with (𝜑, 𝜑1)𝐿2 ̸= 0. Then the following is true:

(1) the operator 𝑉 *
𝜑 from 𝒮(𝑠)(R2𝑑) to 𝒮(𝑠)(R𝑑) extends uniquely to a contin-

uous operator from 𝐿𝑝,𝑞(𝜔)(R
2𝑑) to 𝑀𝑝,𝑞

(𝜔)(R
𝑑), and

‖𝑉 *
𝜑 𝐹‖𝑀𝑝,𝑞

(𝜔)
6 𝐶‖𝑉𝜑1𝜑‖𝐿1

(𝑣)
‖𝐹‖𝐿𝑝,𝑞

(𝜔)
;

(2) 𝑀𝑝,𝑞
(𝜔)(R

𝑑) is a Banach space whose definition is independent on the choice
of window 𝜑 ∈ 𝒮(𝑠) r 0;
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(3) the set of windows can be extended from 𝒮(𝑠)(R𝑑) r 0 to 𝑀1
(𝑣)(R𝑑) r 0.

3.2. Wave-front sets with respect to modulation spaces. Next we define
wave-front sets with respect to modulation spaces and show that they agree with
corresponding wave-front sets of Fourier–Lebesgue types. More precisely, we prove
that [19, Theorem 6.1] holds if the weights of polynomial growth are replaced by
more general submultiplicative weights.

Let 𝑠 > 1, 𝜑 ∈ 𝒮(𝑠)(R𝑑) r 0, 𝜔 ∈ M{𝑠}, Γ ⊆ R𝑑 r 0 be an open cone and let
𝑝, 𝑞 ∈ [1,∞]. For any 𝑓 ∈ (𝒮(𝑠))′(R𝑑) we set

(3.2) |𝑓 |ℬ(Γ) = |𝑓 |ℬ(𝜑,Γ) ≡
(︂ ∫︁

Γ

(︂ ∫︁
R𝑑

|𝑉𝜑𝑓(𝑥, 𝜉)𝜔(𝑥, 𝜉)|𝑝𝑑𝑥
)︂𝑞/𝑝

𝑑𝜉

)︂1/𝑞

when ℬ = 𝑀𝑝,𝑞
(𝜔) = 𝑀𝑝,𝑞

(𝜔)(R
𝑑).

We note that |𝑓 |ℬ(Γ) = ‖𝑓‖𝑀𝑝,𝑞

(𝜔)
when Γ = R𝑑 r 0 and 𝜑 ∈ 𝒮(𝑠)(R𝑑), and that

|𝑓 |ℬ(𝜑,Γ) might attain +∞.
We also set

(3.3) |𝑓 |ℬ(Γ) = |𝑓 |ℬ(𝜑,Γ) ≡
(︂ ∫︁

R𝑑

(︂ ∫︁
Γ

|𝑉𝜑𝑓(𝑥, 𝜉)𝜔(𝑥, 𝜉)|𝑞𝑑𝜉
)︂𝑝/𝑞

𝑑𝑥

)︂1/𝑝

when ℬ = 𝑊 𝑝,𝑞
(𝜔) = 𝑊 𝑝,𝑞

(𝜔)(R
𝑑)

and note that similar properties hold for this semi-norm compared to (3.2).
Let 𝜔 ∈ M{𝑠}(R2𝑑), 𝑝, 𝑞 ∈ [1,∞], 𝑓 ∈ (𝒮(𝑠))′(R𝑑), and let ℬ = 𝑀𝑝,𝑞

(𝜔) or
ℬ = 𝑊 𝑝,𝑞

(𝜔). Then Θℬ(𝑓), Σℬ(𝑓) and the wave-front set WFℬ(𝑓) of 𝑓 with respect
to the modulation space ℬ are defined in the same way as in Section 2, after
replacing the semi-norms of Fourier–Lebesgue types in (2.1) with the semi-norms
in (3.2) or (3.3) respectively.

We need the following proposition when proving that the wave-front sets of
Fourier–Lebesgue and modulation space types are the same. The first part is an
extension of [1, Proposition 4.2].

Proposition 3.2. Let 𝑠 > 1. Then the following is true:
(1) if 𝑓 ∈ (ℰ(𝑠))′(R𝑑) and 𝜑 ∈ 𝒮(𝑠)(R𝑑), then

(3.4) |𝑉𝜑𝑓(𝑥, 𝜉)| . 𝑒−ℎ|𝑥|1/𝑠

𝑒𝜀|𝜉|1/𝑠

, for some ℎ > 0 and 𝜀 > 0;

(2) if 𝑓 ∈ (ℰ{𝑠})′(R𝑑) and 𝜑 ∈ 𝒮(𝑠)(R𝑑), then (3.4) holds for every ℎ > 0 and
𝜀 > 0;

(3) if 𝑓 ∈ (𝒟(𝑠))′(R𝑑) and 𝜑 ∈ 𝒟(𝑠)(R𝑑) r 0, then 𝑓 ∈ (ℰ(𝑠))′(R𝑑), if and
only if supp𝑉𝜑𝑓 ⊆ 𝐾 × R𝑑 for some compact set 𝐾, and then

(3.5) |𝑉𝜑𝑓(𝑥, 𝜉)| . 𝑒𝜀|𝜉|1/𝑠

, for some 𝜀 > 0.

(4) if 𝑓 ∈ (𝒟(𝑠))′(R𝑑) and 𝜑 ∈ 𝒟(𝑠)(R𝑑) r 0, then 𝑓 ∈ (ℰ{𝑠})′(R𝑑), if and
only if supp𝑉𝜑𝑓 ⊆ 𝐾 × R𝑑 for some compact set 𝐾 and (3.5) holds for
every 𝜀 > 0.
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Proof. We only prove (1) and (3). The other statements follow by similar
arguments and are left for the reader.

In order to prove (1) we assume that 𝑓 ∈ (ℰ(𝑠))′(R𝑑) and 𝜑 ∈ 𝒮(𝑠)(R𝑑). Also
let 𝜓 ∈ 𝒟(𝑠)(R𝑑) be such that 𝜓 = 1 in supp 𝑓 . Then for some 𝜀, ℎ > 0 we have

|𝑉𝜓𝜑(𝑥, 𝜉)| . 𝑒−ℎ|𝑥|1/𝑠−2𝜀|𝜉|1/𝑠

, and | ̂︀𝑓(𝜉)| . 𝑒𝜀|𝜉|1/𝑠

.

By straightforward calculations, it follows that

|𝑉𝜑𝑓(𝑥, 𝜉)| = |(𝑉𝜑(𝜓𝑓))(𝑥, 𝜉)| . (|𝑉𝜓𝜑(𝑥, ·)| * | ̂︀𝑓 |)(𝜉)

=
∫︁

|𝑉𝜓𝜑(𝑥, 𝜉 − 𝜂)|| ̂︀𝑓(𝜂)| 𝑑𝜂 .
∫︁
𝑒−ℎ|𝑥|1/𝑠−2𝜀|𝜉−𝜂|1/𝑠

𝑒𝜀|𝜂|1/𝑠

𝑑𝜂

6 𝑒−ℎ|𝑥|1/𝑠

∫︁
𝑒−2𝜀|𝜂|1/𝑠+2𝜀|𝜉|1/𝑠+𝜀|𝜂|1/𝑠

𝑑𝜂 . 𝑒−ℎ|𝑥|1/𝑠+2𝜀|𝜉|1/𝑠

,

and (1) follows.
Next we prove (3). First assume that 𝜑 ∈ 𝒟(𝑠)(R𝑑) r 0 and 𝑓 ∈ (ℰ(𝑠))′(R𝑑).

Since both 𝜑 and 𝑓 have compact support, it follows that supp(𝑉𝜑𝑓) ⊆ 𝐾 × R𝑑.
Furthermore, |𝑉𝜑𝑓(𝑥, 𝜉)| . 𝑒𝜀(|𝑥|1/𝑠+|𝜉|1/𝑠), for some 𝜀 > 0, in view of [1]. Since
𝑉𝜑𝑓(𝑥, 𝜉) has compact support in the 𝑥-variable, it follows that

|𝑉𝜑𝑓(𝑥, 𝜉)| . 𝑒𝜀|𝜉|1/𝑠

.

In order to prove the reverse direction we assume that supp𝑉𝜑𝑓 ⊆ 𝐾 × R𝑑,
for a compact set 𝐾. Assume that supp𝜑 ⊆ 𝐾 and choose 𝜙 ∈ 𝒟(𝑠)(R𝑑) such
that supp𝜙∩ 2𝐾 = ∅. Then (𝑓, 𝜙) = (‖𝜑‖𝐿2)−2(𝑉𝜑𝑓, 𝑉𝜑𝜙) = 0, which implies that
𝑓 has compact support. Here the first equality is Moyal’s identity (cf. [9]). This
implies that 𝑓 has compact support and the condition 𝑓 ∈ (𝒟(𝑠))′(R𝑑) now gives
𝑓 ∈ (ℰ(𝑠))′(R𝑑). �

Theorem 3.1. Let 𝑠 > 1, 𝑝, 𝑞 ∈ [1,∞], 𝜔 ∈ M{𝑠}(R2𝑑), ℬ = F𝐿𝑞(𝜔)(R
𝑑), and

let 𝒞 = 𝑀𝑝,𝑞
(𝜔)(R

𝑑) or 𝒞 = 𝑊 𝑝,𝑞
(𝜔)(R

𝑑). If 𝑓 ∈ (𝒟(𝑠))′(R𝑑), then

(3.6) WFℬ(𝑓) = WF𝒞(𝑓).

In particular, WF𝒞(𝑓) is independent of 𝑝 and 𝜑 ∈ 𝒮(𝑠)(R𝑑)r0 in (3.2) and (3.3).

In the proof of Theorem 3.1, the main part concerns proving that the wave-front
sets of modulation types are independent of the choice of window 𝜑 ∈ 𝒮(𝑠)(R𝑑)r0.

Proof. We only consider the case 𝒞 = 𝑀𝑝,𝑞
(𝜔). The case 𝒞 = 𝑊 𝑝,𝑞

(𝜔) follows by
similar arguments and is left for the reader. We may assume that 𝑓 ∈ (ℰ(𝑠))′(R𝑑)
and that 𝜔(𝑥, 𝜉) = 𝜔(𝜉) since the statements only concern local assertions.

In order to prove that WF𝒞(𝑓) is independent of 𝜑 ∈ 𝒮(𝑠)(R𝑑) r 0, we assume
that 𝜑, 𝜑1 ∈ 𝒮(𝑠)(R𝑑) r 0 and let | · |𝒞1(Γ) be the semi-norm in (3.2) after 𝜑 has
been replaced by 𝜑1. Let Γ1 and Γ2 be open cones in R𝑑 such that Γ2 ⊆ Γ1. The
asserted independence of 𝜑 follows if we prove that

(3.7) |𝑓 |𝒞(Γ2) 6 𝐶(|𝑓 |𝒞1(Γ1) + 1),
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for some positive constant 𝐶. Let

Ω1 = {(𝑥, 𝜉) ; 𝜉 ∈ Γ1} ⊆ R2𝑑 and Ω2 = {Ω1 ⊆ R2𝑑,

with characteristic functions 𝜒1 and 𝜒2 respectively, and set

𝐹𝑘(𝑥, 𝜉) = |𝑉𝜑1𝑓(𝑥, 𝜉)|𝜔(𝜉)𝜒𝑘(𝑥, 𝜉), 𝑘 = 1, 2,

and 𝐺 = |𝑉𝜑𝜑1(𝑥, 𝜉)𝑣(𝜉)|. Since 𝜔 is 𝑣-moderate, it follows from [9, Lemma 11.3.3]
that

|𝑉𝜑𝑓(𝑥, 𝜉)𝜔(𝑥, 𝜉)| .
(︀
(𝐹1 + 𝐹2) *𝐺

)︀
(𝑥, 𝜉),

which implies that |𝑓 |𝒞(Γ2) . 𝐽1 + 𝐽2, where

𝐽𝑘 =
(︂ ∫︁

Γ2

(︂ ∫︁
R𝑑

|(𝐹𝑘 *𝐺)(𝑥, 𝜉)|𝑝𝑑𝑥
)︂𝑞/𝑝

𝑑𝜉

)︂1/𝑞
, 𝑘 = 1, 2.

By Young’s inequality 𝐽1 6 ‖𝐹1 *𝐺‖𝐿𝑝,𝑞
1
6 ‖𝐺‖𝐿1‖𝐹1‖𝐿𝑝,𝑞

1
= 𝐶|𝑓 |𝒞1(Γ1), where

𝐶 = ‖𝐺‖𝐿1 = ‖𝑉𝜑𝜑1(𝑥, 𝜉)𝑣(𝜉)‖𝐿1 < ∞, in view of (3.1).
Next we consider 𝐽2. For 𝜉 ∈ Γ2 fixed and integrating over 𝜂 ∈ {Γ1, it follows

from (2.5), Propositon 3.2 and (3.1) that for some 𝑁, 𝑘, 𝜀 > 0 and every ℎ > 0 we
have

|(𝐹2 *𝐺)(𝑥, 𝜉)| .
∫︁∫︁

R2𝑑

𝑒−𝑁 |𝑦|1/𝑠

𝑒𝜀|𝜂|1/𝑠

𝑒−ℎ(|𝑥−𝑦|1/𝑠+|𝜉−𝜂|1/𝑠)𝑣(𝜉 − 𝜂) 𝑑𝑦 𝑑𝜂

.
∫︁∫︁

R2𝑑

𝑒−𝑁 |𝑦|1/𝑠

𝑒𝜀|𝜂|1/𝑠

𝑒−ℎ|𝑥−𝑦|1/𝑠−ℎ𝑐(|𝜉|1/𝑠+|𝜂|1/𝑠)𝑒𝑘(|𝜉|1/𝑠+|𝜂|1/𝑠) 𝑑𝑦 𝑑𝜂

. 𝑒−𝑁1|𝑥|1/𝑠

𝑒(𝑘−ℎ𝑐)|𝜉|1/𝑠

∫︁∫︁
R2𝑑

𝑒−𝑁1|𝑦|1/𝑠

𝑒(𝑘+𝜀−ℎ𝑐)|𝜂|1/𝑠

𝑑𝑦 𝑑𝜂,

. 𝑒−𝑁1|𝑥|1/𝑠

𝑒(𝑘−ℎ𝑐)|𝜉|1/𝑠

< ∞,

for some 𝑁1 > 0, provided ℎ is chosen large enough. Therefore

𝐽2 =
(︂ ∫︁

Γ2

(︂ ∫︁
R𝑑

|(𝐹2 *𝐺)(𝑥, 𝜉)|𝑝𝑑𝑥
)︂𝑞/𝑝

𝑑𝜉

)︂1/𝑞

.

(︂ ∫︁
Γ2

(︂ ∫︁
R𝑑

(︁
𝑒−𝑁1|𝑥|1/𝑠

𝑒(𝑘−ℎ𝑐)|𝜉|1/𝑠
)︁𝑝
𝑑𝑥

)︂𝑞/𝑝

𝑑𝜉

)︂1/𝑞
< ∞.

This proves that (3.7), and hence WF𝒞(𝑓) is independent of 𝜑 ∈ 𝒮(𝑠)(R𝑑) r 0.
In order to prove (3.6) we assume from now on that 𝜑 in (3.2) is real-valued

and has compact support. Let 𝑝0 ∈ [1,∞] be such that 𝑝0 6 𝑝 and set 𝒞0 = 𝑀𝑝0,𝑞
(𝜔) .

The result follows if we prove

Θ𝒞0(𝑓) ⊆ Θℬ(𝑓) ⊆ Θ𝒞(𝑓) when 𝑝0 = 1, 𝑝 = ∞,(3.8)
Θ𝒞(𝑓) ⊆ Θ𝒞0(𝑓).(3.9)

The proof of the first inclusion in (3.8) follows from the estimates
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|𝑓 |ℬ(Γ) .

(︂ ∫︁
Γ

| ̂︀𝑓(𝜉)𝜔(𝜉)|𝑞𝑑𝜉
)︂1/𝑞

.

(︂ ∫︁
Γ

|F
(︁
𝑓

∫︁
R𝑑

𝜑(· − 𝑥) 𝑑𝑥
)︂

(𝜉)𝜔(𝜉)|𝑞𝑑𝜉
)︂1/𝑞

.

(︂ ∫︁
Γ

(︂ ∫︁
R𝑑

|F (𝑓𝜑(· − 𝑥))(𝜉)𝜔(𝜉)| 𝑑𝑥
)︂𝑞

𝑑𝜉

)︂1/𝑞

=
(︂ ∫︁

Γ

(︂ ∫︁
R𝑑

|𝑉𝜑𝑓(𝑥, 𝜉)𝜔(𝜉)| 𝑑𝑥
)︂𝑞

𝑑𝜉

)︂1/𝑞
= 𝐶|𝑓 |𝒞0(Γ),

for a positive constant 𝐶.
Next we prove the second inclusion in (3.8). We have

|𝑓 |𝒞(Γ2) =
(︂ ∫︁

Γ2

sup
𝑥∈R𝑑

|𝑉𝜑𝑓(𝑥, 𝜉)𝜔(𝑥, 𝜉)|𝑞𝑑𝜉
)︂1/𝑞

.

(︂ ∫︁
Γ2

sup
𝑥∈R𝑑

|(| ̂︀𝑓 | * |F (𝜑(· − 𝑥))|)(𝜉)𝜔(𝜉)|𝑞𝑑𝜉
)︂1/𝑞

.

(︂ ∫︁
Γ2

|(| ̂︀𝑓 | * |̂︀𝜑|)(𝜉)𝜔(𝜉)|𝑞𝑑𝜉
)︂1/𝑞

.

(︂ ∫︁
Γ2

(︀
(| ̂︀𝑓 · 𝜔| * |̂︀𝜑 · 𝑣|)(𝜉)

)︀𝑞
𝑑𝜉

)︂1/𝑞
,

where 𝜑 ∈ 𝒟(𝑠)(𝑋) is chosen such that 𝜑 = 1 in supp 𝑓 . The second inclusion in
(3.8) now follows by straightforward computations, using similar arguments as in
the proof of (2.3). The details are left for the reader.

It remains to prove (3.9). Let 𝐾 ⊆ R𝑑 be a compact set chosen such that
𝑉𝜑𝑓(𝑥, 𝜉) = 0 outside 𝐾×R𝑑, and let 𝑝1 ∈ [1,∞] be chosen such that 1/𝑝1 +1/𝑝0 =
1 + 1/𝑝. By Hölder’s inequality we get

|𝑓 |𝒞0(Γ) =
(︂ ∫︁

Γ

(︂ ∫︁
R𝑑

|𝑉𝜑𝑓(𝑥, 𝜉)𝜔(𝑥, 𝜉)|𝑝0𝑑𝑥

)︂𝑞/𝑝0

𝑑𝜉

)︂1/𝑞

6 𝐶𝐾

(︂ ∫︁
Γ

(︂ ∫︁
R𝑑

|𝑉𝜑𝑓(𝑥, 𝜉)𝜔(𝑥, 𝜉)|𝑝𝑑𝑥
)︂𝑞/𝑝

𝑑𝜉

)︂1/𝑞
= 𝐶𝐾 |𝑓 |𝒞(Γ).

This gives (3.9), and the proof is complete. �

Remark 3.1. Let 𝑠 > 1, 𝑝, 𝑞 ∈ [1,∞], and 𝜔 ∈ M{𝑠}(R2𝑑). If 𝑓 ∈ (ℰ(𝑠))′(R𝑑),
then it follows from the definition of the wave-front sets that then

𝑓 ∈ ℬ ⇐⇒ WFℬ(𝑓) = ∅,

when ℬ is equal to F𝐿𝑞(𝜔), 𝑀
𝑝,𝑞
(𝜔) or 𝑊 𝑝,𝑞

(𝜔). In particular

F𝐿𝑞(𝜔) ∩ (ℰ(𝑠))′(R𝑑) = 𝑀𝑝,𝑞
(𝜔) ∩ (ℰ(𝑠))′(R𝑑) = 𝑊 𝑝,𝑞

(𝜔) ∩ (ℰ(𝑠))′(R𝑑),
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by Theorem 3.1.

In particular, we recover Corollary 6.2 in [19], Theorem 2.1 and Remark 4.6
in [23].

Remark 3.2. In some situations we may relax the condition on the window
function 𝜑 ∈ 𝒮(𝑠)(R𝑑) into 𝜑 ∈ 𝒮{𝑠}(R𝑑). In fact, let 𝑠 > 1, 𝜑 ∈ 𝒮{𝑠}(R𝑑) r 0
and let 𝑓 ∈ (𝒮{𝑠})′(R𝑑). Then 𝑉𝜑𝑓 makes sense as an element in (𝒮{𝑠})′(R2𝑑) ∩
𝐶∞(R2𝑑). Furthermore, if ℬ = 𝑀𝑝,𝑞

(𝜔)(R
𝑑), then analogous versions of the sets

Θℬ(𝑓), Σℬ(𝑓) and WFℬ(𝑓) can be defined by replacing the condition 𝜙 ∈ 𝒟(𝑠)(R𝑑)
with 𝜙 ∈ 𝒟{𝑠}(R𝑑). The investigations in this section then show that Theorem 3.1
still holds after the assumptions on 𝑓 and 𝜑 were changed in this way.

4. Discrete versions of wave-front sets

The main goal of this section is to introduce discrete wave-front sets with
respect to Fourier–Lebesgue and modulation spaces, and to relate them with the
corresponding wave-front sets of continuous types, given in the previous sections.
To that aim, in the first part we introduce discrete analogues of Fourier–Lebesgue
norms and relate them to corresponding continuous ones, given in (2.1). Finally we
define discrete versions of wave-front sets and prove that they agree one to another
and to the corresponding continuous ones.

4.1. Discrete semi-norms in Fourier–Lebesgue spaces. In this subsec-
tion we introduce discrete analogues of the semi-norms in (2.1), and show that
these semi-norms are finite if and only if the corresponding nondiscrete semi-norms
are finite. The techniques used here are similar to those in [14].

Assume that 𝑞 ∈ [1,∞], 𝑠 > 1, 𝜔 ∈ M{𝑠}(R𝑑), ℬ = F𝐿𝑞(𝜔)(R
𝑑), and 𝐻 ⊆ R𝑑

is a discrete set. Then we set

|𝑓 |(𝐷)
ℬ(𝐻) ≡

(︂ ∑︁
𝜉𝑙∈𝐻

| ̂︀𝑓(𝜉𝑙)𝜔(𝜉𝑙)|𝑞
)︂1/𝑞

, ̂︀𝑓 ∈ 𝐶(R𝑑) ∩ (𝒮(𝑠))′(R𝑑)

with obvious modifications when 𝑞 = ∞. As in the continuous case, we may allow
weight functions in M{𝑠}(R2𝑑), i.e., 𝜔 = 𝜔(𝑥, 𝜉). However, again we note that the
condition |𝑓 |(𝐷)

ℬ(𝐻) < ∞ is independent of 𝑥 ∈ R𝑑. For the proof of the main result
of this part, we need two lemmas.

We recall that by a lattice Λ we mean the set

Λ = {𝑎1𝑒1 + · · · + 𝑎𝑑𝑒𝑑; 𝑎1, . . . , 𝑎𝑑 ∈ Z},

where 𝑒1, . . . , 𝑒𝑑 is a basis in R𝑑.
The following Lemma was proved for distributions, cf. [14,24,25].

Lemma 4.1. Let 𝑠 > 1, 𝑓 ∈ (ℰ(𝑠))′(R𝑑), Γ and Γ0 be open cones in R𝑑 r 0
such that Γ0 ⊆ Γ, 𝑞 ∈ [1,∞], and let Λ ⊆ R𝑑 be a lattice. If |𝑓 |ℬ(Γ) is finite, then
|𝑓 |(𝐷)

ℬ(Γ0∩Λ) is finite.
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Proof. We only prove the result for 𝑞 < ∞, leaving the small modifications
in the case 𝑞 = ∞ for the reader. Assume that |𝑓 |ℬ(Γ) < ∞, and let 𝐻 = Γ0 ∩ Λ.
Also let 𝜙 ∈ 𝒟(𝑠)(R𝑑) be such that 𝜙 = 1 in supp 𝑓 . Then

(|𝑓 |(𝐷)
ℬ(Γ0∩Λ))

𝑞 =
∑︁
𝜉𝑙∈𝐻

|F (𝜙𝑓)(𝜉𝑙)𝜔(𝜉𝑙)|𝑞

= (2𝜋)−𝑞𝑑/2
∑︁
𝜉𝑙∈𝐻

⃒⃒⃒⃒∫︁ ̂︀𝜙(𝜉𝑙 − 𝜂) ̂︀𝑓(𝜂)𝜔(𝜉𝑙) 𝑑𝜂
⃒⃒⃒⃒𝑞
. (𝑆1 + 𝑆2),

where

𝑆1 =
∑︁
𝜉𝑙∈𝐻

(︂∫︁
Γ
𝜓(𝜉𝑙 − 𝜂)𝐹 (𝜂) 𝑑𝜂

)︂𝑞

, 𝑆2 =
∑︁
𝜉𝑙∈𝐻

(︂∫︁
{Γ
𝜓(𝜉𝑙 − 𝜂)𝐹 (𝜂) 𝑑𝜂

)︂𝑞

.

Here we set 𝐹 (𝜉) = | ̂︀𝑓(𝜉)𝜔(𝜉)| and 𝜓(𝜉) = |̂︀𝜙(𝜉)𝑣(𝜉)| as in the proof of Theorem 2.1.
We need to estimate 𝑆1 and 𝑆2. By Hölder’s inequality we get

𝑆1 =
∑︁
𝜉𝑙∈𝐻

(︂∫︁
Γ
𝜓(𝜉𝑙 − 𝜂)𝐹 (𝜂) 𝑑𝜂

)︂𝑞
=

∑︁
𝜉𝑙∈𝐻

(︂∫︁
Γ
𝜓(𝜉𝑙 − 𝜂)1/𝑞′

(𝜓(𝜉𝑙 − 𝜂)1/𝑞𝐹 (𝜂)) 𝑑𝜂
)︂𝑞

6 ‖𝜓‖𝑞/𝑞
′

𝐿1

∑︁
𝜉𝑙∈𝐻

∫︁
Γ
𝜓(𝜉𝑙 − 𝜂)𝐹 (𝜂)𝑞𝑑𝜂 6 𝐶 ′

∫︁
Γ
𝐹 (𝜂)𝑞𝑑𝜂 = 𝐶 ′|𝑓 |𝑞ℬ(Γ),

where
𝐶 ′ = ‖𝜓‖𝑞/𝑞

′

𝐿1 sup
𝜂∈R𝑑

∑︁
𝜉𝑙∈𝐻

𝜓(𝜉𝑙 − 𝜂)

is finite by (2.4). This proves that 𝑆1 is finite.
It remains to prove that 𝑆2 is finite. We observe that

|𝜉𝑙 − 𝜂|1/𝑠 > 2𝑐max(|𝜉𝑙|1/𝑠, |𝜂|1/𝑠) > 𝑐(|𝜉𝑙|1/𝑠 + |𝜂|1/𝑠)

when 𝜉𝑙 ∈ 𝐻 and 𝜂 ∈ {Γ, for some 𝑐 > 0. Since 𝑓 ∈ (ℰ(𝑠))′(R𝑑), it follows that
|𝐹 | . 𝑒𝑁0|·|1/𝑠 for a positive constant 𝑁0. Furthermore, since 𝜙 ∈ 𝒟(𝑠)(R𝑑), it
follows that for every 𝑁 > 0 we have 𝜓 . 𝑒−𝑁 |·|1/𝑠 . This gives

𝑆2 .
∑︁
𝜉𝑙∈𝐻

(︂∫︁
{Γ
𝑒−𝑁 |𝜉𝑙−𝜂|1/𝑠

𝑒𝑁0|𝜂|1/𝑠

𝑑𝜂

)︂𝑞

.
∑︁
𝜉𝑙∈𝐻

𝑒−𝑞𝑁𝑐|𝜉𝑙|1/𝑠

(︂∫︁
𝑒−(𝑁𝑐−𝑁0)|𝜂|1/𝑠

𝑑𝜂

)︂𝑞

,

where we have used the fact that 𝜔 is 𝑣-moderate. The result now follows, since
the right-hand side is finite when 𝑁 > 𝑁0/𝑐. The proof is complete. �

Next we prove a converse of Lemma 4.1, in the case when the lattice Λ is dense
enough. Let 𝑒1, . . . , 𝑒𝑑 in R𝑑 be a basis for Λ, i.e., for some 𝑥0 ∈ Λ we have

Λ = {𝑥0 + 𝑡1𝑒1 + · · · + 𝑡𝑑𝑒𝑑; 𝑡1, . . . , 𝑡𝑑 ∈ Z}.
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A parallelepiped 𝐷, spanned by 𝑒1, . . . , 𝑒𝑑 for Λ and with corners in Λ, is called a
Λ-parallelepiped. This means that for some 𝑥0 ∈ Λ and for some basis 𝑒1, . . . , 𝑒𝑑
for Λ we have 𝐷 = {𝑥0 + 𝑡1𝑒1 + · · · + 𝑡𝑑𝑒𝑑; 𝑡1, . . . , 𝑡𝑑 ∈ [0, 1]}.

We let 𝒜(Λ) be the set of all Λ-parallelepipeds. For future references we note
that if 𝐷1, 𝐷2 ∈ 𝒜(Λ), then their volumes |𝐷1| and |𝐷2| agree, and for convenience
we let ‖Λ‖ denote the common value, i.e., ‖Λ‖ = |𝐷1| = |𝐷2|.

Let Λ1 and Λ2 be lattices in R𝑑 with bases 𝑒1, . . . , 𝑒𝑑 and 𝜀1, . . . , 𝜀𝑑 respectively.
Then the pair (Λ1,Λ2) is called admissible lattice pair, if for some 0 < 𝑐 6 2𝜋 we
have ⟨𝑒𝑗 , 𝜀𝑗⟩ = 𝑐 and ⟨𝑒𝑗 , 𝜀𝑘⟩ = 0 when 𝑗 ̸= 𝑘. If in addition 𝑐 < 2𝜋, then (Λ1,Λ2)
is called a strongly admissible lattice pair. If instead 𝑐 = 2𝜋, then the pair (Λ1,Λ2)
is called a weakly admissible lattice pair.

Here we note that if the lattice pair (Λ1,Λ2) is weakly admissible, then every
choice of 𝜑 in (7.2.2) in [12] gives rise to a Fourier series expansion of a 𝐷1-periodic
distribution 𝑓 , where 𝐷1 ∈ 𝒜(Λ1). Hence, there is an ambiguity concerning the
choice of 𝜑 for expressing 𝑓 in a Fourier series. On the other hand, if (Λ1,Λ2) is
strongly admissible and the restriction of 𝑓 to the open set 𝐷1 has compact support,
then the Fourier coefficients are defined in a canonical way. (See also (4.2) below.)

Lemma 4.2. Let 𝑠 > 1, (Λ1,Λ2) be an admissible lattice pair, 𝐷1 ∈ 𝒜(Λ1), and
let 𝑓 ∈ (ℰ(𝑠))′(R𝑑) be such that an open neighbourhood of its support is contained
in 𝐷1. Also let Γ and Γ0 be open cones in R𝑑 such that Γ0 ⊆ Γ. If |𝑓 |(𝐷)

ℬ(Γ∩Λ2) is
finite, then |𝑓 |ℬ(Γ0) is finite.

Proof. Since 𝐷1 contains an open neighbourhood of the support of 𝑓 , we
may modify Λ1 (and therefore 𝐷1) such that the lattice pair (Λ1,Λ2) is strongly
admissible, and such that the hypothesis still holds. From now on we therefore
assume that (Λ1,Λ2) is strongly admissible.

We use similar arguments as in the proof of Lemma 4.1. Again we prove the
result only for 𝑞 < ∞. The small modifications to the case 𝑞 = ∞ are left for the
reader.

Assume that |𝑓 |(𝐷)
ℬ(Γ∩Λ2) < ∞, and let 𝜙 ∈ 𝒟(𝑠)(𝐷∘

1) be equal to one in the
support of 𝑓 , where 𝐷∘

1 denotes the interior of the set 𝐷1. By expanding 𝑓 = 𝜙𝑓

into a Fourier series on 𝐷1 we get ̂︀𝑓(𝜉) = 𝐶
∑︀
𝜉𝑙∈Λ2

̂︀𝜙(𝜉−𝜉𝑙) ̂︀𝑓(𝜉𝑙), where the positive
constant 𝐶 only depends on Λ2. (Cf. e.g. (4.1) below.) We have

(|𝑓 |ℬ(Γ0))𝑞 =
∫︁

Γ0

| ̂︀𝑓(𝜉)𝜔(𝜉)|𝑞𝑑𝜉 = 𝐶𝑞
∫︁

Γ0

⃒⃒⃒⃒ ∑︁
𝜉𝑙∈Λ2

̂︀𝜙(𝜉 − 𝜉𝑙) ̂︀𝑓(𝜉𝑙)𝜔(𝜉)
⃒⃒⃒⃒𝑞
𝑑𝜉 . 𝑆1 + 𝑆2,

where

𝑆1 =
∫︁

Γ0

⃒⃒⃒⃒ ∑︁
𝜉𝑙∈𝐻1

̂︀𝜙(𝜉 − 𝜉𝑙) ̂︀𝑓(𝜉𝑙)𝜔(𝜉)
⃒⃒⃒⃒𝑞
𝑑𝜉, 𝑆2 =

∫︁
Γ0

⃒⃒⃒⃒ ∑︁
𝜉𝑙∈𝐻2

̂︀𝜙(𝜉 − 𝜉𝑙) ̂︀𝑓(𝜉𝑙)𝜔(𝜉)
⃒⃒⃒⃒𝑞
𝑑𝜉,

𝐻1 = Γ ∩ Λ2 and 𝐻2 = {Γ ∩ Λ2.
We have to estimate 𝑆1 and 𝑆2. Let 𝜔 be moderate with respect to the weight

𝑣(·) = 𝑒𝑘|·|1/𝑠 . By Minkowski’s inequality we get
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𝑆1 6 𝐶
∫︁

Γ0

(︂ ∑︁
𝜉𝑙∈𝐻1

|̂︀𝜙(𝜉 − 𝜉𝑙)𝑣(𝜉 − 𝜉𝑙)|| ̂︀𝑓(𝜉𝑙)𝜔(𝜉𝑙)|
)︂𝑞

𝑑𝜉

6 𝐶 ′
∫︁

Γ0

(︂ ∑︁
𝜉𝑙∈𝐻1

|̂︀𝜙(𝜉 − 𝜉𝑙)𝑣(𝜉 − 𝜉𝑙)|| ̂︀𝑓(𝜉𝑙)𝜔(𝜉𝑙)|𝑞
)︂
𝑑𝜉 6 𝐶 ′′

∑︁
𝜉𝑙∈𝐻1

| ̂︀𝑓(𝜉𝑙)𝜔(𝜉𝑙)|𝑞,

where 𝐶 ′ = 𝐶 sup𝜉 ‖̂︀𝜙(𝜉 − 𝜉𝑙)𝑣(𝜉 − 𝜉𝑙)‖𝑞/𝑞
′

𝑙1(Λ2) < ∞, and 𝐶 ′′ = 𝐶 ′‖𝜙‖F𝐿1
(𝑣)

< ∞.

This proves that 𝑆1 is finite when |𝑓 |(𝐷)
ℬ(Γ∩Λ2) < ∞.

It remains to prove that 𝑆2 is finite. We recall that
|𝜉 − 𝜉𝑙|1/𝑠 > 2𝑐max(|𝜉|1/𝑠, |𝜉𝑙|1/𝑠) > 𝑐(|𝜉|1/𝑠 + |𝜉𝑙|1/𝑠) when 𝜉 ∈ Γ0 and 𝜉𝑙 ∈ 𝐻2,

and use the same arguments as in the proof of Lemma 4.1 to obtain

𝑆2 .
∫︁

Γ0

(︂ ∑︁
𝜉𝑙∈𝐻2

𝑒−𝑁 |𝜉−𝜉𝑙|1/𝑠

𝑒𝑁0|𝜉𝑙|1/𝑠

)︂𝑞

𝑑𝜉

.
∫︁

Γ0

𝑒−𝑞𝑁𝑐|𝜉|1/𝑠

(︂ ∑︁
𝜉𝑙∈𝐻2

𝑒−(𝑁𝑐−𝑁0)|𝜉𝑙|1/𝑠

)︂𝑞

𝑑𝜉.

The result now follows, since the right-hand side is finite when 𝑁 > 𝑁0/𝑐. The
proof is complete. �

Theorem 4.1. Let 𝑠 > 1, (Λ1,Λ2) be an admissible lattice pair, 𝐷1 ∈ 𝒜(Λ1),
and let 𝑓 ∈ (ℰ(𝑠))′(R𝑑) be such that an open neighbourhood of its support is con-
tained in 𝐷1. Also let Γ and Γ0 be open cones in R𝑑 such that Γ0 ⊆ Γ. If |𝑓 |(𝐷)

ℬ(Γ∩Λ2)

is finite, then |𝜙𝑓 |(𝐷)
ℬ(Γ0∩Λ2) is finite for every 𝜙 ∈ 𝒟(𝑠)(𝑋).

For the proof we recall that |𝜙𝑓 |ℬ(Γ0) is finite when 𝑓 ∈ (ℰ(𝑠))′(R𝑑), 𝜙 ∈
𝒟(𝑠)(𝑋), and |𝑓 |ℬ(Γ) is finite. This follows from the proof of Theorem 2.1.

Proof. Let Γ1, Γ2 be open cones such that Γ𝑗 ⊆ Γ𝑗+1 for 𝑗 = 0, 1, Γ2 ⊆ Γ,
and assume that |𝑓 |(𝐷)

ℬ(Γ∩Λ2) < ∞. Then Lemma 4.2 shows that |𝑓 |ℬ(Γ2) is finite.
Hence, Theorem 2.1 implies that |𝜙𝑓 |ℬ(Γ1) < ∞. This gives |𝜙𝑓 |(𝐷)

ℬ(Γ0∩Λ2) < ∞, in
view of Lemma 4.1. The proof is complete. �

4.2. Gabor pairs. In this subsection we recall in Definition 4.1 the notion of
Gabor pairs, which are later on used in the definition of discrete version of wave-
front sets with respect to modulation spaces. We refer to [14] for an explanation
that conditions in Definition 4.1 are quite general.

By Definition 4.1 it follows that our analysis can be applied to the most general
classes of non-quasianalytic ultradistributions, and it also points out the role of
Beurling–Domar weights in definitions of F𝐿𝑞(𝜔)(R

𝑑) and 𝑀𝑝,𝑞
(𝜔)(R

𝑑), cf. [2,10,11].
On the other hand, a larger class of quasianalytic ultradistributions can not be
treated by the technique given here, since the corresponding test function spaces
do not contain smooth functions of compact support.



MICRO-LOCAL ANALYSIS IN SOME SPACES OF ULTRADISTRIBUTIONS 19

Assume that 𝑒1, . . . , 𝑒𝑑 is a basis for the lattice Λ1, and that (Λ1,Λ2) is a
weakly admissible lattice pair. If 𝑓 ∈ 𝐿2

loc is periodic with respect to Λ1, and 𝐷 is
the parallelepiped, spanned by {𝑒1, . . . , 𝑒𝑑}, then we may make Fourier expansion
of 𝑓 as

(4.1) 𝑓(𝑥) =
∑︁
𝜉𝑙∈Γ2

𝑐𝑙𝑒
𝑖⟨𝑥,𝜉𝑙⟩, 𝑥 ∈ R𝑑

(with convergence in 𝐿2
loc), where the coefficients 𝑐𝑙 are given by

(4.2) 𝑐𝑙 =
∫︁

Δ
𝑓(𝑦)𝑒−𝑖⟨𝑦,𝜉𝑙⟩𝑑𝑦.

Here 𝑦 = 𝑦1𝑒1 + · · · + 𝑦𝑑𝑒𝑑, 𝑑𝑦 = 𝑑𝑦1 · · · 𝑑𝑦𝑑, and Δ = [0, 1]𝑑. For nonperiodic
functions and distributions we instead make Gabor expansions. Because of the
support properties of the involved Gabor atoms and their duals, we are usually
forced to change the assumption on the involved lattice pairs. More precisely,
instead of assuming that (Λ1,Λ2) should be a weakly admissible lattice pair, we
assume from now on that (Λ1,Λ2) is a strongly admissible lattice pair, with Λ1 =
{𝑥𝑗}𝑗∈𝐽 and Λ2 = {𝜉𝑙}𝑙∈𝐽 . Also let 𝑠 > 1 and

(4.3) 𝜑, 𝜓 ∈ 𝒟(𝑠)(R𝑑), 𝜑𝑗,𝑙(𝑥) = 𝜑(𝑥− 𝑥𝑗)𝑒𝑖⟨𝑥,𝜉𝑙⟩, 𝜓𝑗,𝑙(𝑥) = 𝜓(𝑥− 𝑥𝑗)𝑒𝑖⟨𝑥,𝜉𝑙⟩

be such that {𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 and {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽 are dual Gabor frames (see [6, 9] for the
definition and basic properties of Gabor frames and their duals). If 𝑓 ∈ (𝒮(𝑠))′(R𝑑)
then

(4.4) 𝑓 =
∑︁
𝑗,𝑙∈𝐽

𝑐𝑗,𝑙𝜑𝑗,𝑙,

where

(4.5) 𝑐𝑗,𝑙 = 𝐶𝜑,𝜓 · (𝑓, 𝜓𝑗,𝑙)

and the constant 𝐶𝜑,𝜓 depends on the frames only. Here (·, ·) denotes the unique
extension of the 𝐿2-form on 𝒮(𝑠)(R𝑑) × 𝒮(𝑠)(R𝑑) into (𝒮(𝑠))′(R𝑑) × (𝒮(𝑠))′(R𝑑).

Note that the convergence is in (𝒮(𝑠))′(R𝑑) due to Proposition 3.2.

Definition 4.1. Assume that 𝜀 ∈ (0, 1], {𝑥𝑗}𝑗∈𝐽 = Λ1 ⊆ R𝑑 and {𝜉𝑙}𝑙∈𝐽 =
Λ2 ⊆ R𝑑 are lattices and let Λ1(𝜀) = 𝜀Λ1. Also let 𝜑, 𝜓 ∈ 𝐶∞

0 (R𝑑) be nonnegative,
and set

𝜑𝜀 = 𝜑(·/𝜀), 𝜑𝜀𝑗,𝑙 = 𝜑𝜀(· − 𝜀𝑥𝑗)𝑒𝑖⟨·,𝜉𝑙⟩,

𝜓𝜀 = 𝜓(·/𝜀), 𝜓𝜀𝑗,𝑙 = 𝜓𝜀(· − 𝜀𝑥𝑗)𝑒𝑖⟨·,𝜉𝑙⟩

when 𝜀𝑥𝑗 ∈ Λ1(𝜀) (i.e., 𝑥𝑗 ∈ Λ1) and 𝜉𝑙 ∈ Λ2. Then the pair

(4.6) ({𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 , {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽)

is called a Gabor pair with respect to the lattices Λ1 and Λ2 if for each 𝜀 ∈ (0, 1],
the sets {𝜑𝜀𝑗,𝑙}𝑗,𝑙∈𝐽 and {𝜓𝜀𝑗,𝑙}𝑗,𝑙∈𝐽 are dual Gabor frames.



20 JOHANSSON, PILIPOVIĆ, TEOFANOV AND TOFT

By Definition 4.1 and Chapters 5–13 in [9] it follows that if 𝑓 ∈ (𝒮(𝑠))′(R𝑑)
and if ({𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 , {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽) is a Gabor pair, then

(4.4)′ 𝑓 =
∑︁
𝑗,𝑙∈𝐽

𝑐𝑗,𝑙(𝜀)𝜑𝜀𝑗,𝑙

in (𝒮(𝑠))′(R𝑑), for every 𝜀 ∈ (0, 1], where

(4.5)′ 𝑐𝑗,𝑙(𝜀) = (𝑓, 𝜓𝜀𝑗,𝑙).

We remark that if the pair in (4.6) is a Gabor pair, then it follows from the
investigations in [9] that the lattice pair (Λ1,Λ2) in Definition 4.1 is strongly ad-
missible.

The following proposition explains that any pair of dual Gabor frames satisfying
a mild additional condition, generates a Gabor pair. The proof can be found in [14].

Proposition 4.1. Let 𝜑, 𝜓 ∈ 𝐶∞
0 (R𝑑) be nonnegative functions and let 𝜑𝑗,𝑙

and 𝜓𝑗,𝑙 be given by (4.3). Also, let Λ1 and Λ2 be the same as in Definition 4.1. If
{𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 and {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽 are dual Gabor frames such that

(4.7)
∑︁
𝑥𝑗∈Λ1

𝜑(· − 𝑥𝑗)𝜓(· − 𝑥𝑗) = ‖Λ1‖−1,

holds, then (4.6) is a Gabor pair.

Remark 4.1. If 𝜑 = 𝜓, then (4.7) describes the tight frame property of the
corresponding Gabor frame, cf. [9, Theorem 6.4.1].

Remark 4.2. Let 𝑝, 𝑞 ∈ [1,∞], 𝜔 ∈ M{𝑠}(R2𝑑), and 𝑓 ∈ (ℰ(𝑠))′(R𝑑). If
({𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 , {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽) is a Gabor pair such that (4.4) and (4.5) hold, then it
follows that 𝑓 ∈ 𝑀𝑝,𝑞

(𝜔)(R
𝑑) if and only if

‖𝑓‖[𝜀] ≡
(︂ ∑︁
𝑙∈𝐽

(︂ ∑︁
𝑗∈𝐽

|𝑐𝑗,𝑙(𝜀)𝜔(𝜀𝑥𝑗 , 𝜉𝑗)|𝑝
)︂𝑞/𝑝 )︂1/𝑞

is finite for every 𝜀 ∈ (0, 1]. Furthermore, for every 𝜀 ∈ (0, 1], the norm 𝑓 ↦→ ‖𝑓‖[𝜀]
is equivalent to the modulation space norm (1.3) (cf. [2,4,5,9].)

4.3. Discrete versions of wave-front sets with respect to Fourier–Le-
besgue and modulation spaces. We start with two definitions.

Definition 4.2. Let 𝑠 > 1, 𝑞 ∈ [1,∞], 𝑓 ∈ (𝒮(𝑠))′(R𝑑), 𝑋 be an open subset
of R𝑑, (𝑥0, 𝜉0) ∈ 𝑋 × (R𝑑 r 0), 𝜔 ∈ M{𝑠}(R𝑑) and ℬ = F𝐿𝑞(𝜔). The point (𝑥0, 𝜉0)
is called discretely regular with respect to ℬ if

|𝜙𝑓 |(𝐷)
ℬ(Γ∩Λ2) < ∞,

for some choice of strongly admissible lattice pair (Λ1,Λ2) such that 𝑥0 ̸∈ Λ1, an
open conical neighborhood Γ of 𝜉0, and some choice of 𝜙 ∈ 𝒟(𝑠)(𝑋) such that
𝜙(𝑥0) ̸= 0.
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For the definition of discrete wave-front sets of modulation spaces, we consider
Gabor pairs ({𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 , {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽), and let 𝐽𝑥0(𝜀) = 𝐽𝑥0(𝜀, 𝜑, 𝜓) = 𝐽𝑥0(𝜀, 𝜑, 𝜓,Λ1)
be the set of all 𝑗 ∈ 𝐽 such that 𝑥0 ∈ supp𝜑𝜀𝑗,𝑙 or 𝑥0 ∈ supp𝜓𝜀𝑗,𝑙.

Definition 4.3. Let 𝑠 > 1, 𝑝, 𝑞 ∈ [1,∞], 𝑓 ∈ (𝒮(𝑠))′(R𝑑), 𝑋 be an open
subset of R𝑑, (𝑥0, 𝜉0) ∈ 𝑋 × (R𝑑 r 0), 𝜔 ∈ M{𝑠}(R2𝑑) and 𝒞 = 𝑀𝑝,𝑞

(𝜔)(R
𝑑). Also

let Λ1,Λ2 ⊆ R𝑑 be lattices such that 𝑥0 /∈ Λ1, 𝜑, 𝜓 ∈ 𝒟(𝑠)(R𝑑) be such that
({𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 , {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽) is a Gabor pair (with respect to Λ1 and Λ2), and let 𝑐𝑗,𝑙(𝜀)
be the same as in (4.5)′. The point (𝑥0, 𝜉0) is called discretely regular with respect
to 𝒞 if (︂ ∑︁

𝜉𝑙∈Γ∩Λ2

(︂ ∑︁
𝑗∈𝐽𝑥0 (𝜀)

|𝑐𝑗,𝑙(𝜀)𝜔(𝜉𝑙)|𝑝
)︂𝑞/𝑝 )︂1/𝑞

< ∞,

for some 𝜀 ∈ (0, 1], an open conical neighborhood Γ of 𝜉0, and for some 𝜙 ∈ 𝒟(𝑠)(𝑋)
such that 𝜙(𝑥0) ̸= 0.

The discrete wave-front set of 𝑓 with respect to 𝒞 (ℬ), denoted DF𝒞(𝑓)
(DFℬ(𝑓)), consists of all (𝑥0, 𝜉0) ∈ 𝑋 × (R𝑑 r 0), where 𝑓 is not discretely regular
with respect to 𝒞 (ℬ).

Roughly speaking, (𝑥0, 𝜉0) ∈ DF𝒞(𝑓) means that 𝑓 is not locally in 𝒞, in the
direction 𝜉0. The following result shows that our wave-front sets coincide.

Theorem 4.2. Let 𝑠 > 1, 𝑋 ⊆ R𝑑 be open and let 𝑓 ∈ (𝒟(𝑠))′(𝑋). Then

(4.8) WFℬ(𝑓) = WF𝒞(𝑓) = DFℬ(𝑓) = DF𝒞(𝑓).

Proof. By Theorem 3.1 and Lemmas 4.1 and 4.2, it follows that the first two
equalities in (4.8) hold. The result therefore follows if we prove that DFℬ(𝑓) =
DF𝒞(𝑓).

First assume that (𝑥0, 𝜉0) /∈ DFℬ(𝑓), and choose 𝜙 ∈ 𝒟(𝑠)(𝑋), an open neigh-
bourhood 𝑋0 ⊂ 𝑋0 ⊂ 𝑋 of 𝑥0 and conical neighbourhoods Γ,Γ0 of 𝜉0 such that

∙ Γ0 ⊆ Γ, 𝜙(𝑥) = 1 when 𝑥 ∈ 𝑋0,
∙ |𝜙𝑓 |(𝐷)

ℬ(𝐻) < ∞, when 𝐻 = Λ2 ∩ Γ.

Now let ({𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 , {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽) be a Gabor pair and choose 𝜀 ∈ (0, 1] such that
supp𝜑𝜀𝑗,𝑙 and supp𝜓𝜀𝑗,𝑙 are contained in 𝑋0 when 𝑥0 ∈ supp𝜑𝜀𝑗,𝑙 and 𝑥0 ∈ supp𝜓𝜀𝑗,𝑙.
Since

𝑐𝑗,𝑙(𝜀) = 𝐶(𝑓, 𝜓𝜀𝑗,𝑙)𝐿2(R𝑑) = F (𝑓 𝜓(·/𝜀− 𝑥𝑗))(𝜉𝑙),

it follows from these support properties that if 𝐻0 = Λ2 ∩ Γ0, then(︂ ∑︁
𝜉𝑙∈𝐻0

|F (𝑓 𝜓(·/𝜀− 𝑥𝑗))(𝜉𝑙)𝜔(𝜉𝑙)|𝑞
)︂1/𝑞

= |𝑓 𝜓(·/𝜀− 𝑥𝑗)|(𝐷)
ℬ(𝐻0)(4.9)

= |𝑓 𝜙𝜓(·/𝜀− 𝑥𝑗)|(𝐷)
ℬ(𝐻0),
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when 𝑗 ∈ 𝐽𝑥0(𝜀). Hence, by combining Theorem 4.1 with the facts that 𝐽𝑥0(𝜀) is
finite and |𝜙𝑓 |(𝐷)

ℬ(𝐻) < ∞, it follows that the expressions in (4.9) are finite and(︂ ∑︁
𝜉𝑙∈𝐻0

(︂ ∑︁
𝑗∈𝐽𝑥0 (𝜀)

|F (𝑓 𝜓(·/𝜀− 𝑥𝑗))(𝜉𝑙)𝜔(𝜉𝑙)|𝑝
)︂𝑞/𝑝)︂1/𝑞

< ∞.

This implies that (𝑥0, 𝜉0) /∈ DF𝒞(𝑓), and we have proved that DF𝒞(𝑓) ⊆ DFℬ(𝑓).
In order to prove the reverse inclusion we assume that (𝑥0, 𝜉0) /∈ DF𝒞(𝑓), and

we choose 𝜀 ∈ (0, 1], Gabor pair ({𝜑𝑗,𝑙}𝑗,𝑙∈𝐽 , {𝜓𝑗,𝑙}𝑗,𝑙∈𝐽) and conical neighbourhoods
Γ,Γ0 of 𝜉0 such that Γ0 ⊆ Γ and

(4.10)
(︂ ∑︁
𝜉𝑙∈𝐻

(︂ ∑︁
𝑗∈𝐽𝑥0 (𝜀)

|F (𝑓 𝜓(·/𝜀− 𝑥𝑗))(𝜉𝑙)𝜔(𝜉𝑙)|𝑝
)︂𝑞/𝑝)︂1/𝑞

< ∞,

when 𝐻 = Λ2 ∩ Γ. Also choose 𝜙, 𝜅 ∈ 𝒟(𝑠)(𝑋) such that 𝜙(𝑥0) ̸= 0 and

𝜅(𝑥)
∑︁

𝑗∈𝐽𝑥0 (𝜀)

𝜓(𝑥/𝜀− 𝑥𝑗) = 1, when 𝑥 ∈ supp𝜙.

Since 𝐽𝑥0(𝜀) is finite, Hölder’s inequality gives

|𝜙𝑓 |(𝐷)
ℬ(𝐻0) =

⃒⃒⃒⃒ ∑︁
𝑗∈𝐽𝑥0 (𝜀)

(𝜙𝜅) (𝑓 𝜓(·/𝜀− 𝑥𝑗))
⃒⃒⃒⃒(𝐷)

ℬ(𝐻0)

6

(︂ ∑︁
𝜉𝑙∈𝐻0

(︂ ∑︁
𝑗∈𝐽𝑥0 (𝜀)

|F ((𝜙𝜅)𝑓 𝜓(·/𝜀− 𝑥𝑗))(𝜉𝑙)𝜔(𝜉𝑙)|
)︂𝑞)︂1/𝑞

.

(︂ ∑︁
𝜉𝑙∈𝐻0

(︂ ∑︁
𝑗∈𝐽𝑥0 (𝜀)

|F ((𝜙𝜅)𝑓 𝜓(·/𝜀− 𝑥𝑗))(𝜉𝑙)𝜔(𝜉𝑙)|𝑝
)︂𝑞/𝑝)︂1/𝑞

,

where 𝐻0 = Λ2 ∩ Γ0. By Theorem 4.1 and (4.10) it now follows that the right-
hand side in the last estimates is finite. Hence, |𝜙𝑓 |(𝐷)

ℬ(𝐻0) < ∞, which shows that
(𝑥0, 𝜉0) /∈ DFℬ(𝑓), and we have proved that DFℬ(𝑓) ⊆ DF𝒞(𝑓). The proof is
complete. �

We may define discrete versions, DF inf
(𝐵𝑗)(𝑓) and DF inf

(𝐵𝑗)(𝑓), of the wave-front
sets WF inf

(𝐵𝑗)(𝑓) and WF inf
(𝐵𝑗)(𝑓) of sequence types, as it is done in [14]. Then it

follows that Theorem 4.2 can be extended to involve such wave-front sets. Hence
Proposition 2.1 is still true, after WF inf

(𝐵𝑗)(𝑓) and WF inf
(𝐵𝑗)(𝑓) are replaced by

DF inf
(𝐵𝑗)(𝑓) and DF inf

(𝐵𝑗)(𝑓), respectively. In particular we obtain the following dis-
crete interpretation of the wave-front set WF{𝑠}(𝑓).

Corollary 4.1. Let 𝑞 ∈ [1,∞], 𝑠 > 1, and let 𝜔𝑘(𝜉) ≡ 𝑒𝑘|𝜉|1/𝑠 , 𝜉 ∈ R𝑑, 𝑘 > 0.
If 𝑓 ∈ (𝒟(𝑠))′(R𝑑), then ⋂︁

𝑘>0
DFF𝐿𝑞

(𝜔𝑘)
(𝑓) = WF{𝑠}(𝑓).
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We remark that a discrete analogue of WF{𝑠}(𝑓) also can be introduced in a
similar way as in [24, 25]. Let us denote this set by WF𝑠,𝑇 (𝑓), and refer to it as
toroidal 𝑠-wave-front set. It can be proved that

WF𝑠,𝑇 (𝑓) = T𝑑 × Z𝑑 ∩ WF{𝑠}(𝑓),

where T𝑑 is the torus in R𝑑.
A significant difference between the toroidal wave-front sets and our discrete

wave-front sets lies in the fact that WF𝑠,𝑇 (𝑓) only informs about the rational
directions for the propagation of singularities of 𝑓 at a certain point, while DF(𝑓) =
WF(𝑓) takes care of all directional for 𝑓 to that point, we refer to [14] for an
example.
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