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STABILITY AND CONVERGENCE OF THE DIFFERENCE

SCHEMES FOR EQUATIONS OF ISENTROPIC GAS

DYNAMICS IN LAGRANGIAN COORDINATES

Piotr Matus and Dmitry Polyakov

Abstract. For the initial-boundary value problem (IBVP) if isentropic gas
dynamics written in Lagrangian coordinates written in terms of Riemann in-
variants we show how to obtain necessary conditions for existence of global
smooth solution using the Lax technique. Under these conditions we formu-
late the existence theorem in the class of piecewise-smooth functions. A priori

estimates with respect to the input data for the difference scheme approxi-
mating this problem are obtained. The estimates of stability are proved using
only restrictions on the initial and boundary conditions corresponding the dif-
ferential problem. In the general case the estimates have been obtained only
for the finite instant of time t < t0. The monotonicity has been proved in the
both cases. The uniqueness and convergence of the difference solution are also
considered. The results of the numerical experiment illustrating theoretical

statements are given.

1. Introduction

Gas dynamics equations play a key role in the mathematical description of the
gas processes. The nonlinearity of these equations can generate various physical
effects such as shock waves or boundary layers independent of the smoothness of
the input data. The question then arises whether there are conditions on the input
data which guarantee the absence of any irregularities of the solution.

For the Cauchy problem the necessary conditions for existence of global smooth
solution have been obtained by Lax in [5]. Later it was proved in [18] that these
conditions are sufficient. In [1], the wellposedness of solutions of 2 × 2 hyperbolic
systems with boundary damping is studied under special restrictions on input data.
In [10], the unique solvability of special class of hyperbolic IBVP has been proved.
By now, the most complete results in investigating the stability of the difference
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solution with respect to small perturbations of the input data have been obtained
for linear problems of mathematical physics [15]. The main problem in studying
the stability of nonlinear difference schemes is the necessity of estimating the dif-
ference derivatives. The linearized difference schemes constructed in this paper
are monotone. That is why with the use of the maximum principle we are going
to get all strong estimates imposing restrictions only on the initial and boundary
conditions. Stability and monotonicity of difference schemes for nonlinear scalar
conservation laws and multidimensional quasi-linear parabolic equations have been
obtained in [6]. In [7, 8], the nonlinear stability of the difference scheme approx-
imating the IBVP for isentropic gas in Eulerian coordinates written in terms of
Riemann invariants is investigated.

In this paper we investigate stability of the difference scheme approximating
the IBVP for isentropic gas in Lagrangian coordinates written in terms of Riemann
invariants using the technique proposed in [8, 9]. Notice that the Lagrangian
coordinates in an one-dimensional case do not allow to allocate areas of subsonic
and supersonic flows. We prove the global stability with respect both to small
perturbations of initial and boundary conditions and monotonicity. Conditions
only on the input data, allowing to guarantee the absence of shock waves have been
obtained. In this paper we show that the conditions given for difference schemes
coincide with the necessary conditions of absence of gradient catastrophe in the
differential case.

The paper is organized as follows: Section 2 is devoted to the statement of the
IBVP for a gas dynamics system. For the approximation of the system of equations
in Riemann invariants, a linearized difference scheme is used. The conditions for
the initial and boundary data that guarantee stability of the difference scheme are
introduced. In Section 3, we obtain the necessary conditions of absence of shock
waves for the differential problem. In Section 4, the stability of the proposed dif-
ference scheme is studied. In Section 5, we investigate the monotonicity. Section
6 is devoted to the investigation of the convergence of the difference scheme. Sec-
tion 7 presents the statements of the numerical experiment, which illustrate the
theoretical results.

2. Problem statement

In the domain Q = Ω × [0,+∞),Ω = {x : 0 < x < l}, let us consider the
IBVP for the system of equations of the gas dynamics written in the Lagrangian
coordinates [11, 14]:

∂v

∂t
−
∂u

∂x
= 0,

∂u

∂t
+
∂p(v)

∂x
= 0, (x, t) ∈ Q,

p(v) = K2v−γ , γ = 1 + 2ε, ε = const > 0, K = const > 0,
(2.1)

v(x, 0) = v0(x), u(x, 0) = u0(x), 0 6 x 6 l,(2.2)

u(0, t) + c1
(

(v(0, t))−ε − 1
)

= µ1(t), t > 0,

− u(l, t) + c1
(

(v(l, t))−ε − 1
)

= µ2(t), t > 0.
(2.3)
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Here v = v(x, t), u = u(x, t), p = p(x, t) denote the specific volume, the velocity,

and the pressure respectively, c1 =
K

√
γ

ε . Hereinafter ci denote positive constants.
Later we will prove that under some assumptions on input data the following

estimate is valid: 0 < vmin 6 v(x, t) 6 vmax, (x, t) ∈ Q. Then the eigenvalues of
the matrix of the system (2.1) are real and distinct:

λ1 = +

√

−
∂p(v)

∂v
> 0, λ2 = −

√

−
∂p(v)

∂v
< 0.

Therefore, system (2.1) is hyperbolic and boundary conditions (2.3) are well posed
[4]. Suppose that the initial data satisfy the inequalities

−|u0(x)| + c1
(

v0(x)−ε − 1
)

> 0,

|u0(x)| + c1
(

v0(x)−ε − 1
)

6 c2,
0 6 x 6 l,(2.4)

−c3 6 −u′
0(x) − c1εv0(x)−(ε+1)v′

0(x) 6 0,

0 6 u′
0(x) − c1εv0(x)−(ε+1)v′

0(x) 6 c3,
0 6 x 6 l(2.5)

The differential problem (2.1)–(2.3) in Riemann invariants [11]

r = u+ c1(v−ε − 1), s = −u+ c1(v−ε − 1),

has the following form:

∂r

∂t
+ a(s+ r)

∂r

∂x
= 0,

∂s

∂t
− a(s+ r)

∂s

∂x
= 0, (x, t) ∈ Q,(2.6)

r(x, 0) = r0(x) = u0(x) + c1
(

(v0(x))−ε − 1
)

, 0 6 x 6 l,

s(x, 0) = s0(x) = −u0(x) + c1
(

(v0(x))−ε − 1
)

, 0 6 x 6 l,
(2.7)

r(0, t) = µ1(t), s(l, t) = µ2(t), t > 0,(2.8)

where a(s + r) = c4(s + r + 2c1)1+ 1
ε , c4 = ε/2(2c1)

1
ε . For the convenience let

us define b = s + r. Suppose that the boundary conditions satisfy the following
inequalities:

0 6 µ1(t) 6 c2, 0 6 µ2(t) 6 c2, t > 0,(2.9)

−c3amax 6 µ′
1(t) 6 0, c3amax 6 µ′

2(t) 6 0, t > 0,(2.10)

where amax = c4(2c2 + 2c1)1+ 1
ε .

Let us assume the fulfilment of the conjugation conditions:

r0(0) = µ1(0), s0(l) = µ2(0),(2.11)

µ′
1(0) + a(r0(0) + s0(0))r′

0(0) = 0, µ′
2(0) − a(r0(l) + s0(l))s′

0(l) = 0.(2.12)

Then from conditions (2.4)–(2.5) for the Riemann invariants we get the inequalities:

0 6 r0(x) 6 c2, 0 6 s0(x) 6 c2, 0 6 x 6 l,(2.13)

−c3 6 s′
0(x) 6 0 6 r′

0(x) 6 c3, 0 6 x 6 l.(2.14)
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3. Formation of shock waves for the differential problem

It is well known [14] that in general case the smooth solutions of initial value
problems (or initial-boundary value problems) for quasilinear hyperbolic systems
exist only locally in time [17] and singularities will appear in finite time, even if the
initial data (and the boundary data) are sufficiently smooth and small. The theory
of gradient catastrophe is constructed mainly for the Cauchy problem [5, 18]:

∂v

∂t
−
∂u

∂x
= 0,

∂u

∂t
+
∂p(v)

∂x
= 0, x ∈ R, t > 0,(3.1)

v(x, 0) = v0(x), u(x, 0) = u0(x), x ∈ R.(3.2)

In [5] the necessary condition for existence of global smooth solution have been
derived.

Proposition 3.1. [5] Let initial data (3.2) satisfy the inequalities

−|u0(x)| + c1
(

v0(x)−ε − 1
)

> 0,

|u0(x)| + c1
(

v0(x)−ε − 1
)

6 c2, x ∈ R.

Then the condition

−c3 6 −u′
0(x) − c1εv0(x)−(ε+1)v′

0(x) 6 0

6 u′
0(x) − c1εv0(x)−(ε+1)v′

0(x) 6 c3, ∀x ∈ R,

is necessary for global smooth solution of the problem (3.1)–(3.2).

Remark 3.1. Actually this condition is also sufficient (see [18]).

Therefore for the Cauchy problem there is a criterion of formation of shock
waves. In the case of IBVP the situation is more difficult. The existing results
have been proved with essential restrictions on input data. In [1], for example, the
initial data are supposed to have small magnitudes. Below we will obtain necessary
conditions for the differential case, using the technique from [5] and the idea of
differentiation with respect to time variable from [4]. We will need the following
generalizations of the results from [5].

Proposition 3.2. Let z(t) be the solution of the initial-value problem

(3.3)
dz

dt
= a(t)z2, z(t0) = m,

in the interval (t0, T ). Suppose that the function a(t) satisfies the inequality

0 < A < a(t), t0 6 t 6 T,

and that m is positive. Then T < t0 + (mA)−1.

Proposition 3.3. Suppose that a(t) satisfies the inequality |a(t)| < B. Then

initial-value problem (3.3) has a solution for |t− t0| < |mB|−1.

In the domain Q let us consider the following IBVP for two quasilinear equa-
tions in Riemann invariants:

ŕ = rt + λ(r, s)rx = 0, (x, t) ∈ Q,(3.4)
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s̀ = st − λ(r, s)sx = 0, (x, t) ∈ Q,(3.5)

r(x, 0) = r0(x), s(x, 0) = s0(x), 0 6 x 6 l,

r(0, t) = µ1(t), s(l, t) = µ2(t), t > 0,
(3.6)

supposing that conditions (2.9), (2.11), (2.13) are fulfilled and

(3.7) 0 < λ(r0, s0) 6 cλ, 0 < λr(r0, s0) 6 cλr
, 0 < λs(r0, s0) 6 cλs

.

Let us note that from equations (3.4)–(3.5) we see that the values of invariants
transfer along characteristics, so

0 < λ(r, s) 6 cλ, 0 < λr(r, s) 6 cλr
, 0 < λs(r, s) 6 cλs

,

∀ r(x, t), s(x, t), 0 6 x 6 l, t > 0.

Remark 3.2. From conditions (2.13) we obtain that λ(r0, s0) > 0, so λ(r, s) >
0 for all r(x, t), s(x, t), 0 6 x 6 l, t > 0. So the fulfillment of conditions (2.9),
(2.11), (2.13) is sufficient for hyperbolicity of system (2.1).

Let us differentiate the equation (3.4) with respect to t:

(3.8) rt t + λrx t + λrrtrx + λsstrx = 0.

From (3.4) and (3.5) we get that 0 = s̀ = ś− 2λsx, so sx =
ś

2λ
. Therefore

(3.9) st =
1

2
ś.

Abbreviating ω = rt and substituting (3.9) in (3.8), we get the following equation:

(3.10) ώ −
λr

λ
ω2 −

λs

2λ
śω = 0.

Denote by k = k(r, s) a function satisfying ks = −
λs

2λ
. Using (3.4), we have

ḱ = kr ŕ + ksś = −
λs

2λ
ś.

By substituting this equation into (3.10) one gets

ώ −
λr

λ
ω2 + ḱω = 0.

Multiplying by ek and abbreviating z = ekω, we get

ź = e−k λr

λ
z2,

the first equation of (3.3) with a = e−kλr/λ and initial condition

m =







− min
06x6l

ek(r0,s0)λ(r0, s0)r′
0(x), t0 = 0, 0 6 x 6 l;

ek(r0,s0)µ′
1(t0), t0 > 0.

Similarly for equation (3.5) we get equation (3.3) with a = e−kλs/λ and the initial
condition

m =







max
06x6l

ek(r0,s0)λ(r0, s0)s′
0(x), t0 = 0, 0 6 x 6 l;

ek(r0,s0)µ′
2(t0), t0 > 0.
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Using propositions 3.2 and 3.3 and conditions (3.7) we obtain the corresponding
conditions for the signs of derivations of the input data and requirement of their
boundness. Finally, we derive

Theorem 3.1. Let inequalities (2.9), (2.11) and (2.13) be true. Then the

conditions (2.5), (2.10) and (2.12) are necessary for existence of global smooth

solutions of problem (2.1)–(2.3).

Moreover, using results from [10] we can formulate the following unique solv-
ability theorem for the problem already written in Riemann invariants.

Theorem 3.2. If the above-formulated assumptions (2.9)–(2.14) are valid, then

for an arbitrary given t0 > 0, there exists a unique continuous generalized solution

of problem (2.6)–(2.8) in the class of functions with weak discontinuities and this

solution transfers along the characteristics from the initial and boundary data.

Remark 3.3. Unfortunately the previous result is not valid for the boundary
conditions not stated in Riemann invariants.

4. Stability of difference scheme

In the domain Q we introduce a uniform grid ωhτ : ωhτ = ωh × ωτ : ωh =
{

xi = ih, i = 0, N, h = l
N

}

, ωτ = {tn = nτ, n ∈ N0}. On the grid ωhτ we approxi-
mate the differential problem in the Riemann invariants (2.6)–(2.8) by the linearized
difference scheme

rht,i + ah,ir̂hx̄,i = 0, i = 1, N,

sht,i − ah,iŝhx,i = 0, i = 0, N−1,
(4.1)

r0
h,i = r0,i = u0,i + c1

(

(v0,i)
−ε − 1

)

, i = 0, N,

s0
h,i = s0,i = −u0,i + c1

(

(v0,i)
−ε − 1

)

, i = 0, N,
(4.2)

r̂h,0 = µn+1
1 , ŝh,N = µn+1

2 , n ∈ N0.(4.3)

Hereinafter we use standard notations of the difference schemes theory [15, 16]:

y = yn
i = y(xi, tn), ŷ = yn+1

i = y(xi, tn+1),

yx̄,i =
yi − yi−1

h
, yx,i =

yi+1 − yi

h
, yt,i =

ŷi − yi

τ
.

When investigating the stability of the difference problem (2.6)–(2.8), we will use
the following canonical form [7] of the two-point difference scheme for the initial
value problem

Ciyi = Aiyi−1 + Fi, i = i0 + 1, iN , yi0
= µ1,(4.4)

Ciyi = Biyi+1 + Fi, i = i0, iN −1, yiN
= µ2.(4.5)

We will need the following results [7].
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Lemma 4.1. Let the conditions Ai > 0, Di = Ci − Ai > 0, i = i0 + 1, iN , be

met. Then for the solution of problem (4.4) the estimate

max
i06i6iN

|yi| 6 max

{

|µ1|, max
i0<i6iN

|Fi|

Di

}

is valid.

Lemma 4.2. Let the conditions Bi > 0, Di = Ci − Bi > 0, i = i0, iN −1, be

met. Then for the solution of problem (4.5) the estimate

max
i06i6iN

|yi| 6 max

{

|µ2|, max
i06i<iN

|Fi|

Di

}

is valid.

Lemma 4.3. Let conditions Ai > 0, Ci > 0, i = i0 + 1, iN , be met. If Fi > 0,

i = i0 + 1, iN , µ1 > 0 (Fi 6 0, i = i0 + 1, iN , µ1 6 0), then for the solution of

problem (4.4) the estimate yi > 0 (yi 6 0), i = i0 + 1, iN , is valid.

Lemma 4.4. Let conditions Bi > 0, Ci > 0, i = i0, iN −1, be met. If Fi > 0,

i = i0, iN −1, µ2 > 0 (Fi 6 0, i = i0, iN −1, yiN
= µ2 6 0), then for the solution

of problem (4.5) the estimate yi > 0 (yi 6 0), i = i0, iN −1, is valid.

Along with (4.1)–(4.3) we consider the perturbed problem:

r̃ht,i + ãh,i ˆ̃rhx̄,i = 0, i = 1, N,

s̃ht,i − ãh,i ˆ̃shx,i = 0, i = 0, N−1,
(4.6)

r̃0
h,i = r̃0,i = ũ0,i + c1

(

(ṽ0,i)
−ε − 1

)

, i = 0, N,

s̃0
h,i = s̃0,i = −ũ0,i + c1

(

(ṽ0,i)
−ε − 1

)

, i = 0, N,
(4.7)

ˆ̃rh,0 = µ̃1
n+1, ˆ̃sh,N = µ̃2

n+1, n ∈ N0.(4.8)

Let the following inequalities analogous to (2.9), (2.11), (2.13) for the perturbed
data (4.7) be satisfied:

0 6 r̃0(x) 6 c2, 0 6 s̃0(x) 6 c2, 0 6 x 6 l,(4.9)

0 6 µ̃1(t) 6 c2, 0 6 µ̃2(t) 6 c2, t > 0,(4.10)

r̃0(0) = µ̃1(0), s̃0(l) = µ̃2(0).(4.11)

Subtracting from difference equations (4.6)–(4.8) the corresponding equations
(4.1)–(4.3), we come to the problem for the perturbations δri = r̃h,i − rh,i, δsi =
s̃h,i − sh,i:

δrt,i + ãh,iδr̂x̄,i + δair̂x̄,i = 0, i = 1, N,

δst,i − ãh,iδŝx,i − δaiŝx,i = 0, i = 0, N−1,
(4.12)

δr0
i = δr0,i = δu0,i + c1δ

(

v−ε
0,i

)

, i = 0, N,

δs0
i = δs0,i = −δu0,i + c1δ

(

v−ε
0,i

)

, i = 0, N,
(4.13)

δr̂0 = δµ1(t̂), δŝN = δµ2(t̂), n ∈ N0,(4.14)
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where δai = ãh,i − ah,i. Hereinafter we will use the following grid norms:

‖yh‖C+

h

= max
16i6N

|yh,i|, ‖yh‖C−

h

= max
06i6N−1

|yh,i|,

‖yh‖C̄h
= max

06i6N
|yh,i|, ‖yn

h‖Cτ
= max

06j6n
|yj

h|.

From (4.12)–(4.13) it follows that we need to analyze stability before studying
the behavior of all difference derivatives in the nonlinear terms of the difference
equations [9, 12, 13]. Let us prove

Theorem 4.1. 1. Let conditions (2.9), (2.11), (2.13) be met. Then the follow-

ing estimates:

‖rn‖C̄h
6 ‖r0‖C̄h

6 c2, ‖sn‖C̄h
6 ‖s0‖C̄h

6 c2, ‖an‖C̄h
6 amax = c4 (2c2 + 2c1)1+ 1

ε ,

bn
i > 0, an

i > amin = c4(2c1)1+ 1
ε , i = 0, N, n ∈ N0,

are valid.

2. Let conditions (2.9), (4.9), (4.11) be met. Then the following estimates:

‖r̃n‖C̄h
6 ‖r̃0‖C̄h

6 c2, ‖s̃n‖C̄h
6 ‖s̃0‖C̄h

6 c2, ‖ãn‖C̄h
6 amax = c4(2c2 + 2c1)1+ 1

ε ,

b̃n
i > 0, ãn

i > amin = c4(2c1)1+ 1
ε , i = 0, N, n ∈ N0,

are valid.

Proof. We will prove only the first part of the theorem, because the second
one can be proved similarly. Let us rewrite the difference scheme (4.1)–(4.3) in the
canonical form:

Cn
i r

n+1
h,i = An

i r
n+1
h,i−1 + Fn

r,i, i = 1, N, rn+1
h,0 = µn+1

1 ,

Cn
i s

n+1
h,i = An

i s
n+1
h,i+1 + Fn

s,i, i = 0, N−1, sn+1
h,N = µn+1

2 ,

An
i =

an
i τ

h
, Cn

i = 1 +An
i , Fn

r,i = rn
h,i, Fn

s,i = sn
h,i.

We will use the method of mathematical induction. From conditions (2.9), (2.13)
we get ‖b0‖C̄h

6 2c2, ‖a0‖C̄h
6 amax, b0

i > 0, a0
i > amin, i = 0, N . On the first

layer the coefficients satisfy the conditions: A0
i > 0, i = 0, N. By lemmas 4.1 and

4.2 we obtain that

‖r1‖C̄h
6 max

{

|µ1
1|, ‖r0‖C+

h

}

6 max
{

|µ1
1|, ‖r0‖C̄h

}

6 c2,

‖s1‖C̄h
6 max

{

|µ1
2|, ‖s0‖C−

h

}

6 max
{

|µ1
2|, ‖s0‖C̄h

}

6 c2.

Therefore, ‖b1‖C̄h
6 2c2 è ‖a1‖C̄h

6 amax. Using lemmas 4.3 and 4.4 we prove

that r1
i > 0, i = 1, N , r1

0 = µ1
1 > 0, s1

i > 0, i = 0, N−1, s1
N = µ1

2 > 0. So

b1
i > 0, a1

i > amin, i = 0, N . The proof can be completed by using the method of
mathematical induction. �

Remark 4.1. In the previous theorem existence and boundness of the solution
of problem (4.1)–(4.3) are proved.
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Let us rewrite the equations (4.1) in the following form:

rh t,i + ah,irh tx̄,i = −ah,irh x̄,i =
ah,i

ǎh,i
rh t̄,i,

sh t,i − ah,ish tx,i = ah,ish x,i =
ah,i

ǎh,i
sh t̄,i.

Abbreviating g = rh t, f = sh t, we obtain the difference problem:

Cn+1
i gn+1

i = An+1
i gn+1

i−1 + Fn+1
g,i , i = 1, N, gn+1

0 = µn+1
1 t , n ∈ N0,

Cn+1
i fn+1

i = An+1
i fn+1

i+1 + Fn+1
f,i , i = 0, N−1, fn+1

N = µn+1
2 t , n ∈ N0,

An+1
i =

an+1
i τ

h
, Fn+1

g,i =
an+1

i

an
i

gn
i , F

n+1
f,i =

an+1
i

an
i

fn
i , C

n+1
i = 1 +An+1

i ,

(4.15)

with the initial conditions:

C0
i g

0
i = A0

i g
0
i−1 + F 0

g,i, i = 1, N, g0
0 = µ0

1 t,

C0
i f

0
i = A0

i f
0
i+1 + F 0

f,i, i = 0, N−1, f0
N = µ0

2 t,

A0
i =

a0
i τ

h
, F 0

g,i = −a0
i r0x̄,i, F

0
f,i = a0

i s0x,i, C
0
i = 1 +A0

i .

(4.16)

Let us take into consideration the norm Qn = c5
(

‖gn‖C̄h
+ ‖fn‖C̄h

)

, where

c5 = c4 (2c2 + 2c1)
1
ε

(

1 + 1
ε

)

. Later we will use

Lemma 4.5. Let conditions (2.9), (2.11), (2.13) be met. Then

‖δan‖C̄h
6 c5

(

‖δsn‖C̄h
+ ‖δrn‖C̄h

)

, n ∈ N0.

Proof. Using the mean value theorem and Theorem 4.1, we obtain

ãn
i − an

i = c4

(

1+
1

ε

)

(θ(s̃i+r̃i)+(1 − θ)(si+ri)+2c1)
1
ε (δsi+δri), θ ∈ (0, 1). �

Corollary 4.1. Let conditions (2.9), (2.11), (2.13) be met. Then ‖an
t ‖C̄h

6 Qn, n ∈ N0.

Theorem 4.2. Let conditions (2.9)–(2.14) be met. Then for the difference

derivatives the estimate

c5‖gn+1‖C̄h
6 c6amin, c5‖fn+1‖C̄h

6 c6amin, c6 =
c3c5amax

amin
, n ∈ N0,

is valid.

Proof. Using the positiveness of coefficients (4.15)–(4.16), conditions (2.9)–
(2.14) and lemmas 4.3 and 4.4 we get that gn+1

i 6 0, fn+1
i 6 0, i = 0, N , n ∈ N0.

Therefore
∥

∥an+1/an
∥

∥

C̄h

6 1, n ∈ N0. Then, taking into account that coefficients

(4.15)–(4.16) satisfy the conditions of lemmas 4.1 and 4.2, we obtain:

‖gn+1‖C̄h
6 max

{

|µn+1
1 t |,

∥

∥

∥

an+1

an

∥

∥

∥

C+

h

· ‖gn‖C+

h

}

6 max
{

c3amax, ‖g
n‖C̄h

}

6 . . . 6 max
{

c3amax, ‖g
1‖C̄h

}

6 max
{

c3amax, ‖a
0‖C̄h

‖r0x̄‖C+

h

}

6 c3amax.

Similarly: ‖fn+1‖C̄h
6 ‖a0‖C̄h

‖s0x‖C−

h

6 c3amax. �
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Let us rewrite scheme (4.12)–(4.14) in the canonical form:

Cn
i δr

n+1
h,i = An

i δr
n+1
h,i−1 + Fn

r,i, i = 1, N, δrn+1
h,0 = δµ1(t̂),

Cn
i δs

n+1
h,i = An

i δs
n+1
h,i+1 + Fn

s,i, i = 0, N−1, δsn+1
h,N = δµ2(t̂),

An
i =

ãn
i τ

h
, Cn

i = 1 +An
i , F

n
r,i = δrn

h,i + τδan
i

gn
i

an
i

, Fn
s,i = δsn

h,i + τδan
i

fn
i

an
i

.

(4.17)

Let us prove

Theorem 4.3. Let conditions (2.9)–(2.14) and (4.9)–(4.11) be met. Then dif-

ference scheme (4.1)–(4.3) is stable with respect to the initial and boundary data

for τ 6 c−1
6 and for its solution the estimate

max
{

‖δsn+1‖C̄h
, ‖δrn+1‖C̄h

}

6 max
{

‖δµn+1
1 ‖Cτ

, ‖δµn+1
2 ‖Cτ

, ‖δs0‖C̄h
, ‖δr0‖C̄h

}

is valid.

Proof. Taking into account the above estimates for the derivatives, the proof
of Lemma 4.5 and the theorem conditions, we obtain for θ ∈ (0, 1):

1 + τ
gn

i

an
i

c4

(

1 +
1

ε

)

(

θ(s̃n
i + r̃n

i ) + (1 − θ)(sn
i + rn

i ) + 2c1
)

1
ε > 1 − c6τ > 0.

Similarly

1 + τ
fn

i

an
i

c4

(

1 +
1

ε

)

(θ(s̃n
i + r̃n

i ) + (1 − θ)(sn
i + rn

i ) + 2c1)
1
ε > 1 − c6τ > 0.

Let α = c6τ, β = 1 − c6τ . We will use the method of mathematical induction. On
the zero layer we get the following estimates for the perturbations δr, δs:

max
{

‖δs0‖C̄h
, ‖δr0‖C̄h

}

6 max
{

‖δµn+1
1 ‖Cτ

, ‖δµn+1
2 ‖Cτ

, ‖δs0‖C̄h
, ‖δr0‖C̄h

}

.

Therefore on the first layer we obtain:

max
{

‖δs1‖C̄h
, ‖δr1‖C̄h

}

6 max
{

‖δµn+1
1 ‖Cτ

, ‖δµn+1
2 ‖Cτ

, β‖δr0‖C̄h
+ α‖δs0‖C̄h

, β‖δs0‖C̄h
+ α‖δr0‖C̄h

}

.

Using the inequalities

β‖δr0‖C̄h
+ α‖δs0‖C̄h

6 βmax
{

‖δr0‖C̄h
, ‖δs0‖C̄h

}

+ αmax
{

‖δr0‖C̄h
, ‖δs0‖C̄h

}

= (α+ β) max
{

‖δr0‖C̄h
, ‖δs0‖C̄h

}

= max
{

‖δr0‖C̄h
, ‖δs0‖C̄h

}

,

β‖δs0‖C̄h
+ α‖δr0‖C̄h

6 max
{

‖δr0‖C̄h
, ‖δs0‖C̄h

}

(4.18)

it is easy to prove that

max
{

‖δs1‖C̄h
, ‖δr1‖C̄h

}

6 max
{

‖δµn+1
1 ‖Cτ

, ‖δµn+1
2 ‖Cτ

, ‖δr0‖C̄h
, ‖δs0‖C̄h

}

.

Finally by induction we show that

max
{

‖δsn+1‖C̄h
, ‖δrn+1‖C̄h

}

6 max
{

‖δµn+1
1 ‖Cτ

, ‖δµn+1
2 ‖Cτ

, ‖δs0‖C̄h
, ‖δr0‖C̄h

}

.
�
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Remark 4.2. Much in the same manner, the uniqueness of the solution of
difference scheme (4.1)–(4.3) is proved. The proof is carried out by contradiction.
We assume that there exist two solutions (r1, s1), (r2, s2) that satisfy the difference
scheme with the same initial and boundary conditions. Then for the differences
R = r2 −r1, S = s2 −s1 we get the following difference equations with homogeneous
initial and boundary conditions:

Rt,i + a2 iR̂x̄,i +Air̂x̄,i = 0, i = 1, N,

St,i − a2 iŜx,i −Aiŝx,i = 0, i = 0, N−1,

R0
i = 0, S0

i = 0, i = 0, N,

R̂0 = 0, ŜN = 0, n = 0, N0−1,

where Ai = a2 i − a1 i. Using the introduced technique, we get the estimate
max

{

‖Rn+1‖C̄h
, ‖Sn+1‖C̄h

}

6 0. Therefore, the difference scheme has a unique
solution.

In the theorem above the stability in the case when a shock wave is not gen-
erated is proved. To investigate the stability in the case when a shock wave arises
we must prove the following statement.

Theorem 4.4. Let conditions (2.11), (2.13), (4.9) and

(4.19)
µ1(t) = µ1, µ2(t) = µ2, µ1, µ2 = const,

|s′
0(x)| 6 c3, |r′

0(x)| 6 c3, 0 6 x 6 l,

be met. Then difference scheme (4.1)–(4.3) is stable with respect to the initial and

boundary data for τ 6 c−1
7 and for the solution the following estimate

max
{

‖δsn+1‖C̄h
, ‖δrn+1‖C̄h

}

6 max
{

‖δµn+1
1 ‖Cτ

, ‖δµn+1
2 ‖Cτ

, ‖δs0‖C̄h
, ‖δr0‖C̄h

}

is valid for tn+1 6 T < t0, t0 = amin/c5amax
(

‖r0
x̄‖C+

h

+ ‖s0
x‖C−

h

)

.

Proof. In this case the condition
∥

∥an+1/an
∥

∥

C̄h

6 1, n ∈ N0 is not met. Let

us estimate this ratio for n = 0 assuming that 1 − tn+1Q
0/amin > 0. Using Corol-

lary 4.1 we obtain 1 − τ‖a0
t ‖C̄h

/amin > 1 − tn+1Q
0/amin > 0. Therefore

∥

∥

∥

∥

a1

a0

∥

∥

∥

∥

C̄h

=
1

‖1 − τa0
t /a

0‖C̄h

6
1

1 − τ‖a0
t ‖C̄h

/amin
6

1

1 − τQ0/amin
.

Let us note that in the case of constant boundary values their difference derivatives
with respect to time variable are equal to zero. So using lemmas 4.1 and 4.2 we get

that Q1 6
Q0

1−τQ0/amin
. Then

1 −
τ‖a1

t ‖C̄h

amin
> 1 −

τQ1

amin
> 1 −

τQ0/amin

1 − τQ0/amin
=

1 − t2Q
0/amin

1 − t1Q0/amin
> 0.

By mathematical induction it is possible to show that Qn+1 6
Qn

1−τQn/amin
, n ∈ N0

and using the discrete analogue of the Bihary inequality [8] we obtain the estimate

Qn+1 6
Q0

1 − tn+1Q0/amin
.
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Since for (4.16) the conditions of lemmas 4.1 and 4.2 are fulfilled, then we get
Q0 6 c5amax

(

‖r0
x̄‖C+

h

+ ‖s0
x‖C−

h

)

. Therefore

Qn+16
c5amax

(

‖r0
x̄‖C+

h

+ ‖s0
x‖C−

h

)

1−tn+1c5amaxa
−1
min

(

‖r0
x̄‖C+

h

+‖s0
x‖C−

h

) 6 c7amin, c7 =
2c5amaxa

−1
minc3

1−2Tc5amaxa
−1
minc3

.

Therefore, the derivatives are bounded in the norm Q for the time instant T < t0,
t0 = amin/c5amax

(

‖r0
x̄‖C+

h

+ ‖s0
x‖C−

h

)

. Thus

c5‖gn+1‖C̄h
6 c7amin, c5‖fn+1‖C̄h

6 c7amin, c7 =
c3c5amax

amin
, n ∈ N0.

The end of proof is similar to Theorem 4.3, where estimates (4.18) with α = c7τ ,
β = 1 − c7τ . �

5. Investigation of monotonicity

The concept of monotonicity of difference schemes is important in the theory
of numerical methods as it means absence of nonphysical oscillations in numerical
calculations. Monotonicity for the linear difference scheme follows from the require-
ment of its coefficients positivity [3] or fulfillment of a grid maximum principle [15].
The most natural definition is given in [2]. Let us consider an abstract problem

(5.1) Lhy = ϕ,

where Lh–the nonlinear difference operator defining the structure of the difference
scheme, y–the difference solution, ϕ–problem input data. Perturbing the input
data ϕ in (5.1), we get the equation for a perturbed solution

(5.2) Lhỹ = ϕ̃.

Subtracting (5.1) from (5.2), we obtain the following problem for δy = ỹ − y:

(5.3) L̃h(δy, y, ỹ) = δϕ,

where δϕ = ϕ̃− ϕ.

Definition 5.1. Difference scheme (5.1) is called monotonic, if from the con-
dition δϕ > 0 (δϕ 6 0) follows the inequality δy > 0 (δy 6 0).

Therefore the problem for investigation monotonicity coincides with the prob-
lem for investigation stability. Thus, investigation of monotonicity in a nonlinear
case is reduced to the requirement of positiveness of coefficients or to the fulfillment
of a grid maximum principle, but already for the problem for perturbations (5.3),
which does not coincide with problem (5.1) or (5.2). In this case the requirement
of positivity of coefficients leads to requirement of the monotonicity of difference
derivatives.

Let us consider problem (4.12)–(4.14). The first theorem is proved in the case
of global stability.
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Theorem 5.1. Let conditions (2.9)–(2.14) and (4.9)–(4.11) be met and δr0
i > 0,

δs0
i > 0, i = 0, N , δµj

1 > 0, δµj
2 > 0, j = 0, n+1 (δs0

i 6 0, δr0
i 6 0, i = 0, N ,

δµj
1 > 0, δµj

2 > 0, j = 0, n+1). Then for τ 6 c−1
6 the following estimates are true:

δrn+1
i > 0, δsn+1

i > 0, i = 0, N , n ∈ N0 (δsn+1
i 6 0, δrn+1

i 6 0, i = 0, N , n ∈ N0),
i.e., difference scheme (4.1)–(4.3) is monotonic.

Proof. From (2.10) and (2.14) we obtain

r0
x̄,i =

1

h

xi
∫

xi−1

r′
0(x)dx > 0, i = 1, N, s0

x,i =
1

h

xi+1
∫

xi

s′
0(x)dx 6 0, i = 0, N−1,

gn
0 =

1

τ

tn+1
∫

tn

µ′
1(t)dt 6 0, fn

N =
1

τ

tn+1
∫

tn

µ′
2(t)dt 6 0, n ∈ N0.

Let us consider the first case. Let δr0
i > 0, δs0

i > 0, i = 0, N . We have already
proved in theorem 4.3 that all the coefficients of (4.17) are nonnegative. Since
the boundary values perturbation is also nonnegative in this case we obtain the
necessary result. The second case is considered similarly. �

The next theorem is proved for the case when a shock wave arises.

Theorem 5.2. Let conditions (2.11), (2.13), (4.9) and (4.19) be met. Assume

δr0
i > 0, δs0

i > 0, i = 0, N , δµj
1 > 0, δµj

2 > 0, j = 0, n+1 (δs0
i 6 0, δr0

i 6 0,

i = 0, N , δµj
1 > 0, δµj

2 > 0, j = 0, n+1). Then for τ 6 c−1
7 and for tn+1 6 T < t0,

t0 = amin/c5amax
(

‖r0
x̄‖C+

h

+ ‖s0
x‖C−

h

)

the following estimates are true: δrn+1
i > 0,

δsn+1
i > 0, i = 0, N (δsn+1

i 6 0, δrn+1
i 6 0, i = 0, N), i.e., difference scheme

(4.1)–(4.3) is monotonic unless a smooth solution exists.

Proof. The proof is similar to the previous one using the proof of Theorem
4.4. �

6. Investigation of convergence

Let us note that since a priori estimates of the stability have been obtained,
the investigation of the convergence of the difference solution to the differential one
becomes much simpler since the problem for the error of the method can be written
in a linear form.

Theorem 6.1. Suppose that there exists a solution r(x, t), s(x, t) ∈ C2,2(Q)
of problem (2.6)–(2.8) and r0(x) > 0, s0(x) > 0, 0 6 x 6 l. Then the solution

of difference scheme (4.1)–(4.3) converges to the solution of differential problem

(4.1)–(4.3) and the following a priori estimate holds

‖rn+1
h − rn+1‖C̄h

+ ‖sn+1
h − sn+1‖C̄h

6 c9tn+1(h+ τ), n ∈ N0.

Proof. Let us define ∆r = rh − r, ∆s = sh − s, ∆a = ah − a. We have

∆rt,i + ah∆r̂x̄,i + ∆ar̂x̄,i = ψ1,i, i = 1, N,

∆st,i − ah∆ŝx,i − ∆aŝx,i = ψ2,i, i = 0, N−1,
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∆r(x, 0) = 0, ∆s(x, 0) = 0, x ∈ ω̄h,

∆r(0, t) = 0, ∆s(l, t) = 0, x ∈ ωτ ,

ψ1 =
(∂r

∂t
− rt

)

+ a
( ∂r

∂x
− r̂x̄

)

,

ψ2 =
(∂s

∂t
− st

)

− a
( ∂s

∂x
− ŝx

)

.

Therefore max
t∈ωτ

‖ψ1(t)‖C̄h
+max

t∈ωτ

‖ψ2(t)‖C̄h
6 c10 ·(h+τ). Let us write this difference

scheme in a canonical form:

(6.1)

Cn
i ∆rn+1

h,i = An
i ∆rn+1

h,i−1 + Fn
r,i, i = 1, N, ∆rn+1

h,0 = 0,

Cn
i ∆sn+1

h,i = An
i ∆sn+1

h,i+1 + Fn
s,i, i = 0, N−1, ∆sn+1

h,N = 0,

An
i =

an
h,iτ

h
, Cn

i = 1 +An
i ,

Fn
r,i = ∆rn

h,i + τ∆an
i r̂x̄,i + τψ1,i, Fn

s,i = ∆sn
h,i + τ∆an

i ŝx,i + τψ2,i.

For the coefficients of difference scheme (6.1) the conditions of lemmas 4.1 and 4.2
are fulfilled. Therefore

‖∆rn+1‖C̄h
6 ‖∆rn‖C̄h

+ τc5c11(‖∆rn‖C̄h
+ ‖∆sn‖C̄h

) + τ‖ψn
1 ‖C̄h

,

‖∆sn+1‖C̄h
6 ‖∆sn‖C̄h

+ τc5c12(‖∆rn‖C̄h
+ ‖∆sn‖C̄h

) + τ‖ψn
2 ‖C̄h

,

where c11 = max
(x,t)∈Q

T

∣

∣

∂r
∂x

∣

∣, c12 = max
(x,t)∈Q

T

∣

∣

∂s
∂x

∣

∣. Summing these estimates, we obtain:

‖∆rn+1‖C̄h
+ ‖∆sn+1‖C̄h

6 (1 + τc5(c11 + c12))
(

‖∆sn‖C̄h
+ ‖∆rn‖C̄h

)

+ τ
(

‖ψn
1 ‖C̄h

+ ‖ψn
2 ‖C̄h

)

6 ec5(c11+c12)τ
(

‖∆sn‖C̄h
+ ‖∆rn‖C̄h

)

+ τ
(

‖ψn
1 ‖C̄h

+ ‖ψn
2 ‖C̄h

)

6

n
∑

k=0

τetn−kc5(c11+c12) (

‖ψk
1 ‖C̄h

+ ‖ψk
2 ‖C̄h

)

6 c9tn+1(h+ τ). �

7. Numerical experiment

Let us consider differential problem (2.1) with initial and boundary conditions

v0(x) =
((

1 − cos
(

2πx
l

))

c−1
1 + 1

)− 1
ε , u0(x) ≡ 0, 0 6 x 6 l,

µ1(t) = µ2(t) ≡ 0, t > 0,
(7.1)

v0(x) ≡ 1, u0(x) ≡ 0, 0 6 x 6 l,

µ1(t) = µ2(t) = 1 − cos t, t > 0.
(7.2)

In all experiments we use the following values of the parameters: c1 = 1, ε = 1
3 ,

l = 1, N = 1000, τ = h. The specified value of parameter ε corresponds to the case
of monoatomic gas (γ = 5

3 ) [14].
Let us note that all input data satisfy conjugation conditions (2.11)–(2.12).

Input data (7.1) satisfy condition (2.4) on the initial data and conditions (2.9) and
(2.10) on the boundary data, but do not satisfy the condition (2.5) on derivatives
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of the initial data, as in this case −u′
0(x) − c1εv0(x)−(ε+1)v′

0(x) = 2π
l sin

(

2πx
l

)

> 0,

x ∈ (0, l
2 ).

In the case of input data (7.2) both conditions (2.4)–(2.5) on the initial data
and a condition (2.9) on the boundary data are satisfied, but condition (2.10) on
the derivatives of the boundary data is not satisfied, as µ′

1(t) = µ′
2(t) = sin t > 0

at 0 < t < π.
Thus in all the cases shock waves arise which is shown in Fig. 1–2.
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Figure 1. Profiles of velocity and specific volume at the initial
moment t = 0 (a); the solution of difference scheme (4.1)–(4.3)
with input data (7.1) at time t = 0.1 (b).
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Figure 2. Profiles of velocity and specific volume at the initial
moment t = 0 (a); the solution of difference scheme (4.1)–(4.3)
with input data (7.2) at time t = 1.25 (b).

Thus, necessity of conditions (2.10) and (2.14) for a stability of the difference
scheme (4.1)–(4.3) is experimentally confirmed.

8. Conclusions

We obtained necessary conditions for the absence of shock waves for the IBVP
for the system of equations for isentropic gas in Riemann invariants in Lagrangian
coordinates and proved a priori estimates of stability for monotone difference schemes
approximating this problem. In investigating the stability, we used restrictions only
for the input data (initial and boundary conditions). On the basis of the investi-
gations performed we can draw the following conclusions.
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1. To get proper a priori estimates expressing stability of the difference scheme
or its continuous dependence on the input data, first we need to prove the existence
of a solution of the difference problem in strong norms. In our case we have proved
necessary conditions, formulated the solvability result and have shown that this
conditions are sufficient for the global stability of the difference scheme.

2. The uniqueness of the solution of the difference scheme follows from the
stability.

3. Once a priori estimates of the stability have been obtained, the investigation
of the convergence of the difference solution to the differential one becomes much
simpler since the problem for the error of the method can be written in the linear
form. To use the Lax theorem (from the approximation and stability convergence
follows), it is necessary to prove the stability with respect to the right-hand side.
Here we restricted ourselves to considering only homogeneous equations of the gas
dynamics.

4. The system of equations for isentropic gas in Lagrangian coordinates is
hyperbolic without vacuum only. In our case we proved for both differential and
difference problems the absence of vacuum at any moment of time at any point of
space.

5. We obtained conditions that guarantee the absence of shock waves. As was
shown in the numerical experiment, the emergence of a shock wave is connected
both with behavior of the initial and boundary conditions.

6. It is essential that the constructed difference scheme be monotone not only
with respect to the approximated solution, but also to its derivatives. In that case,
the maximum principle can be used to prove nonlinear stability of the difference
scheme.
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