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Abstract. We solve stochastic differential equations involving the Malliavin
derivative and the fractional Malliavin derivative by means of a chaos expan-
sion on a general white noise space (Gaussian, Poissonian, fractional Gaussian
and fractional Poissonian white noise space). There exist unitary mappings
between the Gaussian and Poissonian white noise spaces, which can be applied
in solving SDEs.

1. Introduction

This paper represents the conclusion of the results stated in Part I [11], where
we introduced four types of white noise spaces: Gaussian, Poissonian, fractional
Gaussian and fractional Poissonian depending on a Hurst parameter 𝐻 ∈ (0, 1).
Generalized stochastic processes, such as the Brownian motion, white noise or
Poissonian noise, are given in the form of their chaos expansion in terms of the
Fourier–Hermite and Fourier–Charlier polynomials. In [11] we showed that there
exist unitary mappings between the Gaussian and Poissonian spaces, as well as
between the regular spaces (𝐻 = 1

2 ) and their fractional counterparts (𝐻 ∈ (0, 1)).
In this paper we focus on some examples of stochastic differential equations

involving the Malliavin derivative, the Ornstein–Uhlenbeck operator and their frac-
tional versions. All equations we solve can be interpreted on all four types of white
noise spaces. We provide a general method of solving, using the Wiener–Itô chaos
decomposition form, also known as the propagator method (see [12, 13, 14, 21]).
It is used to set all coefficients in the chaos expansion on the left-hand side of
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86 LEVAJKOVIĆ AND SELEŠI

the equation equal to the corresponding coefficients on the right-hand side of the
equation, resulting in an infinite system of deterministic equations. Solving these
equations and summing up the solutions into a series expansion, one obtains the
solution of the initial equation, provided the series converges in some 𝑞-weighted
space.

The paper is organized in the following manner: In Section 2 we review the
notation and some results on chaos expansions and Malliavin derivatives obtained
in Part I of the paper. Section 3 is devoted to solving some classes of stochastic
differential equations which are driven by the Malliavin derivative and the Ornstein–
Uhlenbeck operator.

2. Overview

In this section we provide the most important notation needed for further
understanding. For details we refer to [11] and the references cited therein.

Let ℎ𝑛, 𝜉𝑛+1, 𝑛 ∈ N0 denote the family of Hermite polynomials and Hermite
functions respectively. Consider the Schwartz spaces of tempered distributions
𝑆′(R) =

⋃︀
𝑙∈N0

𝑆−𝑙(R), where

𝑆−𝑙(R) =
{︂

𝑓 =
∞∑︁

𝑘=1
𝑏𝑘 𝜉𝑘 : ‖𝑓‖2

−𝑙 =
∞∑︁

𝑘=1
𝑏2

𝑘(2𝑘)−𝑙 < ∞
}︂

, 𝑙 ∈ N0,

and the spaces of distributions with exponential growth introduced in [20] exp 𝑆′(R)
=

⋃︀
𝑙∈N0

exp 𝑆−𝑙(R), where

exp 𝑆−𝑙(R) =
{︂

𝑓 =
∞∑︁

𝑘=1
𝑏𝑘 𝜉𝑘 : ‖𝑓‖2

exp,−𝑙 =
∞∑︁

𝑘=1
𝑏2

𝑘𝑒−2𝑘𝑙 < ∞
}︂

, 𝑙 ∈ N0.

Let ℐ = (NN
0 )𝑐 denote the set of sequences of non-negative integers which

have finitely many nonzero components 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑚, 0, 0, . . .), 𝛼𝑖 ∈ N0,
𝑖 = 1, 2, . . . , 𝑚, 𝑚 ∈ N. The 𝑘-th unit vector 𝜀(𝑘) = (0, · · · , 0, 1, 0, · · · ), 𝑘 ∈ N
is the sequence of zeros with the number 1 as the 𝑘-th component. The length
of a multi-index 𝛼 ∈ ℐ is defined as |𝛼| =

∑︀∞
𝑘=1 𝛼𝑘 and 𝛼! =

∏︀∞
𝑘=1 𝛼𝑘!. Let

(2N)𝛼 =
∏︀∞

𝑘=1(2𝑘)𝛼𝑘 .
The basic probability space is (Ω, ℱ , 𝑃 ) (𝑆′(R), ℬ, 𝑃 ), where 𝑆′(R) denotes the

space of tempered distributions, ℬ the Borel sigma-algebra generated by the weak
topology on 𝑆′(R) and 𝑃 denotes the unique probability measure on (𝑆′(R), ℬ)
corresponding to a given characteristic function.

2.1. Chaos expansions on white noise spaces. Suppose that 𝐿2(𝑃 ) =
𝐿2(𝑆′(R), ℬ, 𝑃 ) is the Hilbert space of square integrable functions on 𝑆′(R) with
respect to the measure 𝑃 and let 𝐾𝛼, 𝛼 ∈ ℐ, denote the orthogonal basis of 𝐿2(𝑃 ).

Theorem 2.1 (Wiener–Itô chaos expansion). Every element 𝐹 ∈ 𝐿2(𝑃 ) has a
unique representation of the form 𝐹 (𝜔) =

∑︀
𝛼∈ℐ 𝑐𝛼𝐾𝛼(𝜔), 𝑐𝛼 ∈ R, such that

‖𝐹‖2
𝐿2(𝑃 ) =

∑︁
𝛼∈ℐ

𝑐2
𝛼‖𝐾𝛼‖2

𝐿2(𝑃 ) < ∞.
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In [11] we considered two important cases of the measure 𝑃 : the Gaussian
measure 𝜇 and the Poissonian measure 𝜈. Their fractional versions, for a fixed
Hurst parameter 𝐻 ∈ (0, 1), are obtained using the mapping 𝑀 = 𝑀 (𝐻) : 𝒮(R) →
𝐿2(R) ∩ 𝐶∞(R) defined by ̂︂𝑀𝑓(𝑦) = |𝑦| 1

2 −𝐻 ̂︀𝑓(𝑦), 𝑦 ∈ R, 𝑓 ∈ 𝑆(R), which has the
property 𝑀−1 = 𝑀 (1−𝐻). This map extends by linearity and continuity to 𝒮 ′(R),
and thus by setting 𝐿2(𝑃𝐻) = 𝐿2(𝑃 ∘ 𝑀−1) = {𝐺 : Ω → R ; 𝐺 ∘ 𝑀 ∈ 𝐿2(𝑃 )}
one obtains the fractional version of the square integrable random variables on the
white noise space 𝐿2(𝑃 ), i.e., 𝐿2(𝜇𝐻) in the fractional Gaussian case and 𝐿2(𝜈𝐻)
in the fractional Poissonian case.

The orthogonal basis of the four white noise spaces 𝐿2(𝑃 ) is thus obtained in
the following manner:

Table 1.

white noise classical fractional
space Gaussian Poissonian Gaussian Poissonian

measure 𝑃 𝜇 𝜈 𝜇𝐻 𝜈𝐻

basis 𝐾𝛼 𝐻𝛼 𝐶𝛼
̃︀ℋ𝛼

̃︀𝒞𝛼

basis e𝑘 𝜉𝑘 𝜉𝑘 𝑒𝑘 𝑒𝑘

where the family of Fourier–Hermite polynomials is defined by

𝐻𝛼(𝜔) =
∞∏︁

𝑘=1
ℎ𝛼𝑘

(⟨𝜔, 𝜉𝑘⟩), 𝛼 ∈ ℐ,

and the family of Fourier–Charlier polynomials is defined by
𝐶𝛼(𝜔) = 𝐶|𝛼|(𝜔; 𝜉1, . . . , 𝜉1⏟  ⏞  

𝛼1

, . . . , 𝜉𝑚, . . . , 𝜉𝑚⏟  ⏞  
𝛼𝑚

), 𝛼 = (𝛼1, . . . , 𝛼𝑚, 0, 0, . . . ) ∈ ℐ,

where

𝐶𝑘(𝜔; 𝜙1, . . . , 𝜙𝑘)

= 𝜕𝑘

𝜕𝑢1 . . . 𝜕𝑢𝑘
exp

[︂⟨
𝜔, log

(︂
1 +

𝑘∑︁
𝑗=1

𝑢𝑗𝜙𝑗

)︂
−

𝑘∑︁
𝑗=1

𝑢𝑗

∫︁
R

𝜙𝑗(𝑦) 𝑑𝑦

⟩]︂⃒⃒⃒⃒
𝑢1=···=𝑢𝑘=0

,

for 𝑘 ∈ N and 𝜙𝑗 ∈ 𝑆(R).
In the fractional spaces the bases are given by ̃︀ℋ𝛼(𝜔) =

∏︀∞
𝑘=1 ℎ𝛼𝑘

(⟨𝜔, 𝑒𝑘⟩),
𝛼 ∈ ℐ and̃︀𝒞𝛼(𝜔) = 𝐶|𝛼|(𝜔; 𝑒1, . . . , 𝑒1⏟  ⏞  

𝛼1

, . . . , 𝑒𝑚, . . . , 𝑒𝑚⏟  ⏞  
𝛼𝑚

), 𝛼 = (𝛼1, . . . , 𝛼𝑚, 0, 0, . . . ) ∈ ℐ,

where 𝑒𝑖 = 𝑀−1𝜉𝑖, 𝑖 ∈ N.
The spaces of generalized random variables are introduced by imposing weights

on the convergence condition in the Wiener–Itô chaos expansion and thus weakening
the 𝐿2(𝑃 )-norm. For a weight sequence 𝑞𝛼 > 1, 𝛼 ∈ ℐ, let (𝑄)𝑃

−1 =
⋃︀

𝑝∈N0
(𝑄)𝑃

−1,−𝑝

be the inductive limit of the spaces
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(𝑄)𝑃
−1,−𝑝 =

{︂
𝐹 =

∑︁
𝛼∈ℐ

𝑏𝛼𝐾𝛼 : ‖𝐹‖2
(𝑄)𝑃

−1,−𝑝
=

∑︁
𝛼∈ℐ

𝑏2
𝛼 𝑞−𝑝

𝛼 < ∞
}︂

, 𝑝 ∈ N0.

Two important special cases are given by weights of the form: 𝑞𝛼 = (2N)𝛼 and
𝑞𝛼 = 𝑒(2N)𝛼 . In these cases we denote the 𝑞-weighted spaces by (𝑆)𝑃

−1 and exp(𝑆)𝑃
−1

respectively.
We consider generalized stochastic processes of type (I) as linear and continuous

mappings from a topological vector space 𝑋 into the space of 𝑞-weighted generalized
functions (𝑄)𝑃

−1 i.e., elements of ℒ(𝑋, (𝑄)𝑃
−1). If at least one of the spaces 𝑋 or

(𝑄)𝑃
−1 is nuclear, then ℒ(𝑋, (𝑄)𝑃

−1) ∼= 𝑋 ′ ⊗ (𝑄)𝑃
−1.

Theorem 2.2. Let 𝑋 =
⋂︀∞

𝑘=0 𝑋𝑘 be a nuclear space endowed with a family
of seminorms {‖ · ‖𝑘; 𝑘 ∈ N0} and let 𝑋 ′ =

⋃︀∞
𝑘=0 𝑋−𝑘 be its topological dual.

Generalized stochastic processes as elements of 𝑋 ′ ⊗ (𝑄)𝑃
−1 have a chaos expansion

of the form

(2.1) 𝑢 =
∑︁
𝛼∈ℐ

𝑓𝛼 ⊗ 𝐾𝛼, 𝑓𝛼 ∈ 𝑋−𝑘, 𝛼 ∈ ℐ,

where 𝑘 ∈ N0 does not depend on 𝛼 ∈ ℐ, and there exists 𝑝 ∈ N0 such that

(2.2) ‖𝑢‖2
𝑋′⊗(𝑄)𝑃

−1,−𝑝
=

∑︁
𝛼∈ℐ

‖𝑓𝛼‖2
−𝑘𝑞−𝑝

𝛼 < ∞.

The expectation of the process 𝑢 is given by the zeroth order chaos expansion
coefficient 𝐸(𝑢) = 𝑓(0,0,0,...).

In [11] we have constructed two unitary mappings: the mapping 𝒰 acting
between the Gaussian and Poissonian spaces, and the mapping ℳ acting between a
regular space and its fractional version. The essence of both operators is to establish
a mapping between the orthogonal bases of the corresponding spaces, leaving the
coefficients of the chaos expansion unaffected. Let 𝒰 : 𝑋 ⊗ (𝑄)𝜇

−1 → 𝑋 ⊗ (𝑄)𝜈
−1 be

defined by

(2.3) 𝒰
[︂ ∑︁

𝛼∈ℐ
𝑢𝛼 ⊗ 𝐻𝛼

]︂
=

∑︁
𝛼∈ℐ

𝑢𝛼 ⊗ 𝐶𝛼, 𝑢𝛼 ∈ 𝑋, 𝛼 ∈ ℐ,

and let ℳ : 𝑋 ⊗ (𝑄)𝜇𝐻

−1 → 𝑋 ⊗ (𝑄)𝜇
−1 be defined by

(2.4) ℳ
[︂ ∑︁

𝛼∈ℐ
𝑣𝛼 ⊗ ̃︀ℋ𝛼

]︂
=

∑︁
𝛼∈ℐ

𝑣𝛼 ⊗ 𝐻𝛼, 𝑣𝛼 ∈ 𝑋, 𝛼 ∈ ℐ.

This resulted in the following commutative diagram:

𝐿2(𝜇) ℳ−1
//

𝒰∘ℳ−1

ℳ−1∘𝒰 %%
𝒰
��

𝐿2(𝜇𝐻)

𝒰
��

𝐿2(𝜈)
ℳ−1
// 𝐿2(𝜈𝐻)

Diagram 1
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Another important operator is obtained by extending 𝑀 : 𝒮 ′(R) → 𝒮 ′(R) into
M = 𝑀 ⊗ 𝐼𝑑 : 𝒮 ′(R) ⊗ (𝑄)𝑃

−1 → 𝒮 ′(R) ⊗ (𝑄)𝑃
−1 given by

M
(︂ ∑︁

𝛼∈ℐ
𝑎𝛼(𝑡) ⊗ 𝐾𝛼(𝜔)

)︂
=

∑︁
𝛼∈ℐ

𝑀𝑎𝛼(𝑡) ⊗ 𝐾𝛼(𝜔).

2.2. The Malliavin derivative and the Ornstein–Uhlenbeck operator.
In this subsection 𝑃 will denote either the Gaussian measure 𝜇 or the Poissonian
measure 𝜈, and 𝑃𝐻 will denote its corresponding fractional measure 𝜇𝐻 or 𝜈𝐻 . The
notation (𝑄)𝑃

−1 will refer to either (𝑆)𝑃
−1 or exp(𝑆)𝑃

−1, and (𝑄)𝑃𝐻
−1 to either (𝑆)𝑃𝐻

−1
or exp(𝑆)𝑃𝐻

−1 .

Definition 2.1. The Malliavin derivative of a process 𝑢 ∈ Dom(D) of the form
𝑢 =

∑︀
𝛼∈ℐ 𝑓𝛼 ⊗ 𝐾𝛼, 𝑓𝛼 ∈ 𝑋, 𝛼 ∈ ℐ is defined by

D𝑢 =
∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝛼𝑘 𝑓𝛼 ⊗ e𝑘 ⊗ 𝐾𝛼−𝜀(𝑘) ,

where Dom(D) is defined as an appropriate subset of 𝑋 ⊗ (𝑄)𝑃
−1 and called the

domain of the Malliavin derivative.

Note that D𝑢 is a generalized stochastic process with values in a distribution
space i.e., D𝑢 ∈ 𝑋 ⊗ 𝒮 ′(R) ⊗ (𝑆)𝑃

−1 or D𝑢 ∈ 𝑋 ⊗ exp 𝑆′(R) ⊗ exp(𝑆)𝑃
−1. In [11] we

gave a characterization of the domain and the codomain in both cases.

Definition 2.2. The Skorokhod integral of a process 𝐹 ∈ Dom(𝛿) of the form
𝐹 =

∑︀
𝛼∈ℐ 𝑓𝛼 ⊗ 𝑣𝛼 ⊗ 𝐾𝛼, 𝑓𝛼 ∈ 𝑋, 𝛼 ∈ ℐ and 𝑣𝛼 ∈ 𝑆′(R) or 𝑣𝛼 ∈ exp 𝑆′(R) respec-

tively, is defined by 𝛿(𝐹 ) =
∑︀

𝛼∈ℐ
∑︀

𝑘∈N 𝑣𝛼,𝑘 𝑓𝛼⊗𝐾𝛼+𝜀(𝑘) , where 𝑣𝛼 =
∑︀

𝑘∈N 𝑣𝛼,𝑘 e𝑘,
𝑣𝛼,𝑘 ∈ R is the expansion of 𝑣𝛼 in 𝑆′(R) or exp 𝑆′(R) respectively.

Note that Dom(𝛿) ⊂ 𝑋 ⊗ 𝒮 ′(R) ⊗ (𝑆)𝑃
−1, resp. Dom(𝛿) ⊂ 𝑋 ⊗ exp 𝑆′(R) ⊗

exp(𝑆)𝑃
−1 and that 𝛿(𝐹 ) ∈ 𝑋 ⊗ (𝑆)𝑃

−1, resp. 𝛿(𝐹 ) ∈ 𝑋 ⊗ exp(𝑆)𝑃
−1. For a detailed

characterization of the domain we refer to [11].

Definition 2.3. The composition ℛ = 𝛿 ∘D is called the Ornstein–Uhlenbeck
operator. For 𝑢 ∈ Dom(D) its action is given by ℛ𝑢 =

∑︀
𝛼∈ℐ |𝛼|𝑢𝛼 ⊗ 𝐾𝛼, but its

action can be extended to a larger set, i.e., Dom(ℛ) ⊃ Dom(D) in a general case.

The Hermite i.e., the Charlier polynomials are eigenfunctions of ℛ and the
corresponding eigenvalues are |𝛼|, 𝛼 ∈ ℐ, i.e., ℛ(𝐾𝛼) = |𝛼|𝐾𝛼.

Definition 2.4. The fractional Malliavin derivative of 𝐹 =
∑︀

𝛼∈ℐ 𝑓𝛼 ⊗ 𝐾𝛼 ∈
𝑋 ⊗ (𝑄)𝑃

−1 is defined by D(𝐻)𝐹 =
∑︀

𝛼∈ℐ
∑︀

𝑘∈N 𝛼𝑘 𝑓𝛼 ⊗ 𝑀−1e𝑘 ⊗ 𝐾𝛼−𝜀(𝑘) .

Theorem 2.3. Let D and D(𝐻) denote the Malliavin derivative, respectively the
fractional Malliavin derivative on 𝑋 ⊗(𝑄)𝑃

−1. Let ̃︀D denote the Malliavin derivative
on 𝑋 ⊗ (𝑄)𝑃𝐻

−1 . Then,

(2.5) D(𝐻)𝐹 = M−1 ∘ D𝐹 = ℳ ∘ ̃︀D ∘ ℳ−1𝐹,

for all 𝐹 ∈ Dom(D).
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Definition 2.5. Let 𝛿 : 𝑋 ⊗𝒮 ′(R)⊗(𝑄)𝑃
−1 → 𝑋 ⊗(𝑄)𝑃

−1 denote the Skorokhod
integral. The fractional Skorokhod integral 𝛿(𝐻) : 𝑋 ⊗𝒮 ′(R)⊗ (𝑄)𝑃

−1 → 𝑋 ⊗ (𝑄)𝑃
−1

is defined for every 𝐹 ∈ Dom(𝛿) by 𝛿(𝐻)𝐹 = 𝛿 ∘ M𝐹.

For the Ornstein–Uhlenbeck operator we note that its fractional version coin-
cides with the regular one, i.e., ℛ(𝐻) = 𝛿(𝐻) ∘D(𝐻) = 𝛿 ∘ M ∘ M−1 ∘D = 𝛿 ∘D = ℛ.

For further information on fractional white noise spaces and Malliavin deriva-
tives we refer to the basic literature [1]–[9], [16]–[19], [22], [23].

3. Stochastic differential equations

In this section we investigate the existence of solutions for stochastic differential
equations involving the Malliavin derivative and the Ornstein–Uhlenbeck operator.
The method of Wiener–Itô chaos expansions, used to set all coefficients in the
chaos expansion on the left-hand side of the equation equal to the corresponding
coefficients on the right-hand side of the equation, is a general and useful tool,
also known as the propagator method. With this method we reduce a problem to
an infinite system of deterministic equations. Summing up all coefficients of the
expansion and proving convergence in an appropriate weight space, one obtains the
solution of the initial equation. Other types of equations investigated by the same
method can be found in several papers: [10], [12]–[15], [21], [24]–[26].

All stochastic equations solved in this section can be interpreted, by the use of
the isometric transformations 𝒰 and ℳ defined in (2.3) and (2.4), in all four white
noise spaces we have considered so far. Also, due to Theorem 2.3 the Malliavin
derivative and the Skorokhod integral can be interpreted as their fractional counter-
parts in the corresponding fractional white noise space. With this argumentation
we state the equations and solve them in a white noise space of general type.

3.1. Equations with the Malliavin derivative. Denote by 𝑟 = 𝑟(𝛼) =
min{𝑘 ∈ N : 𝛼𝑘 ̸= 0}, for nonzero 𝛼 ∈ ℐ. Then the first nonzero component of 𝛼 is
the 𝑟th component 𝛼𝑟, i.e., 𝛼 = (0, 0, . . . , 0, 𝛼𝑟, . . . , 𝛼𝑚, 0, 0, . . . ). Denote by 𝛼𝜀(𝑟)

the multi-index with all components equal to the corresponding components of 𝛼,
except the 𝑟-th, which is 𝛼𝑟 − 1. We call 𝛼𝜀(𝑟) the representative of 𝛼 and write

(3.1) 𝛼 = 𝛼𝜀(𝑟) + 𝜀(𝑟), 𝛼 ∈ ℐ, |𝛼| > 0.

For example, the first nonzero component of 𝛼 = (0, 0, 2, 1, 0, 5, 0, 0, . . . ) is its third
component. It follows that 𝑟 = 3, 𝛼𝑟 = 2 and the representative of 𝛼 is 𝛼𝜀(𝑟) =
𝛼 − 𝜀(3) = (0, 0, 1, 1, 0, 5, 0, 0, . . . ).

The set 𝒦𝛼 = {𝛽 ∈ ℐ : 𝛼 = 𝛽 + 𝜀(𝑗), for some 𝑗 ∈ N}, 𝛼 ∈ ℐ, |𝛼| > 0 is
nonempty, because 𝛼𝜀(𝑟) ∈ 𝒦𝛼. Moreover, if 𝛼 = 𝑛𝜀(𝑟), 𝑛 ∈ N, then Card(𝒦𝛼) = 1
and in all other cases Card(𝒦𝛼) > 1. For example if 𝛼 = (0, 1, 3, 0, 0, 5, 0, . . . ), then
the set 𝒦𝛼 has three elements

𝒦𝛼 = {𝛼𝜀(2) = (0, 0, 3, 0, 0, 5, 0, . . . ), (0, 1, 2, 0, 0, 5, 0, . . . ), (0, 1, 3, 0, 0, 4, 0, . . . )}.
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3.2. A first order equation. Let us consider an equation of the form

(3.2)
{︂

D𝑢 = ℎ, ℎ ∈ 𝑋 ⊗ 𝒮 ′(R) ⊗ (𝑆)−1
𝐸𝑢 = ̃︀𝑢0, ̃︀𝑢0 ∈ 𝑋

.

Theorem 3.1. Let ℎ =
∑︀

𝛼∈ℐ
∑︀

𝑘∈N ℎ𝛼,𝑘 ⊗ e𝑘 ⊗𝐾𝛼 ∈ 𝑋 ⊗𝒮 ′(R)⊗ (𝑆)−1, with
coefficients ℎ𝛼,𝑘 ∈ 𝑋 such that

(3.3) 1
𝛼𝑟

ℎ𝛼
𝜀(𝑟) ,𝑟 = 1

𝛼𝑗
ℎ𝛽, 𝑗 ,

for the representative 𝛼𝜀(𝑟) of 𝛼 ∈ ℐ, |𝛼| > 0 and all 𝛽 ∈ 𝒦𝛼, such that 𝛼 = 𝛽 +𝜀(𝑗),
for 𝑗 > 𝑟, 𝑟 ∈ N. Then, equation (3.2) has a unique solution in 𝑋 ⊗ (𝑆)−1. The
chaos expansion of the generalized stochastic process, which represents the unique
solution of equation (3.2) is given by

(3.4) 𝑢 = ̃︀𝑢0 +
∑︁

𝛼=𝛼
𝜀(𝑟) +𝜀(𝑟)∈ℐ

1
𝛼𝑟

ℎ𝛼
𝜀(𝑟) ,𝑟 ⊗ 𝐾𝛼.

Proof. We seek the solution in the form 𝑢 = ̃︀𝑢0 +
∑︀

𝛼∈ℐ
|𝛼|>0

𝑢𝛼 ⊗ 𝐾𝛼. Thus,

D
(︂̃︀𝑢0 +

∑︁
𝛼∈ℐ

|𝛼|>0

𝑢𝛼 ⊗ 𝐾𝛼

)︂
=

∑︁
𝛼∈ℐ

∑︁
𝑘∈N

ℎ𝛼,𝑘 ⊗ e𝑘 ⊗ 𝐾𝛼

∑︁
𝛼∈ℐ

|𝛼|>0

(︂ ∑︁
𝑘∈N

𝛼𝑘𝑢𝛼 ⊗ e𝑘

)︂
⊗ 𝐾𝛼−𝜀(𝑘) =

∑︁
𝛼∈ℐ

(︂ ∑︁
𝑘∈N

ℎ𝛼,𝑘 ⊗ e𝑘

)︂
⊗ 𝐾𝛼

∑︁
𝛼∈ℐ

(︂ ∑︁
𝑘∈N

(𝛼𝑘 + 1)𝑢𝛼+𝜀(𝑘) ⊗ e𝑘

)︂
⊗ 𝐾𝛼 =

∑︁
𝛼∈ℐ

(︂ ∑︁
𝑘∈N

ℎ𝛼,𝑘 ⊗ e𝑘

)︂
⊗ 𝐾𝛼

Due to uniqueness of the Wiener-Itô chaos expansion it follows that, for all
𝛼 ∈ ℐ ∑︁

𝑘∈N
(𝛼𝑘 + 1)𝑢𝛼+𝜀(𝑘) ⊗ e𝑘 =

∑︁
𝑘∈N

ℎ𝛼,𝑘 ⊗ e𝑘.

Due to the uniqueness of the series expansion in 𝒮 ′(R) we obtain a family of deter-
ministic equations

(3.5) 𝑢𝛼+𝜀(𝑘) = 1
𝛼𝑘 + 1 ℎ𝛼,𝑘, for all 𝛼 ∈ ℐ, 𝑘 ∈ N,

from which we can calculate 𝑢𝛼, by induction on the length of 𝛼. For 𝛼 =
(0, 0, 0, . . . ), the equations in (3.5) reduce to 𝑢𝜀(𝑘) = ℎ𝛼,𝑘, 𝛼 ∈ ℐ, 𝑘 ∈ N, i.e.,

𝑢(1,0,0,... ) = ℎ(0,0,0,... ),1
𝑢(0,1,0,... ) = ℎ(0,0,0,... ),2

𝑢(0,0,1,0... ) = ℎ(0,0,0,... ),3
...

and we obtain the coefficients 𝑢𝛼 for 𝛼 of length one. Note, 𝑢𝛼 are obtained in the
terms of ℎ𝛼

𝜀(𝑟) ,𝑟 = ℎ(0,0,0,...),𝑟, 𝑟 ∈ N.
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For |𝛼| = 1 the multi-indices are of the form 𝛼 = 𝜀(𝑗), 𝑗 ∈ N, so several cases
occur. For 𝑗 = 1, 𝛼 = 𝜀(1) = (1, 0, 0, . . . ), we have

(3.6)

𝑢(2,0,0,... ) = 1
2 ℎ(1,0,0,... ),1

𝑢(1,1,0,... ) = ℎ(1,0,0,... ),2
𝑢(1,0,1,0... ) = ℎ(1,0,0,... ),3

𝑢(1,0,0,1,0... ) = ℎ(1,0,0,... ),4...

Continuing, for 𝑗 = 2, 𝛼 = 𝜀(2) = (0, 1, 0, . . . ) the equations in (3.5) reduce to

(3.7)

𝑢(1,1,0,0,... ) = ℎ(0,1,0,0,... ),1
𝑢(0,2,0,... ) = 1

2 ℎ(0,1,0,0,... ),2
𝑢(0,1,1,0... ) = ℎ(0,1,0,0,... ),3

𝑢(0,1,0,1,0... ) = ℎ(0,1,0,0,... ),4...

and then, for 𝛼 = 𝜀(3) = (0, 0, 1, 0, . . . ) we obtain

(3.8)

𝑢(1,0,1,0,... ) = ℎ(0,0,1,0,... ),1
𝑢(0,1,1,0,... ) = ℎ(0,0,1,0,... ),2
𝑢(0,0,2,0... ) = 1

2 ℎ(0,0,1,0,... ),3
𝑢(0,0,1,1,0... ) = ℎ(0,0,1,0,... ),4...

The coefficient 𝑢(1,1,0,0,... ) appears in systems (3.6) and (3.7) and thus the addi-
tional condition ℎ(1,0,0,... ),2 = ℎ(0,1,0,0,... ),1 has to hold in order to have a solvable
system. Also, from expressions for 𝑢(0,1,1,0,... ) and 𝑢(0,1,0,1,... ) in (3.7) and (3.8)
we obtain conditions ℎ(0,1,0,... ),3 = ℎ(0,0,1,0,... ),2 and ℎ(0,0,0,1,0,... ),2 = ℎ(0,1,0,0,... ),4
respectively, which need to be satisfied, in order to have a unique 𝑢𝛼. In the same
manner we obtain all coefficients 𝑢𝛼, for 𝛼 of the length two, expressed as a function
of ℎ𝛼

𝜀(𝑟) ,𝑟.
Let now |𝛼| = 2. Then different combinations for the multi-indices occur:

if we choose 𝛼 = (1, 1, 0, 0, . . . ) then (3.5) transforms into the system

(3.9)

𝑢(2,1,0,0,... ) = 1
2 ℎ(1,1,0,0,... ),1

𝑢(1,2,0,... ) = 1
2 ℎ(1,1,0,0,... ),2

𝑢(1,1,1,0... ) = ℎ(1,1,0,0,... ),3
𝑢(1,1,0,1,0... ) = ℎ(1,1,0,0,... ),4...

and if we choose 𝛼 = (1, 0, 1, 0, 0, . . . ), then the equations in (3.5) transform into

(3.10)

𝑢(2,0,1,0,... ) = 1
2 ℎ(1,0,1,0,0,... ),1

𝑢(1,1,1,0,... ) = ℎ(1,0,1,0,0,... ),2
𝑢(1,0,2,0... ) = 1

2 ℎ(1,0,1,0,0,... ),3
𝑢(1,0,1,1,0... ) = ℎ(1,0,1,0,0,... ),4...
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We continue with 𝛼 = (0, 1, 1, 0, 0, . . . ) and 𝛼 = (2, 0, 0, . . . ) and obtain the
systems

𝑢(1,1,1,0,... ) = ℎ(0,1,1,0,0,... ),1
𝑢(0,2,1,0,... ) = 1

2 ℎ(0,1,1,0,0,... ),2
𝑢(0,1,2,0... ) = 1

2 ℎ(0,1,1,0,0,... ),3
𝑢(0,1,1,1,0... ) = ℎ(0,1,1,0,0,... ),4...

(3.11)

and

𝑢(3,0,0,... ) = 1
3 ℎ(2,0,0,... ),1

𝑢(2,1,0,... ) = ℎ(2,0,0,... ),2
𝑢(2,0,1,0... ) = ℎ(2,0,0,... ),3

𝑢(2,0,0,1,0... ) = ℎ(2,0,0,... ),4...

(3.12)

respectively. For 𝛼 = (0, 2, 0, 0, . . . ) the system (3.5) transforms into

(3.13)

𝑢(1,2,0,0,... ) = ℎ(0,2,0,0,... ),1
𝑢(0,3,0,... ) = 1

3 ℎ(0,2,0,0,... ),2
𝑢(0,2,1,0... ) = ℎ(0,2,0,0,... ),3

𝑢(0,2,0,1,0... ) = ℎ(0,2,0,0,... ),4...

Combining with the previous results, we obtain 𝑢𝛼 for |𝛼| = 3. Two different
representations of 𝑢(2,1,0,0,... ) are given in systems (3.9) and (3.12), so an addi-
tional condition 1

2 ℎ(1,1,0,0,... ),1 = ℎ(2,0,0,0,... ),2 follows. We express 𝑢(2,1,0,0,... ) =
1
2 ℎ(1,1,0,0,... ),1 in form of the representative of the multi-index 𝛼 = (2, 1, 0, 0, . . . ).
Since the coefficient 𝑢(1,2,0,... ) appears both in (3.9) and (3.13), we receive another
condition 1

2 ℎ(1,1,0,0,... ),2 = ℎ(0,2,0,0,... ),1, and express 𝑢(1,2,0,... ) = ℎ(0,2,0,0,... ),1 by its
representative. From (3.9), (3.10) and (3.11) we obtain 𝑢(1,1,1,0,... ) = ℎ(0,1,1,0,0,... ),1
and the condition ℎ(1,1,0,0,... ),3 = ℎ(1,0,1,0,... ),2 = ℎ(0,1,1,0,0,... ),1. Then 1

2 ℎ(0,1,1,0,... ),2
= ℎ(0,2,0,... ),3 follows from (3.11) and (3.13), and 𝑢(0,2,1,0,... ) = 1

2 ℎ(0,1,1,0,... ),2.
We proceed by the same procedure for all multi-index lengths to obtain 𝑢𝛼.
If the set 𝒦𝛼, 𝛼 ∈ ℐ, has at least one more element besides the representative

𝛼𝜀(𝑟) of 𝛼, then the condition for the process ℎ is given in the form (3.3). We obtain
the coefficients 𝑢𝛼 of the solution as functions of the representative 𝛼𝜀(𝑟)

𝑢𝛼 = 1
𝛼𝑟

ℎ𝛼
𝜀(𝑟) , 𝑟, for |𝛼| ≠ 0, 𝛼 = 𝛼𝜀(𝑟) + 𝜀(𝑟),

and the form of the solution (3.4).
It remains to prove convergence of the solution (3.4) in 𝑋 ⊗ (𝑆)−1. Let ℎ ∈

𝑋 ⊗ 𝑆−𝑝(R) ⊗ (𝑆)−1,−𝑝. Then, there exists 𝑝 > 0 such that

‖ℎ‖2
𝑋⊗𝑆−𝑝(R)⊗(𝑆)−1,−𝑝

=
∑︁
𝛼∈ℐ

∑︁
𝑘∈N

‖ℎ𝛼,𝑘‖2
𝑋 (2𝑘)−𝑝 (2N)−𝑝𝛼 < ∞.
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Note that for ̃︀𝑢0 ∈ 𝑋 we have ‖̃︀𝑢0‖𝑋 = ‖̃︀𝑢0‖𝑋⊗(𝑆)−1,−𝑞
for all 𝑞 > 0. Then,

the convergence follows from

‖𝑢‖2
𝑋⊗(𝑆)−1,−2𝑝

= ‖̃︀𝑢0‖2
𝑋⊗(𝑆)−1,−2𝑝

+
∑︁

𝛼∈ℐ,|𝛼|>0,

𝛼=𝛼
𝜀(𝑟) +𝜀(𝑟)

1
𝛼2

𝑟

‖ℎ𝛼
𝜀(𝑟) ,𝑟‖2

𝑋(2N)−2𝑝(𝛼
𝜀(𝑟) +𝜀(𝑟))

6 ‖̃︀𝑢0‖2
𝑋⊗(𝑆)−1,−2𝑝

+
∑︁

𝛼=𝛼
𝜀(𝑟) +𝜀(𝑟)

‖ℎ𝛼
𝜀(𝑟) ,𝑟‖2

𝑋 (2𝑟)−𝑝 (2N)−𝑝𝛼

6 ‖̃︀𝑢0‖2
𝑋⊗(𝑆)−1,−2𝑝

+
∑︁
𝛼∈ℐ

∑︁
𝑟∈N

‖ℎ𝛼,𝑟‖2
𝑋 (2𝑟)−𝑝(2N)−𝑝𝛼 < ∞,

where we used the fact that (2N)𝑝𝜀(𝑟)(2N)−𝑝𝛼 6 1 for all 𝛼 ∈ ℐ, 𝑟 ∈ N. �

3.2.1. Special cases. Assume that the process ℎ is expressed as a product ℎ =
𝑐 ⊗ 𝑔, 𝑐 ∈ 𝒮 ′(R) and 𝑔 ∈ 𝑋 ⊗ (𝑆)−1.

Theorem 3.2. Let 𝑐 =
∑︀

𝑘∈N 𝑐𝑘 e𝑘 ∈ 𝒮 ′(R) and 𝑔 =
∑︀

𝛼∈ℐ 𝑔𝛼 ⊗ 𝐾𝛼 ∈ 𝑋 ⊗
(𝑆)−1 with coefficients 𝑔𝛼 ∈ 𝑋 such that

(3.14) 1
𝛼𝑟

𝑔𝛼
𝜀(𝑟) 𝑐𝑟 = 1

𝛼𝑗
𝑔𝛽𝑐𝑗 ,

holds for all 𝛽 ∈ 𝒦𝛼, 𝑗 > 𝑟, 𝑟 ∈ N, and their representative 𝛼𝜀(𝑟) . Then
(3.15) D𝑢 = 𝑐 ⊗ 𝑔, 𝐸𝑢 = ̃︀𝑢0, ̃︀𝑢0 ∈ 𝑋,

has a unique solution in 𝑋 ⊗ (𝑆)−1 given by

(3.16) 𝑢 = ̃︀𝑢0 +
∑︁

𝛼=𝛼
𝜀(𝑟) +𝜀(𝑟)∈ℐ

1
𝛼𝑟

𝑔𝛼
𝜀(𝑟) 𝑐𝑟 ⊗ 𝐾𝛼.

Proof. Providing an analogue procedure as in the previous theorem, we re-
duce equation (3.15) to a family of deterministic equations

(3.17) 𝑢𝛼+𝜀(𝑘) = 1
𝛼𝑘 + 1 𝑔𝛼 𝑐𝑘, for all 𝛼 ∈ ℐ, 𝑘 ∈ N,

from which, by induction on |𝛼|, we obtain the coefficients 𝑢𝛼 of the solution 𝑢,
as functions of the representative 𝛼𝜀(𝑟) . Let 𝛼 ∈ ℐ, |𝛼| > 0 be given by (3.1).
Condition (3.14) implies 𝑢𝛼 = 1

𝛼𝑟
𝑔𝛼

𝜀(𝑟) 𝑐𝑟. The proof of convergence of the solution
(3.16) in 𝑋 ⊗ (𝑆)−1 follows in the same way as in the previous theorem. �

Especially, if we choose 𝑐 = e𝑖, for fixed 𝑖 ∈ N, then equation (3.15) transforms
into

(3.18)
D𝑢 = e𝑖 ⊗ 𝑔, 𝑔 ∈ 𝑋 ⊗ (𝑆)−1

𝐸𝑢 = ̃︀𝑢0, ̃︀𝑢0 ∈ 𝑋

Theorem 3.3. Let 𝑔 ∈ 𝑋 ⊗ (𝑆)−1. Then (3.18) has a unique solution in
𝑋 ⊗ (𝑆)−1 of the form

(3.19) 𝑢 = ̃︀𝑢0 +
∑︁
𝑛∈N

1
𝑛

𝑔(𝑛−1)𝜀(𝑖) ⊗ 𝐾𝑛𝜀(𝑖) ,
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if and only if 𝑔 is of the form

(3.20) 𝑔 =
∞∑︁

𝑛=0
𝑔𝑛𝜀(𝑖) ⊗ 𝐾𝑛𝜀(𝑖) =

∞∑︁
𝑛=0

𝑔𝑛𝜀(𝑖) (𝐼(e𝑖))◇ 𝑛
,

where 𝐼(·) represents the Itô integral.

Proof. Let 𝑢 ∈ 𝑋 ⊗(𝑆)−1 be a process of the form (3.19). Then, 𝑢 ∈ Dom(D)
and from

D𝑢 =
∞∑︁

𝑛=1

1
𝑛

𝑔(𝑛−1)𝜀(𝑖) ⊗ 𝑛 𝐾(𝑛−1)𝜀(𝑖) ⊗ e𝑛 =
∞∑︁

𝑛=1
𝑔𝑛𝜀(𝑖) ⊗ 𝐾𝑛𝜀(𝑖) ⊗ e𝑛

follows that it is a solution to (3.18).
Conversely, let a process 𝑔 ∈ 𝑋 ⊗ (𝑆)−1 be of the form (3.20). Then, following

the notation of Theorem 3.2, 𝑐 = e𝑖 has the expansion 𝑐 =
∑︀∞

𝑘=1 𝑐𝑘 e𝑘, where 𝑐𝑘 = 1
for 𝑘 = 𝑖 and 𝑐𝑘 = 0 for 𝑘 ̸= 𝑖, 𝑘 ∈ N. The family of equations (3.17) transforms to
the family of deterministic equations

(3.21)
(𝛼𝑖 + 1) 𝑢𝛼+𝜀(𝑖) = 𝑔𝛼, 𝑔𝛼 ∈ 𝑋

𝑢𝛼+𝜀(𝑘) = 0, 𝑘 = 1, 2, 3 . . . , 𝑘 ̸= 𝑖
, 𝛼 ∈ ℐ.

If (3.20) holds, then for fixed 𝑖 ∈ N, 𝑔𝛼 = 0, for all 𝛼 ̸= 𝑛𝜀(𝑖), and from (3.21)
similarly as in Theorem 3.2 the coefficients are obtained by induction on |𝛼|,

𝑢𝛼 =
{︂ 1

𝑛 𝑔(𝑛−1)𝜀(𝑖) , 𝛼 = 𝑛𝜀(𝑖)

0, 𝛼 ̸= 𝑛𝜀(𝑖) , 𝑛 ∈ N.

The chaos expansion of the solution is

𝑢 = ̃︀𝑢0 +
∑︁
𝑛∈N

1
𝑛

𝑔(𝑛−1)𝜀(𝑖) ⊗ 𝐾𝑛𝜀(𝑖) = ̃︀𝑢0 +
∑︁
𝑛∈N

1
𝑛

𝑔(𝑛−1)𝜀(𝑖) ⊗ (𝐼(e𝑘))◇𝑛.

Convergence in 𝑋 ⊗ (𝑆)−1 can be proven by the same method as in Theorem 3.2.
Clearly, there exists 𝑝 ∈ N, such that

‖𝑢‖2
𝑋⊗(𝑆)−1,−𝑝

= ‖̃︀𝑢0‖2
𝑋 +

∞∑︁
𝑛=1

1
𝑛2 ‖𝑔(𝑛−1)𝜀(𝑖)‖2

𝑋(2N)−𝑝𝑛𝜀(𝑖)

6 ‖̃︀𝑢0‖2
𝑋 +

∞∑︁
𝑛=1

‖𝑔(𝑛−1)𝜀(𝑖)‖2
𝑋(2N)−𝑝(𝑛−1)𝜀(𝑖)

= ‖̃︀𝑢0‖2
𝑋 +

∞∑︁
𝑛=0

‖𝑔𝑛𝜀(𝑖)‖2
𝑋(2N)−𝑝𝑛𝜀(𝑖)

< ∞. �

3.3. An eigenvalue problem. Using the same method as in the previous
cases, in [12] we solved an eigenvalue problem of the form

(3.22)
{︂

D𝑢 = 𝐶 ⊗ 𝑢, 𝐶 ∈ 𝒮 ′(R)
𝐸𝑢 = ̃︀𝑢0, ̃︀𝑢0 ∈ 𝑋.

In the special case, for 𝐶 = e𝑖, 𝑖 ∈ N fixed, we obtained that a unique solution 𝑢 of
the equation (3.22) belongs to 𝑋 ⊗ (𝑆)−1 and is of the form 𝑢 = ̃︀𝑢0 ⊗ exp{𝐼(e𝑖)}.
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3.4. An equation involving the exponential of the Ornstein–Uhlen-
beck operator. Consider now a stochastic differential equation of the form

(3.23) 𝑒𝑐ℛ𝑢 = ℎ,

where 𝑒𝑐ℛ =
∑︀∞

𝑘=0
𝑐𝑘ℛ𝑘

𝑘! , 𝑐 ∈ R and ℎ ∈ 𝑋 ⊗exp(𝑆)−1,−𝑝 is a generalized stochastic
process.

Theorem 3.4. Let ℎ ∈ 𝑋 ⊗ exp(𝑆)−1,−𝑝, for some 𝑝 > 0. Then, there exists
𝑞 > 0 such that equation (3.23) has a unique generalized solution in 𝑋⊗exp(𝑆)−1,−𝑞

given by the form

(3.24) 𝑢 =
∑︁
𝛼∈ℐ

𝑒−𝑐|𝛼|ℎ𝛼 ⊗ 𝐾𝛼.

Proof. Assume 𝑢 ∈ 𝑋 ⊗exp(𝑆)−1,−𝑝 is a generalized stochastic process of the
form (2.1), satisfying condition (2.2) with 𝑞−𝑝

𝛼 = 𝑒−𝑝(2N)𝛼 . Note that the differential
operator 𝑒𝑐ℛ satisfies the identity

𝑒𝑐ℛ𝐾𝛼 =
∞∑︁

𝑘=0

𝑐𝑘ℛ𝑘𝐾𝛼

𝑘! =
∞∑︁

𝑘=0

𝑐𝑘|𝛼|𝑘

𝑘! 𝐾𝛼 = 𝑒𝑐|𝛼|𝐾𝛼, 𝛼 ∈ ℐ.

Then

(3.25) 𝑒𝑐ℛ𝑢 =
∑︁
𝛼∈ℐ

𝑒𝑐|𝛼|𝑢𝛼 ⊗ 𝐻𝛼, 𝑢𝛼 ∈ 𝑋.

For 𝑐 > 0 the operator 𝑒𝑐ℛ is a continuous and bounded mapping from 𝑋 ⊗
exp(𝑆)−1,−𝑝 into 𝑋 ⊗ exp(𝑆)−1,−𝑞, for some 𝑞 > 𝑝 + 2𝑐. From 𝑒|𝛼| 6 𝑒(2N)𝛼 , 𝛼 ∈ ℐ
it follows

‖𝑒𝑐ℛ𝑢‖2
𝑋⊗exp(𝑆)−1,−𝑞

=
∑︁
𝛼∈ℐ

𝑒2𝑐|𝛼|‖𝑢𝛼‖2
𝑋𝑒−𝑞(2N)𝛼

6
∑︁
𝛼∈ℐ

𝑒2𝑐|𝛼| 𝑒−𝑝(2N)𝛼

‖𝑢𝛼‖2
𝑋𝑒−(𝑞−𝑝)(2N)𝛼

6

(︂ ∑︁
𝛼∈ℐ

𝑒2𝑐|𝛼|𝑒−(𝑞−𝑝)(2N)𝛼

)︂(︂ ∑︁
𝛼∈ℐ

‖𝑢𝛼‖2
𝑋𝑒−𝑝(2N)𝛼

)︂
6

(︂ ∑︁
𝛼∈ℐ

𝑒−(𝑞−𝑝−2𝑐)(2N)𝛼

)︂
‖𝑢‖2

𝑋⊗exp(𝑆)−1,−𝑝
< ∞,

for 𝑞 > 𝑝 + 2𝑐.
If 𝑐 6 0, then the operator 𝑒𝑐ℛ is a continuous and bounded mapping from

𝑋 ⊗ exp(𝑆)−1,−𝑝 into 𝑋 ⊗ exp(𝑆)−1,−𝑞, for 𝑞 > 𝑝:

‖𝑒𝑐ℛ𝑢‖2
𝑋⊗exp(𝑆)−1,−𝑞

=
∑︁
𝛼∈ℐ

𝑒2𝑐|𝛼|‖𝑢𝛼‖2
𝑋𝑒−𝑞(2N)𝛼

6

(︂ ∑︁
𝛼∈ℐ

𝑒−(𝑞−𝑝)(2N)𝛼

)︂
‖𝑢‖2

𝑋⊗exp(𝑆)−1,−𝑝
< ∞.
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Let ℎ ∈ 𝑋 ⊗ exp(𝑆)−1,−𝑝 be of the form ℎ =
∑︀

𝛼∈ℐ ℎ𝛼 ⊗ 𝐻𝛼 such that ℎ𝛼 ∈ 𝑋 and

(3.26)
∑︁
𝛼∈ℐ

‖ℎ𝛼‖2
𝑋 𝑒−𝑝(2N)𝛼

< ∞.

We are looking for the solution 𝑢 of (3.23) in the form (2.1), where 𝑢𝛼 ∈ 𝑋 are the
coefficients to be determined. We apply (3.25) to transform equation (3.23) into
the system of deterministic equations 𝑒𝑐|𝛼|𝑢𝛼 = ℎ𝛼, 𝛼 ∈ ℐ. Thus 𝑢𝛼 = 𝑒−𝑐|𝛼|ℎ𝛼

and we obtain a unique solution of equation (3.23) in the form (3.24).
Finally, the convergence of the solution in 𝑋⊗exp(𝑆)−1,−𝑝, in the case of 𝑐 > 0,

follows directly from (3.26). But, in the case of 𝑐 6 0 the solution converges in the
space 𝑋 ⊗ exp(𝑆)−1,−𝑞, for some 𝑞 > 𝑝 − 2𝑐, i.e.,

‖𝑢‖2
𝑋⊗exp(𝑆)−1,−𝑞

=
∑︁
𝛼∈ℐ

𝑒−2𝑐|𝛼|‖ℎ𝛼‖2
𝑋𝑒−𝑞(2N)𝛼

6

(︂ ∑︁
𝛼∈ℐ

𝑒−2𝑐|𝛼|𝑒−(𝑞−𝑝)(2N)𝛼

)︂(︂ ∑︁
𝛼∈ℐ

‖ℎ𝛼‖2
𝑋𝑒−𝑝(2N)𝛼

)︂
6𝑀‖ℎ‖2

𝑋⊗exp(𝑆)−1,−𝑝
< ∞,

where 𝑀 =
∑︀

𝛼∈ℐ 𝑒−(𝑞−𝑝+2𝑐)(2N)𝛼

< ∞ for 𝑞 > 𝑝 − 2𝑐. �
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