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Communicated by Stevan Pilipović

Abstract. We consider Gaussian, Poissonian, fractional Gaussian and frac-
tional Poissonian white noise spaces, all represented through the corresponding
orthogonal basis of the Hilbert space of random variables with finite second
moments, given by the Hermite and the Charlier polynomials. There exist
unitary mappings between the Gaussian and Poissonian white noise spaces.
We investigate the relationship of the Malliavin derivative, the Skorokhod in-
tegral, the Ornstein–Uhlenbeck operator and their fractional counterparts on
a general white noise space.

1. Introduction

Generalized stochastic processes on white noise spaces have a series expansion
form given by the Hilbert space basis of square integrable processes (processes
with finite second moments), and depending on the stochastic measure this basis
can be represented as a family of orthogonal polynomials defined on an infinite
dimensional space. The classical Hida approach (see [7, 8]) suggests to start with
a nuclear space 𝐸 and its dual 𝐸′, such that 𝐸 ⊂ 𝐿2(R) ⊂ 𝐸′, and then take the
basic probability space to be Ω = 𝐸′ endowed with the Borel 𝜎–algebra of the weak
topology and an appropriate probability measure 𝑃 . Since Gaussian processes and
Poissonian processes represent the two most important classes of Lévy processes,
we will focus on these two types of measures.

In case of a Gaussian measure, the orthogonal basis of 𝐿2(Ω, 𝑃 ) can be con-
structed from any orthogonal basis of 𝐿2(R) that belongs to 𝐸 and from the Her-
mite polynomials, while in the case of a Poissonian measure the orthogonal basis of
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𝐿2(Ω, 𝑃 ) is constructed using the Charlier polynomials together with the orthog-
onal basis of 𝐿2(R). We will focus on the case when 𝐸 and 𝐸′ are the Schwartz
spaces of rapidly decreasing test functions 𝒮(R) and tempered distributions 𝒮 ′(R).
In this case the orthogonal family of 𝐿2(R) can be represented by the Hermite
functions.

Following the idea of the construction of 𝒮 ′(R) as an inductive limit space over
𝐿2(R) with appropriate weights, one can define stochastic generalized random vari-
able spaces over 𝐿2(Ω, 𝑃 ) by adding certain weights in the convergence condition
of the series expansion (also known as the Wiener-Itô chaos expansion) and thus
weakening the topology of the 𝐿2 norm. We will define several spaces of this type,
weighted by a sequence 𝑞 and denote them by (𝑄)𝑃

−1, thus obtaining a Gel’fand
triplet (𝑄)𝑃

1 ⊂ 𝐿2(Ω, 𝑃 ) ⊂ (𝑄)𝑃
−1.

Recently, there have been made improvements in economics and financial mod-
elling by replacing the Brownian motion with the fractional Brownian motion, and
replacing white noise by fractional white noise (see [2, 3, 9]). We will define the
fractional Poissonian process in a framework that will make it easy to link it to its
regular version.

In [8] it was proved that there exists a unitary mapping between the Gaussian
and the Poissonian white noise space, by mapping the Hermite polynomial basis into
the Charlier polynomial basis. In [6] and [10] a unitary mapping was introduced
between the Gaussian and the fractional Gaussian white noise space. We extend
these ideas to define the fractional Poissonian white noise space itself and to link
it to the classical Poissonian white noise space. As a result we obtain four types
of white noise spaces: Gaussian, Poissonian, fractional Gaussian and fractional
Poissonian, where any two of them can be identified through a unitary mapping.

The Skorokhod integral 𝛿 represents an extension of the Itô integral to nonan-
ticipating processes. Its adjoint operator D is known as the Malliavin derivative.
Both operators, having an interpretation also in the Fock space sense as the an-
nihilation and the creation operator, are widely used in solving stochastic differ-
ential equations (see [4, 13, 14, 16, 17]). Their composition 𝛿D is known as
the Ornstein–Uhlenbeck operator, and it is a selfadjoint operator on 𝐿2(Ω, 𝑃 ) that
has the elements of the orthogonal basis (Hermite or Charlier polynomials) as its
eigenvalues. In this paper we continue our work from [11] and [12] in providing
examples of stochastic differential equations involving the Malliavin derivative and
the Ornstein–Uhlenbeck operator. The Malliavin derivative and its related oper-
ators are all defined on either of the four white noise spaces we are working on,
and their domains are characterized in the terms of convergence in a stochastic
distribution space (𝑄)𝑃

−1 with special 𝑞-weights.
This paper consists of two separately published parts. In the present paper

(Part I) we focus on the structural properties of the aforementioned four types of
white noise spaces and operators defined on them. Examples of stochastic differ-
ential equations and their solutions on all four spaces will be included in Part II of
the paper.
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The paper is organized as follows: In Section 2 we provide the basic notation
used throughout the paper, followed by the construction of the Gaussian and Pois-
sonian white noise spaces in Section 3. In Section 4 their fractional counterparts
are introduced and the unitary mappings between the four white noise spaces are
established. In Section 5 the chaos expansion theorem for generalized stochastic
processes and 𝒮 ′(R)-valued generalized stochastic processes is reviewed, and the
Malliavin derivative, the Skorokhod integral and the Ornstein–Uhlenbeck operator
are defined together with their fractional versions.

2. Notations

Throughout the paper we will use the following notations. Let

ℎ𝑛(𝑥) = (−1)𝑛𝑒𝑥2/2 𝑑𝑛𝑒𝑥2/2

𝑑𝑥𝑛
, 𝜉𝑛(𝑥) = 1

4
√

𝜋
√︀

(𝑛 − 1)!
𝑒−𝑥2/2ℎ𝑛−1

(︀√
2𝑥

)︀
, 𝑛 ∈ N,

be the families of Hermite polynomials and Hermite functions, respectively. The
latter one forms a complete orthonormal system of 𝐿2(R). It is well known that the
Schwartz space of rapidly decreasing functions can be constructed as the projective
limit 𝑆(R) =

⋂︀
𝑙∈N0

𝑆𝑙(R), where

𝑆𝑙(R) =
{︂

𝜙 =
∞∑︁

𝑘=1
𝑎𝑘 𝜉𝑘 ∈ 𝐿2(R) : ‖𝜙‖2

𝑙 =
∞∑︁

𝑘=1
𝑎2

𝑘(2𝑘)𝑙 < ∞
}︂

, 𝑙 ∈ N0,

and the Schwartz space of tempered distributions is its dual 𝑆′(R) =
⋃︀

𝑙∈N0
𝑆−𝑙(R),

where

𝑆−𝑙(R) =
{︂

𝑓 =
∞∑︁

𝑘=1
𝑏𝑘 𝜉𝑘 : ‖𝑓‖2

−𝑙 =
∞∑︁

𝑘=1
𝑏2

𝑘(2𝑘)−𝑙 < ∞
}︂

, 𝑙 ∈ N0.

We also consider the test space of deterministic functions of exponential growth
introduced in [19] exp 𝑆(R) =

⋂︀
𝑙∈N0

exp 𝑆𝑙(R), where

exp 𝑆𝑙(R) =
{︂

𝜙 =
∞∑︁

𝑘=1
𝑎𝑘 𝜉𝑘 ∈ 𝐿2(R) : ‖𝜙‖2

exp,𝑙 =
∞∑︁

𝑘=1
𝑎2

𝑘𝑒2𝑘𝑙 < ∞
}︂

, 𝑙 ∈ N0,

and the corresponding space of deterministic distributions of exponential growth
exp 𝑆′(R) =

⋃︀
𝑙∈N0

exp 𝑆−𝑙(R), where

exp 𝑆−𝑙(R) =
{︂

𝑓 =
∞∑︁

𝑘=1
𝑏𝑘 𝜉𝑘 : ‖𝑓‖2

exp,−𝑙 =
∞∑︁

𝑘=1
𝑏2

𝑘𝑒−2𝑘𝑙 < ∞
}︂

, 𝑙 ∈ N0.

These spaces satisfy exp 𝑆(R) ⊆ 𝑆(R) ⊆ 𝐿2(R) ⊆ 𝑆′(R) ⊆ exp 𝑆′(R), where each in-
clusion mapping is compact.

Let ℐ = (NN
0 )𝑐 denote the set of sequences of nonnegative integers which have

finitely many nonzero components 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑚, 0, 0, . . . ), 𝛼𝑖 ∈ N0, 𝑖 =
1, 2, . . . , 𝑚, 𝑚 ∈ N. The 𝑘-th unit vector 𝜀(𝑘) = (0, . . . , 0, 1, 0, . . . ), 𝑘 ∈ N is
the sequence of zeros with the number 1 as the 𝑘th component. The length of a
multi-index 𝛼 ∈ ℐ is defined as |𝛼| =

∑︀∞
𝑘=1 𝛼𝑘 and 𝛼! =

∏︀∞
𝑘=1 𝛼𝑘!. Let (2N)𝛼 =∏︀∞

𝑘=1(2𝑘)𝛼𝑘. Note that
∑︀

𝛼∈ℐ(2N)−𝑝𝛼 < ∞ for 𝑝>1 and
∑︀

𝛼∈ℐ 𝑒−𝑝(2N)𝛼

<∞ if 𝑝>0.
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Denote by 𝜒[0, 𝑡] the characteristic function of [0, 𝑡], 𝑡 ∈ R and by ∘ the function
composition 𝐹 ∘ 𝐺(𝑥) = 𝐹 (𝐺(𝑥)).

3. White noise spaces

Let the basic probability space (Ω, ℱ , 𝑃 ) be (𝑆′(R), ℬ, 𝑃 ), where 𝑆′(R) denotes
the space of tempered distributions, ℬ the Borel 𝜎-algebra generated by the weak
topology on 𝑆′(R) and 𝑃 denotes the unique probability measure on (𝑆′(R), ℬ)
corresponding to a given characteristic function. Recall, a mapping 𝐶 : 𝑆(R) → C
given on a nuclear space 𝑆(R) is called a characteristic function if it is continuous,
positive definite, i.e.,

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑧𝑖𝑧𝑗 𝐶(𝜙𝑖 − 𝜙𝑗) > 0, 𝜙1, . . . , 𝜙𝑛 ∈ 𝑆(R), 𝑧1, . . . , 𝑧𝑛 ∈ C,

for all 𝜙1, . . . , 𝜙𝑛 ∈ 𝑆(R) and 𝑧1, . . . , 𝑧𝑛 ∈ C, and if it satisfies 𝐶(0) = 1. Then by
the Bochner–Minlos theorem (see [7], [8]) there exists a unique probability measure
𝑃 on (𝑆′(R), ℬ) such that 𝐸𝑃

(︀
𝑒𝑖⟨𝜔,𝜙⟩)︀ = 𝐶(𝜙), for all 𝜙 ∈ 𝑆(R), where 𝐸𝑃 denotes

the expectation with respect to the measure 𝑃 and ⟨𝜔, 𝜙⟩ denotes the usual dual
paring between a tempered distribution 𝜔 ∈ 𝒮 ′(R) and a rapidly decreasing function
𝜙 ∈ 𝒮(R). Thus,

(3.1)
∫︁

𝑆′(R)
𝑒𝑖⟨𝜔,𝜙⟩𝑑𝑃 (𝜔) = 𝐶(𝜙), 𝜙 ∈ 𝒮(R).

Let 𝐿2(𝑃 ) = 𝐿2(𝑆′(R), ℬ, 𝑃 ) be the Hilbert space of square integrable functions
on 𝑆′(R) with respect to the measure 𝑃 and with norm induced by the inner product
(𝑓, 𝑔)𝐿2(𝑃 ) = 𝐸𝑃 (𝑓𝑔) =

∫︀
𝑆′(R) 𝑓(𝜔) 𝑔(𝜔) 𝑑𝑃 (𝜔). Let 𝐾𝛼, 𝛼 ∈ ℐ be the orthogonal

basis of 𝐿2(𝑃 ). The Wiener–Itô chaos expansion theorem states that every element
𝐹 ∈ 𝐿2(𝑃 ) has a unique representation of the form

(3.2) 𝐹 (𝜔) =
∑︁
𝛼∈ℐ

𝑐𝛼𝐾𝛼(𝜔), 𝑐𝛼 ∈ R,

such that
(3.3) ‖𝐹‖2

𝐿2(𝑃 ) =
∑︁
𝛼∈ℐ

𝑐2
𝛼‖𝐾𝛼‖2

𝐿2(𝑃 ) < ∞.

In Subsections 3.1 and 3.2 we will consider two special cases, when the measure
𝑃 is a Gaussian measure and a Poissonian measure. In these cases 𝐾𝛼 can be
taken as a family of Hermite and Charlier polynomials respectively, defined on an
infinite-dimensional space. Later in Subsection 3.3 we introduce 𝑞-weighted spaces
with respect to the probability measure 𝑃 , which represent the stochastic analogue
of the deterministic spaces 𝑆𝑙(R), 𝑆−𝑙(R), exp 𝑆𝑙(R) and exp 𝑆−𝑙(R) for 𝑙 ∈ N0.

3.1. Gaussian white noise space. If we choose in (3.1) the characteristic
function of a Gaussian random variable

(3.4) 𝐶(𝜙) = exp
[︂
−1

2‖𝜙‖2
𝐿2(R)

]︂
, 𝜙 ∈ 𝒮(R),
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then the corresponding unique measure 𝑃 from the Bochner–Minlos theorem is
called the Gaussian white noise measure 𝜇 and the triplet (𝑆′(R), ℬ, 𝜇) is called
the Gaussian white noise probability space.

Note that from (3.1) and (3.4) follows 𝐸𝜇(⟨𝜔, 𝑓⟩) = 0 and 𝐸𝜇(⟨𝜔, 𝑓⟩2) =
‖𝑓‖2

𝐿2(R), for 𝑓 ∈ 𝑆(R). Also the polarization formula 𝐸𝜇

(︀
⟨𝜔, 𝑓⟩ ⟨𝜔, 𝑔⟩

)︀
= (𝑓, 𝑔)𝐿2(R)

holds for all 𝑓, 𝑔 ∈ 𝑆(R).
By extending the action of a distribution 𝜔 ∈ 𝒮 ′(R) not only onto test functions

from 𝑆(R) but also onto elements of 𝐿2(R) we obtain Brownian motion in the form
𝐵𝑡(𝜔) := ⟨𝜔, 𝜒[0, 𝑡]⟩, 𝜔 ∈ 𝑆′(R). It is a Gaussian process with zero expectation and
covariance function 𝐸𝜇(𝐵𝑡(𝜔) 𝐵𝑠(𝜔)) = min{𝑡, 𝑠}. The Itô integral of 𝑓 ∈ 𝐿2(R) is
given by 𝐼(𝑓) = ⟨𝜔, 𝑓⟩ =

∫︀
R 𝑓(𝑡) 𝑑𝐵𝑡(𝜔). Then 𝐸𝜇(𝐼(𝑓)) = 0 and the Itô isometry

‖𝐼(𝑓)‖𝐿2(𝜇) = ‖𝑓‖𝐿2(R) holds for 𝑓 ∈ 𝐿2(R).
The family of Fourier–Hermite polynomials (cf. [8])

(3.5) 𝐻𝛼(𝜔) =
∞∏︁

𝑘=1
ℎ𝛼𝑘

(⟨𝜔, 𝜉𝑘⟩), 𝛼 ∈ ℐ,

forms an orthogonal basis of 𝐿2(𝜇), where ‖𝐻𝛼‖2
𝐿2(𝜇) = 𝛼!. In particular, for the

𝑘th unit vector 𝜀(𝑘) we have 𝐻𝜀(𝑘)(𝜔) = ⟨𝜔, 𝜉𝑘⟩ =
∫︀
R 𝜉𝑘(𝑡) 𝑑𝐵𝑡(𝜔) = 𝐼(𝜉𝑘), 𝑘 ∈ N.

From the Wiener–Itô chaos expansion theorem (3.2) each element 𝐹 ∈ 𝐿2(𝜇) has a
unique chaos expansion representation of the form 𝐹 (𝜔) =

∑︀
𝛼∈ℐ 𝑐𝛼𝐻𝛼(𝜔), where

‖𝐹‖2
𝐿2(𝜇) =

∑︀
𝛼∈ℐ 𝑐2

𝛼𝛼! and 𝑐𝛼 = 1
𝛼! 𝐸𝜇(𝐹𝐻𝛼) and ‖𝐹‖2

𝐿2(𝜇) =
∑︀

𝛼∈ℐ 𝑐2
𝛼𝛼! < ∞

(see (3.3)).

3.2. Poissonian white noise space. If we choose in (3.1) the characteristic
function of a compound Poisson random variable

(3.6) 𝐶(𝜙) = exp
[︂∫︁

R
(𝑒𝑖𝜙(𝑥) − 1) 𝑑𝑥

]︂
, 𝜙 ∈ 𝒮(R),

then the corresponding unique measure 𝑃 from the Bochner–Minlos theorem is
called the Poisonian white noise measure 𝜈 and the triplet (𝑆′(R), ℬ, 𝜈) is called
the Poissonian white noise probability space.

From (3.1) and (3.6) follows that ⟨𝜔, 𝜙⟩ has a nonzero expectation 𝐸𝜈(⟨𝜔, 𝜙⟩) =∫︀
R 𝜙(𝑥) 𝑑𝑥 and 𝐸𝜈(⟨𝜔, 𝜙⟩2) = ‖𝜙‖2

𝐿2(R)+(
∫︀
R 𝜙(𝑥) 𝑑𝑥)2 i.e., its variance is Var(⟨𝜔, 𝜙⟩)

= ‖𝜙‖2
𝐿2(R), for all 𝜙 ∈ 𝑆(R).

Hence the map 𝐽 : 𝜙 ↦→ ⟨𝜔, 𝜙⟩ −
∫︀
R 𝜙(𝑥) 𝑑𝑥, 𝜙 ∈ 𝑆(R) can be extended to an

isometry from 𝐿2(R) into 𝐿2(𝜈). Then 𝐸𝜈(𝐽(𝜙)) = 0 and ‖𝐽(𝜙)‖2
𝐿2(𝜈) = ‖𝜙‖2

𝐿2(R),
for all 𝜙 ∈ 𝐿2(R). The polarization formula 𝐸𝜈(𝐽(𝜑)𝐽(𝜙)) = (𝜑, 𝜙)𝐿2(R) holds for
all 𝜑, 𝜙 ∈ 𝐿2(R). A right continuous integer valued version of the process

𝑃𝑡(𝜔) = 𝐽(𝜒[0, 𝑡]) = ⟨𝜔, 𝜒[0, 𝑡]⟩ − 𝑡, 𝜔 ∈ 𝑆′(R),
belongs to 𝐿2(𝜈) and is called the compensated Poisson process.

The family of Charlier polynomial functionals 𝐶𝛼(𝜔), defined by
(3.7) 𝐶𝛼(𝜔) = 𝐶|𝛼|(𝜔; 𝜉1, . . . , 𝜉1⏟  ⏞  

𝛼1

, . . . , 𝜉𝑚, . . . , 𝜉𝑚⏟  ⏞  
𝛼𝑚

), 𝛼 = (𝛼1, . . . , 𝛼𝑚, 0, 0, . . . ) ∈ ℐ,
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where

𝐶𝑘(𝜔; 𝜙1, . . . , 𝜙𝑘)

= 𝜕𝑘

𝜕𝑢1 . . . 𝜕𝑢𝑘
exp

[︂⟨
𝜔, log

(︂
1 +

𝑘∑︁
𝑗=1

𝑢𝑗𝜙𝑗

)︂
−

𝑘∑︁
𝑗=1

𝑢𝑗

∫︁
R

𝜙𝑗(𝑦) 𝑑𝑦

⟩]︂⃒⃒
𝑢1=···=𝑢𝑘=0,

for 𝑘 ∈ N and 𝜙𝑗 ∈ 𝑆(R), forms an orthogonal basis of the space of Poissonian
square integrable random variables 𝐿2(𝜈) and ‖𝐶𝛼‖2

𝐿2(𝜈) = 𝛼!. In particular,
𝐶𝜀(𝑘)(𝜔) = 𝐶1(𝜔, 𝜉𝑘) = ⟨𝜔, 𝜉𝑘⟩ −

∫︀
R 𝜉𝑘(𝑥) 𝑑𝑥 = 𝐽(𝜉𝑘), 𝜔 ∈ 𝑆′(R), 𝑘 ∈ N. From

the Wiener–Itô chaos expansion theorem follows that every element 𝐺 ∈ 𝐿2(𝜈) is
given in the form 𝐺(𝜔) =

∑︀
𝛼∈ℐ 𝑏𝛼𝐶𝛼(𝜔), 𝑏𝛼 ∈ R, where ‖𝐺‖2

𝐿2(𝜈) =
∑︀

𝛼∈ℐ 𝛼!𝑏2
𝛼 is

finite.
The following important theorem, proved by Benth and Gjerde in [5], states

the existence of a unitary correspondence between the Gaussian and the Poissonian
spaces of random variables.

Theorem 3.1. [5] The map 𝒰 : 𝐿2(𝜇) → 𝐿2(𝜈) defined by

𝒰
(︂∑︁

𝛼∈ℐ
𝑏𝛼𝐻𝛼(𝜔)

)︂
=

∑︁
𝛼∈ℐ

𝑏𝛼𝐶𝛼(𝜔), 𝑏𝛼 ∈ R, 𝛼 ∈ ℐ,

is unitary i.e., it is surjective and the isometry ‖𝒰(𝐹 )‖𝐿2(𝜈) = ‖𝐹‖𝐿2(𝜇) holds.

Using the isometry 𝒰 all results obtained in the Gaussian case can be carried
over to the Poissonian case. The Fourier–Hermite orthogonal basis {𝐻𝛼}𝛼∈ℐ of the
space of Gaussian random variables just has to be replaced with the corresponding
elements of the Charlier polynomials orthogonal basis {𝐶𝛼}𝛼∈ℐ of the space of Pois-
sonian random variables. In the next section we will use this isometry to interpret
stochastic differential equations with the Malliavin derivative and their solutions
obtained in the Gaussian versions of 𝑞-weighted spaces with their corresponding
Poissonian versions.

For more details on Gaussian white noise spaces, Poissonian white noise spaces,
Hermite and Charlier polynomials we refer to [1, 3, 7, 8].

3.3. 𝑞-weighted stochastic spaces. In this subsection we define 𝑞-weighted
stochastic spaces of test functions (𝑄)𝑃

1 and stochastic generalized functions (𝑄)𝑃
−1,

with respect to the measure 𝑃 . Let 𝑞𝛼 > 1, 𝛼 ∈ ℐ. The space of 𝑞-weighted 𝑃 -
stochastic test functions (𝑄)𝑃

1 =
⋂︀

𝑝∈N0
(𝑄)𝑃

1,𝑝 is the projective limit of the spaces

(𝑄)𝑃
1,𝑝 =

{︂
𝑓 =

∑︁
𝛼∈ℐ

𝑎𝛼𝐾𝛼 ∈ 𝐿2(𝑃 ) : ‖𝑓‖2
(𝑄)𝑃

1,𝑝
=

∑︁
𝛼∈ℐ

(𝛼!)2 𝑎2
𝛼 𝑞𝑝

𝛼 < ∞
}︂

, 𝑝 ∈ N0.

The space of 𝑞-weighted 𝑃 -stochastic generalized functions (𝑄)𝑃
−1 =

⋃︀
𝑝∈N0

(𝑄)𝑃
−1,−𝑝

is the inductive limit of the spaces

(𝑄)𝑃
−1,−𝑝 =

{︂
𝐹 =

∑︁
𝛼∈ℐ

𝑏𝛼𝐾𝛼 : ‖𝐹‖2
(𝑄)𝑃

−1,−𝑝
=

∑︁
𝛼∈ℐ

𝑏2
𝛼 𝑞−𝑝

𝛼 < ∞
}︂

, 𝑝 ∈ N0.
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Two important special cases will be given by weights of the form 𝑞𝛼 = (2N)𝛼 and
𝑞𝛼 = 𝑒(2N)𝛼 . For weights of the form 𝑞𝛼 = (2N)𝛼 we obtain the Kondratiev spaces of
𝑃 -stochastic test functions and 𝑃 -stochastic generalized functions, denoted by (𝑆)𝑃

1
and (𝑆)𝑃

−1 respectively. For 𝑞𝛼 = 𝑒(2N)𝛼 we obtain the exponential growth spaces
of 𝑃 -stochastic test functions and 𝑃 -stochastic generalized functions, denoted by
exp(𝑆)𝑃

1 and exp(𝑆)𝑃
−1 respectively. It holds that

(3.8) exp(𝑆)𝑃
1 ⊆ (𝑆)𝑃

1 ⊆ 𝐿2(𝑃 ) ⊆ (𝑆)𝑃
−1 ⊆ exp(𝑆)𝑃

−1.

In particular, for 𝑃 = 𝜇 the spaces in (3.8) become Gaussian 𝑞-weighted spaces and
relation (3.8) was proven in [20]. For 𝑃 = 𝜈 we obtain the Poissonian 𝑞-weighted
spaces. For more details on the Kondratiev spaces we refer to [8] and on spaces of
exponential growth to [20].

We can extend the unitary mapping 𝒰 given in the Theorem 3.1. into a linear
and isometric mapping on 𝑞-weighted spaces by defining 𝒰 : (𝑄)𝜇

−1 → (𝑄)𝜈
−1 such

that

(3.9) 𝒰
[︂ ∑︁

𝛼∈ℐ
𝑎𝛼𝐻𝛼(𝜔)

]︂
=

∑︁
𝛼∈ℐ

𝑎𝛼𝐶𝛼(𝜔), 𝑎𝛼 ∈ R,

for elements 𝐹 =
∑︀

𝛼∈ℐ 𝑎𝛼𝐻𝛼(𝜔) ∈ (𝑄)𝜇
−1,−𝑝0

and the isometry ‖𝒰(𝐹 )‖(𝑄)𝜈
−1,−𝑝

=
‖𝐹‖(𝑄)𝜇

−1,−𝑝
holds for all 𝑝 > 𝑝0. More details can be found in [5] and [8].

3.4. Generalized stochastic processes of type (O). Generalized stochas-
tic processes of type (O) are measurable mappings from R into some 𝑞-weighted
space of generalized functions i.e., measurable mappings R → (𝑄)𝑃

−1. Since gener-
alized stochastic processes of type (O) with values in (𝑄)𝑃

−1 are defined pointwisely
with respect to the parameter 𝑡 ∈ R, their chaos expansion follows directly from
the Wiener-Itô chaos expansion theorem i.e., 𝐹𝑡(𝜔) =

∑︀
𝛼∈ℐ 𝑓𝛼(𝑡)𝐾𝛼(𝜔), 𝑡 ∈ R,

where 𝑓𝛼 : R → R, 𝛼 ∈ ℐ are measurable functions and there exists 𝑝 ∈ N0 such
that

∑︀
𝛼∈ℐ |𝑓𝛼(𝑡)|2𝑞−𝑝

𝛼 < ∞ for all 𝑡 ∈ R. The unitary mapping 𝒰 can be extended
to the class of generalized stochastic processes of type (O) in the similar way as in
(3.9).

Example 3.1. Brownian motion is given by the chaos expansion

(3.10) 𝐵𝑡(𝜔) =
∞∑︁

𝑘=1

(︂∫︁ 𝑡

0
𝜉𝑘(𝑠) 𝑑𝑠

)︂
𝐻𝜖(𝑘)(𝜔)

and it is an element of 𝐿2(𝜇).
Singular white noise 𝑊𝑡(·) is defined by the chaos expansion

(3.11) 𝑊𝑡(𝜔) =
∞∑︁

𝑘=1
𝜉𝑘(𝑡)𝐻𝜖(𝑘)(𝜔),

and it is an element of the space (𝒮)𝜇
−1, for all 𝑡 ∈ R. It is integrable and the

relation 𝑑
𝑑𝑡 𝐵𝑡 = 𝑊𝑡 holds (see [8]) in the (𝑆)𝜇

−1 sense.
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Example 3.2. The chaos expansion of a compensated Poisson process 𝑃𝑡(𝜔) ∈
𝐿2(𝜈) is given by

(3.12) 𝑃𝑡(𝜔) =
∞∑︁

𝑘=1

(︂∫︁ 𝑡

0
𝜉𝑘(𝑠) 𝑑𝑠

)︂
𝐶𝜀(𝑘)(𝜔).

The Poissonian compensated white noise 𝑉𝑡(·) is defined by the chaos expansion

(3.13) 𝑉𝑡(𝜔) =
∞∑︁

𝑘=1
𝜉𝑘(𝑡) 𝐶𝜀(𝑘)(𝜔),

and it is an element of the space (𝑆)𝜈
−1 for all 𝑡 ∈ R. It is integrable and the

relation 𝑑𝑃𝑡

𝑑𝑡 = 𝑉𝑡 holds. Note that 𝑃𝑡(𝜔) = 𝒰(𝐵𝑡(𝜔)) and 𝑉𝑡(𝜔) = 𝒰(𝑊𝑡(𝜔)),
which is consistent with (3.9).

4. Fractional white noise spaces

4.1. Fractional Gaussian white noise space. A fractional Brownian mo-
tion with Hurst index 𝐻 ∈ (0, 1) on the probability space (Ω, ℱ , 𝑃 ) is defined to be
a Gaussian process 𝐵(𝐻) =

{︀
𝐵

(𝐻)
𝑡 (·), 𝑡 ∈ R

}︀
with 𝐵

(𝐻)
0 = 0 a.s., zero expectation

𝐸
[︀
𝐵

(𝐻)
𝑡

]︀
= 0 for all 𝑡 ∈ R, and covariance function

(4.1) 𝐸
[︀
𝐵(𝐻)

𝑠 𝐵
(𝐻)
𝑡

]︀
= 1

2
{︀

|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻
}︀

, 𝑠, 𝑡 ∈ R.

The fractional Brownian motion is a centered Gaussian process with noninde-
pendent stationary increments and its dependence structure is modified by the
Hurst parameter 𝐻 ∈ (0, 1). For 𝐻 = 1

2 the process 𝐵
(1/2)
𝑡 becomes a standard

Brownian motion and it has independent increments. From (4.1) it follows that
𝐸

(︀
𝐵

(𝐻)
𝑡 − 𝐵

(𝐻)
𝑠

)︀2 = |𝑡 − 𝑠|2𝐻 and according to Kolmogorov’s theorem, 𝐵(𝐻) has a
continuous modification.

The fractional Brownian motion 𝐵(𝐻) is an 𝐻 self-similar process, i.e., 𝐵
(𝐻)
𝛼𝑡 =

𝛼𝐻𝐵
(𝐻)
𝑡 , 𝛼 > 0. For any 𝑛 ∈ Z, 𝑛 ̸= 0 the autocovariance function is given by

𝑟(𝑛) := 𝐸
[︀
𝐵

(𝐻)
1 (𝐵(𝐻)

𝑛+1 − 𝐵(𝐻)
𝑛 )

]︀
∼ 𝐻(2𝐻 − 1)|𝑛|2𝐻−1, when |𝑛| → ∞.

For 𝐻 ∈ ( 1
2 , 1) the fractional Brownian motion has the long-range dependence

property
∑︀∞

𝑛=1 𝑟(𝑛) = ∞ and for 𝐻 ∈ (0, 1
2 ) the property

∑︀∞
𝑛=1 |𝑟(𝑛)| < ∞. More

details on the fractional Brownian motion can be found in [2, 3, 6, 9, 10, 15, 22].
Further on we follow the ideas of [6] where the fractional white noise theory for

the Hurst parameter 𝐻 ∈ (0, 1) was developed. In [6] the fractional operator 𝑀 =
𝑀 (𝐻) was introduced, which connects the fractional Brownian motion 𝐵

(𝐻)
𝑡 and

the classical Brownian motion 𝐵𝑡 on the white noise probability space (𝑆′(R), ℬ, 𝜇).

Definition 4.1. Let 𝐻 ∈ (0, 1). Define the operator 𝑀 = 𝑀 (𝐻) : 𝒮(R) →
𝐿2(R) ∩ 𝐶∞(R) by

(4.2) ̂︂𝑀𝑓(𝑦) = |𝑦| 1
2 −𝐻 ̂︀𝑓(𝑦), 𝑦 ∈ R, 𝑓 ∈ 𝑆(R),

where ̂︀𝑓(𝑦) :=
∫︀
R 𝑒−𝑖𝑥𝑦𝑓(𝑥) 𝑑𝑥 is the Fourier transformation of 𝑓 .
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Note that the operator 𝑀 = 𝑀 (𝐻) has the structure of a convolution operator.
From (4.2) the form of the inverse operator 𝑀−1 = 𝑀 (1−𝐻) follows, i.e., for all
𝐻 ∈ (0, 1)

(4.3) 𝑀 (𝐻) ∘ 𝑀 (1−𝐻)(𝑓) = 𝑓, 𝑓 ∈ 𝑆(R).
An equivalent definition of the operator 𝑀 is given by

(4.4) 𝑀𝑓(𝑥) = − 𝑑

𝑑𝑥

𝑐𝐻

𝐻 − 1
2

∫︁
R
(𝑡 − 𝑥) 𝑓(𝑡)

|𝑡 − 𝑥|𝐻− 3
2

𝑑𝑡, 𝑓 ∈ 𝑆(R),

where 𝑐𝐻 =
[︀
2Γ(𝐻 − 1

2 ) cos( 𝜋
2 (𝐻 − 1

2 ))
]︀−1[︀

Γ(2𝐻 + 1) sin(𝜋𝐻)
]︀ 1

2 and Γ(·) is the
Gamma function. From (4.4) it follows that the operator 𝑀 can be interpreted as
the 𝛼th Riemann–Liouville fractional integral of 𝑓 , where 𝛼 = 1

2 − 𝐻. For more
details on the theory of deterministic fractional derivatives and integrals we refer to
[21]. Let 𝐿2

𝐻(R) = {𝑓 : R → R; 𝑀𝑓(𝑥) ∈ 𝐿2(R)}. The space 𝐿2
𝐻(R) is the closure

of 𝑆(R) with respect to the norm ‖𝑓‖𝐿2
𝐻

(R) = ‖𝑀𝑓‖𝐿2(R), 𝑓 ∈ 𝑆(R) induced by the
inner product (𝑓, 𝑔)𝐿2

𝐻
(R) = (𝑀𝑓, 𝑀𝑔)𝐿2(R). The operator 𝑀 is self-adjoint and for

𝑓, 𝑔 ∈ 𝐿2(R) ∩ 𝐿2
𝐻(R) we have (𝑓, 𝑀𝑔)𝐿2

𝐻
(R) = (𝑀𝑓, 𝑔)𝐿2

𝐻
(R).

Theorem 4.1. [6] Let 𝑀 : 𝐿2
𝐻(R) → 𝐿2(R) defined by (4.2) be the extension

of the operator 𝑀 from Definition 4.1. Then 𝑀 is an isometry between the two
Hilbert spaces 𝐿2(R) and 𝐿2

𝐻(R). The functions

(4.5) 𝑒𝑛(𝑥) = 𝑀−1𝜉𝑛(𝑥), 𝑛 ∈ N,

belong to 𝑆(R) and form an orthonormal basis in 𝐿2
𝐻(R).

Following [2] and [6] we extend 𝑀 onto 𝒮 ′(R) and define 𝑀 : 𝑆′(R) → 𝑆′(R)
by ⟨𝑀𝜔, 𝑓⟩ = ⟨𝜔, 𝑀𝑓⟩, 𝑓 ∈ 𝑆(R), 𝜔 ∈ 𝑆′(R). The fractional Itô integral of a
deterministic function 𝑓 ∈ 𝐿2

𝐻(R) is defined by 𝐼(𝐻)(𝑓) =
∫︀
R 𝑓(𝑡) 𝑑𝐵

(𝐻)
𝑡 (𝜔) =∫︀

R 𝑀𝑓(𝑡) 𝑑𝐵𝑡(𝜔) = 𝐼(𝑀𝑓). Then the relation ‖𝐼(𝑀𝑓)‖𝐿2(𝜇) = ‖𝑀𝑓‖𝐿2(R) =
‖𝑓‖𝐿2

𝐻
(R) holds. For more details on this subject we refer to [2, 3, 6, 8].

The 𝑡-continuous version of the process 𝐵
(𝐻)
𝑡 (𝜔) := ⟨𝜔, 𝑀𝜒[0, 𝑡](·)⟩, 𝜔 ∈ 𝑆′(R)

is an element of 𝐿2(𝜇) called fractional Brownian motion (see [2, 6, 10]).
Now we extend the action of the operator 𝑀 from 𝒮 ′(R) onto 𝐿2(𝜇) and define

the stochastic analogue of 𝐿2
𝐻(R). Let

(4.6) 𝐿2(𝜇𝐻) = 𝐿2(𝜇 ∘ 𝑀−1) = {𝐺 : Ω → R ; 𝐺 ∘ 𝑀 ∈ 𝐿2(𝜇)}.

It is the space of square integrable functions on 𝑆′(R) with respect to the fractional
Gaussian white noise measure 𝜇𝐻 . Since 𝐺 ∈ 𝐿2(𝜇𝐻) if and only if 𝐺∘𝑀 ∈ 𝐿2(𝜇),
it follows that 𝐺 has an expansion of the form

𝐺(𝑀𝜔) =
∑︁
𝛼∈ℐ

𝑐𝛼𝐻𝛼(𝜔) =
∑︁
𝛼∈ℐ

𝑐𝛼

∞∏︁
𝑖=1

ℎ𝛼𝑖
(⟨𝜔, 𝜉𝑖⟩)

=
∑︁
𝛼∈ℐ

𝑐𝛼

∞∏︁
𝑖=1

ℎ𝛼𝑖(⟨𝜔, 𝑀𝑒𝑖⟩) =
∑︁
𝛼∈ℐ

𝑐𝛼

∞∏︁
𝑖=1

ℎ𝛼𝑖(⟨𝑀𝜔, 𝑒𝑖⟩).
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Define the family of Fourier–Hermite polynomials by

(4.7) ̃︀ℋ𝛼(𝜔) =
∞∏︁

𝑘=1
ℎ𝛼𝑘

(⟨𝜔, 𝑒𝑘⟩), 𝛼 ∈ ℐ.

Now, it follows that the family { ̃︀ℋ𝛼; 𝛼 ∈ ℐ} forms an orthogonal basis of 𝐿2(𝜇𝐻),
‖ ̃︀ℋ𝛼‖2

𝐿2(𝜇𝐻 ) = 𝛼!, 𝛼 ∈ ℐ, and 𝐺 ∈ 𝐿2(𝜇𝐻) has a chaos expansion representation of
the form 𝐺(𝜔) =

∑︀
𝛼∈ℐ 𝑐𝛼

̃︀ℋ𝛼(𝜔), 𝑐𝛼 ∈ R and ‖𝐺‖2
𝐿2(𝜇𝐻 ) =

∑︀
𝛼∈ℐ 𝑐2

𝛼𝛼!. Moreover,
𝑐𝛼 = 1

𝛼! 𝐸𝜇𝐻
(𝐺 ̃︀ℋ𝛼(𝜔)) and ‖𝐺‖𝐿2(𝜇𝐻 ) = ‖𝐺 ∘ 𝑀‖𝐿2(𝜇).

Definition 4.2. Let ℳ : 𝐿2(𝜇𝐻) → 𝐿2(𝜇) be defined by ℳ( ̃︀ℋ𝛼) = 𝐻𝛼 and
extend it by linearity and continuity to

(4.8) ℳ
(︂∑︁

𝛼∈ℐ
𝑐𝛼

̃︀ℋ𝛼

)︂
=

∑︁
𝛼∈ℐ

𝑐𝛼𝐻𝛼

for 𝐺 =
∑︀

𝛼∈ℐ 𝑐𝛼
̃︀ℋ𝛼 ∈ 𝐿2(𝜇𝐻).

Note that from (3.5), (4.7) and (4.8) follows ℳ( ̃︀ℋ𝛼(𝜔)) = ̃︀ℋ𝛼(𝑀𝜔) = 𝐻𝛼(𝜔),
𝜔 ∈ 𝒮 ′(R), 𝛼 ∈ ℐ. It holds that ‖ℳ( ̃︀ℋ𝛼)‖𝐿2(𝜇) = ‖𝐻𝛼‖𝐿2(𝜇) = 𝛼! = ‖ ̃︀ℋ𝛼‖𝐿2(𝜇𝐻 ),
thus the operator ℳ is an isometry between spaces of classical Gaussian and frac-
tional Gaussian random variables and its action can be seen as a transformation of
the corresponding elements of the orthogonal basis { ̃︀ℋ𝛼}𝛼∈ℐ into {𝐻𝛼}𝛼∈ℐ . The
connection between the two bases is given by 𝐻𝛼(𝜔) = ℳ ̃︀ℋ𝛼(𝜔) and ̃︀ℋ𝛼(𝜔) =
ℳ−1𝐻𝛼(𝜔), 𝜔 ∈ 𝒮 ′(R), 𝛼 ∈ ℐ. Thus, every element of 𝐿2(𝜇𝐻) can be represented
as the image of a unique 𝑓(𝜔) =

∑︀
𝛼∈ℐ 𝑐𝛼𝐻𝛼(𝜔) ∈ 𝐿2(𝜇) such that 𝐹 = ℳ−1𝑓 .

Then, 𝐹 is of the form 𝐹 (𝜔) =
∑︀

𝛼∈ℐ 𝑐𝛼
̃︀ℋ(𝜔).

For 𝑃 = 𝜇𝐻 the spaces in (3.8) reduce to fractional 𝑞-weighted spaces of
stochastic test functions and stochastic generalized functions. In [10] we consid-
ered the following inclusions exp(𝑆)𝜇𝐻

1 ⊆ (𝑆)𝜇𝐻

1 ⊆ 𝐿2(𝜇𝐻) ⊆ (𝑆)𝜇𝐻

−1 ⊆ exp(𝑆)𝜇𝐻

−1 .
The action of the operator ℳ can be extended to 𝑞−weighted spaces by defining
ℳ : (𝑄)𝜇𝐻

−1 → (𝑄)𝜇
−1 given by

(4.9) ℳ
[︂ ∑︁

𝛼∈ℐ
𝑎𝛼

̃︀ℋ𝛼(𝜔)
]︂

=
∑︁
𝛼∈ℐ

𝑎𝛼𝐻𝛼(𝜔), 𝑎𝛼 ∈ R.

This extension is well defined since there exists 𝑝 ∈ N such that
∑︀

𝛼∈ℐ 𝑎2
𝛼𝑞−𝑝

𝛼 < ∞.
In an analogous way the action of the operator ℳ can be extended to gener-

alized stochastic processes of type (O).

Example 4.1. The fractional Brownian motion 𝐵
(𝐻)
𝑡 (𝜔) as an element of

𝐿2(𝜇), is defined by the chaos expansion
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𝐵
(𝐻)
𝑡 (𝜔) = ⟨𝜔, 𝑀𝜒[0, 𝑡]⟩ = ⟨𝑀𝜔, 𝜒[0, 𝑡]⟩

=
∞∑︁

𝑘=1
(𝜒[0, 𝑡], 𝑒𝑘)𝐿2

𝐻
(R) ⟨𝑀𝜔, 𝑒𝑘⟩ =

∞∑︁
𝑘=1

(𝑀𝜒[0, 𝑡], 𝑀𝑒𝑘)𝐿2(R) ⟨𝜔, 𝑀𝑒𝑘⟩

=
∞∑︁

𝑘=1
(𝜒[0, 𝑡], 𝑀𝜉𝑘)𝐿2(R) ⟨𝜔, 𝜉𝑘⟩ =

∞∑︁
𝑘=1

(︂∫︁ 𝑡

0
𝑀𝜉𝑘(𝑠) 𝑑𝑠

)︂
𝐻𝜀(𝑘)(𝜔).

(4.10)

Applying the map ℳ−1 = ℳ(1−𝐻) we obtain the chaos decomposition form
of the fractional Brownian motion in 𝐿2(𝜇𝐻):

(4.11) 𝐵
(𝐻)
𝑡 (𝜔) =

∞∑︁
𝑘=1

(︂∫︁ 𝑡

0
𝑀𝜉𝑘(𝑠) 𝑑𝑠

)︂ ̃︀ℋ𝜀(𝑘)(𝜔).

On the other hand,

(4.12) 𝐵
(𝐻)
𝑡 (𝜔) =

∞∑︁
𝑘=1

⟨𝜒[0, 𝑡], 𝜉𝑘⟩𝐿2(R)⟨𝜔, 𝑀𝜉𝑘⟩ =
∞∑︁

𝑘=1

(︂∫︁ 𝑡

0
𝜉𝑘(𝑠) 𝑑𝑠

)︂
⟨𝜔, 𝑀𝜉𝑘⟩.

Note that for a fixed Hurst parameter 𝐻 ∈ (0, 1) we have 𝑀 = 𝑀 (𝐻) and due to
(4.3) 𝑀−1 = 𝑀 (1−𝐻), thus 𝑒

(𝐻)
𝑘 = 𝑀 (1−𝐻)𝜉𝑘 implies 𝑀 (𝐻)𝜉𝑘 = 𝑒

(1−𝐻)
𝑘 and we may

consider (4.12) to be the chaos decomposition of the fractional Brownian motion
in 𝐿2(𝜇(1−𝐻)) = 𝐿2(𝜇 ∘ 𝑀 (𝐻)) by the orthogonal basis ̃︀ℋ𝜀(𝑘)(𝜔) = ⟨𝜔, 𝑒

(1−𝐻)
𝑘 ⟩. In

other words, the fractional Brownian motion with the Hurst parameter 𝐻 ∈ (0, 1)
is the image of the classical Brownian motion under the mapping ℳ = ℳ(𝐻)

in the fractional white noise space 𝐿2(𝜇(1−𝐻)). Thus, we can consider fractional
Brownian motion as an element of three different spaces, as defined in (4.10), (4.11)
and (4.12).

Example 4.2. Fractional white noise 𝑊
(𝐻)
𝑡 (·) is defined by the chaos expan-

sions

(4.13) 𝑊
(𝐻)
𝑡 (𝜔) =

∞∑︁
𝑘=1

𝜉𝑘(𝑡) ̃︀ℋ𝜀(𝑘)(𝜔) =
∞∑︁

𝑘=1
𝑀𝜉𝑘(𝑡)𝐻𝜀(k)(𝜔),

in the spaces (𝑆)𝜇(1−𝐻)
−1 and (𝑆)𝜇

−1 respectively. It is integrable and the relation
𝑑
𝑑𝑡 𝐵

(𝐻)
𝑡 = 𝑊

(𝐻)
𝑡 holds (see [8]) in the (𝑆)𝜇

−1 sense.

4.2. Fractional Poissonian white noise space. In this subsection we use
the same idea as in the Gaussian case and apply the isomorphism 𝑀 to the ele-
ments of the Poissonian white noise space to obtain their corresponding fractional
versions. Let 𝐻 ∈ (0, 1) and 𝐽 : 𝐿2(R) → 𝐿2(𝜈), 𝐽(𝑓) = ⟨𝜔, 𝑓⟩ −

∫︀
R 𝑓(𝑥) 𝑑𝑥

as in Subsection 3.2. Define 𝐽 (𝐻) := 𝐽 ∘ 𝑀 as the mapping 𝐿2(R) → 𝐿2(𝜈),
𝑓 ↦→ ⟨𝜔, 𝑀𝑓⟩ −

∫︀
R 𝑀𝑓(𝑥) 𝑑𝑥. Then ‖𝐽(𝑀𝑓)‖𝐿2(𝜈) = ‖𝑀𝑓‖𝐿2(R) = ‖𝑓‖𝐿2(R) holds

for 𝑓 ∈ 𝐿2(R).
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Similarly as in (4.6) we let 𝐿2(𝜈𝐻) = 𝐿2(𝜈 ∘ 𝑀−1) be the space of square
integrable functions on 𝑆′(R) with respect to fractional Poissonian white noise
measure 𝜈𝐻 . The family of Charlier polynomials̃︀𝒞𝛼(𝜔) = 𝐶|𝛼|(𝜔; 𝑒1, . . . , 𝑒1⏟  ⏞  

𝛼1

, . . . , 𝑒𝑚, . . . , 𝑒𝑚⏟  ⏞  
𝛼𝑚

), 𝛼 = (𝛼1, . . . , 𝛼𝑚, 0, 0, . . . ) ∈ ℐ

(see (3.7) and (4.5)) forms the orthogonal basis of the Hilbert space of fractional
Poissonian random variables i.e., 𝐿2(𝜈𝐻) consists of elements 𝐹 =

∑︀
𝛼∈ℐ 𝑎𝛼

̃︀𝒞𝛼(𝜔),
𝑎𝛼 ∈ R such that ‖𝐹‖2

𝐿2(𝜈𝐻 ) =
∑︀

𝛼∈ℐ 𝑎2
𝛼𝛼! < ∞.

The mapping ℳ−1 : 𝐿2(𝜈) → 𝐿2(𝜈𝐻) defined by ̃︀𝒞𝛼(𝜔) = ℳ−1𝐶𝛼(𝜔), 𝛼 ∈ ℐ,
extends by linearity and continuity to 𝐿2(𝜈). Thus every element 𝐺 ∈ 𝐿2(𝜈𝐻) can
be represented as an inverse picture of a unique 𝑔 =

∑︀
𝛼∈ℐ 𝑎𝛼𝐶𝛼(𝜔) ∈ 𝐿2(𝜈) such

that 𝐺(𝜔) = ℳ−1𝑔(𝜔) =
∑︀

𝛼∈ℐ 𝑎𝛼 𝐶𝛼(𝜔) ∈ 𝐿2(𝜈).

Example 4.3. There exists a right 𝑡-continuous version of the process 𝑃
(𝐻)
𝑡 (𝜔) =

𝐽(𝑀𝜒[0, 𝑡])(𝜔), 𝜔 ∈ 𝑆′(R), that belongs to 𝐿2(𝜈𝐻) and is called the fractional com-
pensated Poisson process. It is given by the chaos expansions

𝑃
(𝐻)
𝑡 (𝜔) =

∞∑︁
𝑘=1

(︂∫︁ 𝑡

0
𝑀𝜉𝑘(𝑠)𝑑𝑠

)︂
𝐶𝜀(𝑘)(𝜔) in 𝐿2(𝜈),(4.14)

𝑃
(𝐻)
𝑡 (𝜔) =

∞∑︁
𝑘=1

(︂∫︁ 𝑡

0
𝜉𝑘(𝑠)𝑑𝑠

)︂ ̃︀𝒞𝜀(𝑘)(𝜔) in 𝐿2(𝜈(1−𝐻)).(4.15)

Example 4.4. The fractional compensated Poissonian noise is defined by the
chaos expansions

(4.16) 𝑉
(𝐻)

𝑡 (𝜔) =
∞∑︁

𝑘=1
𝜉𝑘(𝑡) ̃︀𝒞𝜀(𝑘)(𝜔) =

∞∑︁
𝑘=1

𝑀𝜉𝑘(𝑡)𝐶𝜀(k)(𝜔),

in the spaces (𝑆)𝜈(1−𝐻)
−1 and (𝑆)𝜈

−1 respectively.

Remark 4.1. Since there exists an isomorphism ℳ between the classical white
noise spaces (Gaussian or Poissonian) and their corresponding fractional white noise
spaces; and also there exists the isomorphism 𝒰 between Gaussian and Poissonian
white noise spaces (classical or fractional), all results obtained, for example, in the
classical Gaussian case can be interpreted in all other spaces. In this manner, the
space 𝐿2(𝜈𝐻) can be obtained from the fractional Gaussian white noise space by
𝐿2(𝜈𝐻) = 𝒰 [𝐿2(𝜇𝐻)] or directly from the Gaussian white noise space 𝐿2(𝜈𝐻) =
𝒰 [ℳ−1[𝐿2(𝜇)]] or 𝐿2(𝜈𝐻) = ℳ−1[𝒰 [𝐿2(𝜇)]]. All connections are described in the
following commutative diagram.

𝐿2(𝜇) ℳ−1
//

𝒰∘ℳ−1

ℳ−1∘𝒰 %%
𝒰
��

𝐿2(𝜇𝐻)

𝒰
��

𝐿2(𝜈)
ℳ−1
// 𝐿2(𝜈𝐻)

Diagram 1
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5. Chaos expansion of generalized random process of type (I)

Denote by e𝑘, 𝑘 ∈ N the orthonormal basis of 𝐿2
𝐻(R), i.e., e𝑘 is either the

orthonormal Hermite basis 𝜉𝑘, 𝑘 ∈ N (for 𝐻 = 1
2 ) or the orthonormal fractional

basis 𝑒𝑘 = 𝑀−1𝜉𝑘, 𝑘 ∈ N (for 𝐻 ∈ (0, 1)). Note, ‖e𝑘‖2
−𝑙 = (2𝑘)−𝑙 and ‖e𝑘‖2

exp,−𝑙 =
𝑒−2𝑘𝑙 for all 𝑘, 𝑙 ∈ N. Denote by 𝐾𝛼, 𝛼 ∈ ℐ the orthogonal basis of the space of
square integrable random variables 𝐿2(𝑃 ) on the white noise space (𝒮 ′(R), ℬ, 𝑃 ).

Table 1.

white noise classical fractional
space Gaussian Poissonian Gaussian Poissonian

measure 𝑃 𝜇 𝜈 𝜇𝐻 𝜈𝐻

basis 𝐾𝛼 𝐻𝛼 𝐶𝛼
̃︀ℋ𝛼

̃︀𝒞𝛼

basis e𝑘 𝜉𝑘 𝜉𝑘 𝑒𝑘 𝑒𝑘

We extend the chaos expansion theorem to the class of generalized random
processes of type (I). Let 𝑋 be a topological vector space and 𝑋 ′ its dual.

We consider generalized stochastic processes of type (I) as linear and continuous
mappings from 𝑋 into the space of 𝑞-weighted generalized functions (𝑄)𝑃

−1 i.e.,
elements of ℒ(𝑋, (𝑄)𝑃

−1). If at least one of the spaces 𝑋 or (𝑄)𝑃
−1 is nuclear, then

ℒ(𝑋, (𝑄)𝑃
−1) ∼= 𝑋 ′ ⊗ (𝑄)𝑃

−1.

Example 5.1. Brownian motion 𝐵𝑡(𝜔) defined in (3.10) and fractional Brow-
nian motion defined in (4.10), as well as the Poissonian process defined in (3.12)
and fractional Poissonian process (4.14) are stochastic processes of type (I), i.e.,
elements of the space 𝑋 ⊗ (𝑄)𝑃

−1 where 𝑋 = 𝐶∞([0, +∞)). White noise (3.11),
fractional white noise (4.13), Poissonian noise (3.13) and fractional Poissonian noise
(4.16) are elements of 𝑋 ⊗ (𝑄)𝑃

−1, where 𝑋 = 𝒮 ′(R).

Theorem 5.1. [20] Let 𝑋 be a Banach space endowed with ‖ · ‖𝑋 . Generalized
stochastic processes as elements of ℒ(𝑋, (𝑄)𝑃

−1) have a chaos expansion of the form

(5.1) 𝑢 =
∑︁
𝛼∈ℐ

𝑓𝛼 ⊗ 𝐾𝛼, 𝑓𝛼 ∈ 𝑋, 𝛼 ∈ ℐ,

and there exists 𝑝 ∈ N0 such that

‖𝑢‖2
𝑋⊗(𝑄)𝑃

−1,−𝑝
=

∑︁
𝛼∈ℐ

‖𝑓𝛼‖2
𝑋𝑞−𝑝

𝛼 < ∞.

Theorem 5.2. [20] Let 𝑋 =
⋂︀∞

𝑘=0 𝑋𝑘 be a nuclear space endowed with a
family of seminorms {‖ · ‖𝑘; 𝑘 ∈ N0} and let 𝑋 ′ =

⋃︀∞
𝑘=0 𝑋−𝑘 be its topological dual.

Generalized stochastic processes as elements of 𝑋 ′ ⊗ (𝑄)𝑃
−1 have a chaos expansion

of the form 𝑢 =
∑︀

𝛼∈ℐ 𝑓𝛼 ⊗ 𝐾𝛼, 𝑓𝛼 ∈ 𝑋−𝑘, 𝛼 ∈ ℐ, where 𝑘 ∈ N0 does not depend
on 𝛼 ∈ ℐ, and there exists 𝑝 ∈ N0 such that

‖𝑢‖2
𝑋′⊗(𝑄)𝑃

−1,−𝑝
=

∑︁
𝛼∈ℐ

‖𝑓𝛼‖2
−𝑘𝑞−𝑝

𝛼 < ∞.
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With the same notation as in (5.1) we will denote by 𝐸(𝑢) = 𝑓(0,0,0,...) the
generalized expectation of the process 𝑢.

We extend the action of the operator 𝒰 given by (3.9) and also the action of
the operator ℳ given by (4.9) to the class of generalized stochastic processes of
type (I). We define 𝒰 : 𝑋⊗(𝑄)𝜇

−1 → 𝑋⊗(𝑄)𝜈
−1 such that for every

∑︀
𝛼∈ℐ 𝑢𝛼⊗𝐻𝛼 ∈

𝑋 ⊗ (𝑄)𝜇
−1

𝒰
[︂ ∑︁

𝛼∈ℐ
𝑢𝛼 ⊗ 𝐻𝛼

]︂
=

∑︁
𝛼∈ℐ

𝑢𝛼 ⊗ 𝐶𝛼, 𝑢𝛼 ∈ 𝑋, 𝛼 ∈ ℐ.

For all processes in 𝑋 ⊗(𝑄)𝜇𝐻

−1 , represented in the form
∑︀

𝛼∈ℐ 𝑣𝛼 ⊗ ̃︀ℋ𝛼(𝜔) we define
the operator ℳ : 𝑋 ⊗ (𝑄)𝜇𝐻

−1 → 𝑋 ⊗ (𝑄)𝜇
−1 by

ℳ
[︂ ∑︁

𝛼∈ℐ
𝑣𝛼 ⊗ ̃︀ℋ𝛼

]︂
=

∑︁
𝛼∈ℐ

𝑣𝛼 ⊗ 𝐻𝛼, 𝑣𝛼 ∈ 𝑋, 𝛼 ∈ ℐ.

Remark 5.1. Note that 𝒰 ∘ ℳ−1 : 𝑋 ⊗ (𝑄)𝜇
−1 → 𝑋 ⊗ (𝑄)𝜈𝐻

−1 such that

𝒰 ∘ ℳ−1
[︂ ∑︁

𝛼∈ℐ
𝑢𝛼 ⊗ 𝐻𝛼

]︂
=

∑︁
𝛼∈ℐ

𝑢𝛼 ⊗ ̃︀𝒞𝛼, 𝑢𝛼 ∈ 𝑋, 𝛼 ∈ ℐ.

The same is obtained by action of the operator ℳ−1 ∘ 𝒰 i.e., 𝒰 ∘ ℳ−1 = ℳ−1 ∘ 𝒰
(Diagram 1).

5.1. 𝒮 ′-valued generalized random process. In [23] and [24] we provided
a general setting of vector-valued generalized random processes. 𝑆′(R)-valued gen-
eralized random processes are elements of ̃︀𝑋 ⊗ (𝑄)𝑃

−1, where ̃︀𝑋 = 𝑋 ⊗ 𝑆′(R), and
are given by chaos expansions of the form

(5.2) 𝑓 =
∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝑎𝛼,𝑘 ⊗ e𝑘 ⊗ 𝐾𝛼 =
∑︁
𝛼∈ℐ

𝑏𝛼 ⊗ 𝐾𝛼 =
∑︁
𝑘∈N

𝑐𝑘 ⊗ e𝑘,

where 𝑏𝛼 =
∑︀

𝑘∈N 𝑎𝛼,𝑘 ⊗ e𝑘 ∈ 𝑋 ⊗ 𝑆′(R), 𝑐𝑘 =
∑︀

𝛼∈ℐ 𝑎𝛼,𝑘 ⊗ 𝐾𝛼 ∈ 𝑋 ⊗ (𝑄)𝑃
−1 and

𝑎𝛼,𝑘 ∈ 𝑋. Thus, for some 𝑝, 𝑙 ∈ N0,

‖𝑓‖2
𝑋⊗𝑆−𝑙(R)⊗(𝑄)𝑃

−1−𝑝
=

∑︁
𝛼∈ℐ

∑︁
𝑘∈N

‖𝑎𝛼,𝑘‖2
𝑋(2𝑘)−𝑙𝑞−𝑝

𝛼 < ∞.

In a similar manner one can also consider exp 𝑆′(R)-valued generalized stochastic
processes as elements of 𝑋 ⊗ exp 𝑆′(R) ⊗ (𝑄)𝑃

−1 given by a chaos expansion of the
form (5.2), with the convergency condition

‖𝑓‖2
𝑋⊗exp 𝑆−𝑙(R)⊗(𝑄)𝑃

−1−𝑝
=

∑︁
𝛼∈ℐ

∑︁
𝑘∈N

‖𝑎𝛼,𝑘‖2
𝑋𝑒−2𝑘𝑙𝑞−𝑝

𝛼 < ∞,

for some 𝑝, 𝑙 ∈ N0.
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5.2. The Malliavin derivative and the Skorokhod integral. From this
section and further on we will consider only the Kondratiev-type spaces (𝑆)𝑃

−1 and
exp(𝑆)𝑃

−1 defined by the weights 𝑞𝛼 = (2N)𝛼 and 𝑞𝛼 = 𝑒(2N)𝛼 respectively. We
will omit writing the measure 𝑃 , and denote these spaces (𝑆)1 and exp(𝑆)−1, since
there exist unitary mappings between all four white noise spaces (Diagram 1).

We give now the definitions of the Malliavin derivative and the Skorokhod
integral which are slightly more general than in [4, 16, 17, 18]. Instead of setting
the domain in a way that the Malliavin derivative and the Skorokhod integral take
values in 𝐿2(𝑃 ), we allow values in (𝑆)−1 and exp(𝑆)−1 and thus obtain a larger
domain for both operators.

Denote by 𝜄 the multi-index 𝜄 =
∑︀∞

𝑘=1 𝜀(𝑘) = (1, 1, 1, . . .). Note that 𝜄 /∈ ℐ, but
we will use the following convention: for 𝛼 ∈ ℐ, define 𝛼− 𝜄 as the multi-index with
𝑘-th component

(𝛼 − 𝜄)𝑘 =
{︂

𝛼𝑘 − 1, 𝛼𝑘 > 2
0, 𝛼𝑘 ∈ {0, 1} .

Thus, 𝛼 − 𝜄 ∈ ℐ, for all 𝛼 ∈ ℐ.

Definition 5.1. Let 𝑢 ∈ 𝑋 ⊗ (𝑆)−1 be of the form (5.1). If there exists 𝑝 ∈ N0
such that

(5.3)
∑︁
𝛼∈ℐ

|𝛼|2 ‖𝑓𝛼‖2
𝑋(2N)−𝑝𝛼 < ∞,

then the Malliavin derivative of 𝑢 is defined by

(5.4) D𝑢 =
∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝛼𝑘𝑓𝛼 ⊗ e𝑘 ⊗ 𝐾𝛼−𝜀(𝑘) .

The operator D is also called the stochastic gradient of a generalized stochastic
process 𝑢. The set of processes 𝑢 such that (5.3) is satisfied is the domain of the
Malliavin derivative, which will be denoted by Dom(D). All processes which belong
to Dom(D) are called differentiable in the Malliavin sense. We proved in [11] that
the Malliavin derivative D is a linear and continuous mapping from Dom(D) ⊆
𝑋 ⊗ (𝑆)−1,−𝑝 to 𝑋 ⊗ 𝑆−𝑙(R) ⊗ (𝑆)−1,−𝑝, for some 𝑝 ∈ N0 and 𝑙 > 𝑝 + 1, 𝑙 ∈ N.

Definition 5.2. A process 𝑢 ∈ 𝑋 ⊗exp(𝑆)−1 of the form (5.1) is differentiable
in the Malliavin sense, i.e., 𝑢 ∈ Domexp(D) if there exists 𝑝 ∈ N0 such that∑︁

𝛼∈ℐ
|𝛼|2‖𝑓𝛼‖2

𝑋 𝑒−𝑝(2N)𝛼−𝜄

< ∞.

Then the Malliavin derivative is defined by (5.4).

Theorem 5.3. The Malliavin derivative is a linear and continuous mapping
from Domexp(D) ⊆ 𝑋 ⊗ exp(𝑆)−1,−𝑝 to 𝑋 ⊗ exp 𝑆−𝑙(R) ⊗ exp(𝑆)−1,−𝑝, for all
𝑙 ∈ N0.
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Proof. Clearly,

‖D𝑢‖2
𝑋⊗exp 𝑆−𝑙(R)⊗exp(𝑆)−1,−𝑝

=
∑︁
𝛼∈ℐ

⃦⃦⃦⃦ ∞∑︁
𝑘=1

𝛼𝑘𝑓𝛼 ⊗ e𝑘

⃦⃦⃦⃦2

𝑋⊗exp 𝑆−𝑙(R)
𝑒−𝑝(2N)(𝛼−𝜀(𝑘))

6
∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝛼2
𝑘 𝑒−2𝑘𝑙 ‖𝑓𝛼‖2

𝑋𝑒−𝑝(2N)𝛼−𝜄

6
∑︁
𝛼∈ℐ

|𝛼|2‖𝑓𝛼‖2
𝑋𝑒−𝑝(2N)𝛼−𝜄

< ∞. �

Note that Dom𝑒𝑥𝑝(D) ⊇ Dom(D).

Definition 5.3. Let 𝐹 =
∑︀

𝛼∈ℐ 𝑓𝛼 ⊗𝑣𝛼 ⊗𝐾𝛼 ∈ 𝑋 ⊗𝑆−𝑝(R)⊗(𝑆)−1,−𝑝, 𝑝 ∈ N0
be a generalized 𝑆−𝑝(R)-valued stochastic process and let 𝑣𝛼 ∈ 𝑆−𝑝(R) be given
by the expansion 𝑣𝛼 =

∑︀
𝑘∈N 𝑣𝛼,𝑘 e𝑘, 𝑣𝛼,𝑘 ∈ R. Then the process 𝐹 is integrable in

the Skorokhod sense and the chaos expansion of its stochastic integral is given by

(5.5) 𝛿(𝐹 ) =
∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝑣𝛼,𝑘 𝑓𝛼 ⊗ 𝐾𝛼+𝜀(𝑘) .

We proved in [11] that the Skorokhod integral 𝛿 is a linear and continuous
mapping 𝛿 : 𝑋 ⊗ 𝑆−𝑝(R) ⊗ (𝑆)−1,−𝑝 → 𝑋 ⊗ (𝑆)−1,−𝑝.

Theorem 5.4. Let 𝐹 =
∑︀

𝛼∈ℐ 𝑓𝛼 ⊗ 𝑣𝛼 ⊗ 𝐾𝛼 ∈ 𝑋 ⊗ exp 𝑆−𝑝(R) ⊗ exp(𝑆)−1,−𝑝,
𝑝 ∈ N0 be a generalized exp 𝑆−𝑝(R)-valued stochastic process and let 𝑣𝛼 ∈ exp 𝑆−𝑝(R)
be given by the expansion 𝑣𝛼 =

∑︀
𝑘∈N 𝑣𝛼,𝑘 e𝑘, 𝑣𝛼,𝑘 ∈ R. Let 𝛿(𝐹 ) be its Skorokhod

integral defined by (5.5). Then the Skorokhod integral 𝛿 is a linear and continuous
mapping 𝛿 : 𝑋 ⊗ exp 𝑆−𝑝(R) ⊗ exp(𝑆)−1,−𝑝 → 𝑋 ⊗ exp(𝑆)−1,−𝑝.

Proof. This follows from the inequality 𝑒−𝑝(2N)𝛼(2𝑘) 6 𝑒−2𝑘𝑝 · 𝑒−𝑝(2N)𝛼 , for
𝛼 ∈ ℐ and 𝑘, 𝑝 > 0. Clearly,

‖𝛿(𝐹 )‖2
𝑋⊗exp(𝑆)−1,−𝑝

=
∑︁
𝛼∈ℐ

⃦⃦⃦⃦ ∑︁
𝑘∈N

𝑣𝛼,𝑘 𝑓𝛼

⃦⃦⃦⃦2

𝑋

𝑒−𝑝(2N)𝛼+𝜀(𝑘)

6
∑︁
𝛼∈ℐ

(︂ ∑︁
𝑘∈N

𝑣2
𝛼,𝑘 𝑒−2𝑘𝑝

)︂
‖𝑓𝛼‖2

𝑋𝑒−𝑝(2N)𝛼

=
∑︁
𝛼∈ℐ

‖𝑣𝛼‖2
exp,−𝑝 ‖𝑓𝛼‖2

𝑋 𝑒−𝑝(2N)𝛼

< ∞,

since 𝐹 ∈ 𝑋 ⊗ exp 𝑆−𝑝(R) ⊗ exp(𝑆)−1,−𝑝, 𝑝 ∈ N0. �

From 2(2N)𝛼 6 (2N)2𝛼 we conclude that the image of the Malliavin derivative
is included in the domain of the Skorokhod integral. Their composition ℛ = 𝛿∘D is
called the Ornstein–Uhlenbeck operator. The Hermite i.e., the Charlier polynomials
are eigenfunctions of ℛ and the corresponding eigenvalues are |𝛼|, 𝛼 ∈ ℐ, i.e.,
ℛ(𝐾𝛼) = |𝛼|𝐾𝛼. Moreover, if we apply the previous identity 𝑘 times successively,
we obtain ℛ𝑘(𝐾𝛼) = |𝛼|𝑘𝐾𝛼, 𝑘 ∈ N, for 𝛼 ∈ ℐ.
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Let a generalized stochastic process 𝑢 ∈ Dom(D) be given by the chaos expan-
sion 𝑢 =

∑︀
𝛼∈ℐ 𝑢𝛼 ⊗ 𝐾𝛼, 𝑢𝛼 ∈ 𝑋. Then

(5.6) ℛ𝑢 =
∑︁
𝛼∈ℐ

|𝛼|𝑢𝛼 ⊗ 𝐾𝛼.

Denote by

Dom(ℛ) =
{︂

𝑢 ∈ 𝑋 ⊗ (𝑆)−1 : ∃𝑝 ∈ N0,
∑︁
𝛼∈ℐ

|𝛼|2‖𝑢𝛼‖2
𝑋(2N)−𝑝𝛼 < ∞

}︂
and

Domexp(ℛ) =
{︂

𝑢 ∈ 𝑋 ⊗ exp(𝑆)−1 : ∃𝑝 ∈ N0,
∑︁
𝛼∈ℐ

|𝛼|2‖𝑢𝛼‖2
𝑋𝑒−𝑝(2N)𝛼

< ∞
}︂

.

The operator ℛ is a linear and continuous mapping from Dom(ℛ) ⊂ 𝑋 ⊗(𝑆)−1
into the space 𝑋 ⊗ (𝑆)−1, and in this case the domains of D and ℛ coincide,
i.e., Dom(ℛ) = Dom(D). Clearly, if 𝑢 ∈ Dom(D) ⊂ 𝑋 ⊗ (𝑆)−1,−𝑝 then ℛ𝑢 ∈
𝑋 ⊗ (𝑆)−1,−𝑝. This follows from (5.6) and

‖ℛ𝑢‖2
𝑋⊗(𝑆)−1,−𝑝

=
∑︁
𝛼∈ℐ

|𝛼|2 ‖𝑢𝛼‖2
𝑋(2N)−𝑝𝛼 = ‖𝑢‖2

Dom(D) < ∞.

For 𝑢 ∈ 𝑋 ⊗ exp(𝑆)−1,−𝑝 it follows that Dom𝑒𝑥𝑝(D) ⊆ Dom𝑒𝑥𝑝(ℛ).

5.3. The fractional Malliavin derivative and Skorokhod integral. Con-
sider the extension of the operator 𝑀 from 𝒮 ′(R) → 𝒮 ′(R) onto generalized sto-
chastic processes: Let M = 𝑀 ⊗ 𝐼𝑑 : 𝒮 ′(R) ⊗ (𝑄)𝑃

−1 → 𝒮 ′(R) ⊗ (𝑄)𝑃
−1 be given

by

(5.7) M
(︂ ∑︁

𝛼∈ℐ
𝑎𝛼(𝑡) ⊗ 𝐾𝛼(𝜔)

)︂
=

∑︁
𝛼∈ℐ

𝑀𝑎𝛼(𝑡) ⊗ 𝐾𝛼(𝜔).

Its restriction onto 𝐿2
𝐻(R) ⊗ 𝐿2(𝑃 ) is an isometric mapping 𝐿2

𝐻(R) ⊗ 𝐿2(𝑃 ) →
𝐿2(R) ⊗ 𝐿2(𝑃 ). In Example 4.1 and Example 4.2 we have seen that 𝐵

(𝐻)
𝑡 = M𝐵𝑡

in 𝐿2(𝜇), and 𝑊
(𝐻)
𝑡 = M𝑊𝑡 in (𝑆)−1.

In [18] the fractional Malliavin derivative in 𝐿2(𝜇) was defined as D(𝐻) =
M−1∘D. Thus, we extend this notion to generalized stochastic processes of type (I),
e.g. on Kondratiev white noise spaces with Gaussian measure D(𝐻) : 𝑋 ⊗ (𝑆)𝜇

−1 →
𝑋 ⊗ 𝒮 ′(R) ⊗ (𝑆)𝜇

−1 is given by

D(𝐻)𝐹 = M−1 ∘ D𝐹 = M−1
(︂ ∑︁

𝛼∈ℐ

∑︁
𝑘∈N

𝛼𝑘 𝑓𝛼 ⊗ 𝜉𝑘 ⊗ 𝐻𝛼−𝜀(𝑘)

)︂
=

∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝛼𝑘 𝑓𝛼 ⊗ 𝑒𝑘 ⊗ 𝐻𝛼−𝜀(𝑘) ,
(5.8)

for 𝐹 =
∑︀

𝛼∈ℐ 𝑓𝛼 ⊗ 𝐻𝛼, 𝑓𝛼 ∈ 𝑋, 𝛼 ∈ ℐ. Note that the domain of the fractional
Malliavin derivative coincides with the domain of the classical Malliavin derivative.
The following definition holds on a general white noise space (Gaussian, Poissonian,
fractional Gaussian or fractional Poissonian).
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Definition 5.4. Let 𝐹 =
∑︀

𝛼∈ℐ 𝑓𝛼 ⊗ 𝐾𝛼 ∈ 𝑋 ⊗ (𝑆)−1, respectively 𝑋 ⊗
exp(𝑆)−1. If 𝐹 ∈ Dom(D), respectively 𝐹 ∈ Domexp(D), then the fractional Malli-
avin derivative of 𝐹 is defined by

(5.9) D(𝐻)𝐹 =
∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝛼𝑘 𝑓𝛼 ⊗ 𝑀−1e𝑘 ⊗ 𝐾𝛼−𝜀(𝑘) .

In the following theorem, 𝑃 will denote either the Gaussian or Poissonian
measure, and 𝑃𝐻 will denote their corresponding fractional measures. The notation
(𝑄)−1 will refer to either (𝑆)−1 or exp(𝑆)−1 with the appropriate measure.

Theorem 5.5. Let D and D(𝐻) denote the Malliavin derivative, respectively the
fractional Malliavin derivative on 𝑋 ⊗(𝑄)𝑃

−1. Let ̃︀D denote the Malliavin derivative
on 𝑋 ⊗ (𝑄)𝑃𝐻

−1 . Then,

(5.10) D(𝐻)𝐹 = M−1 ∘ D𝐹 = ℳ ∘ ̃︀D ∘ ℳ−1𝐹,

for all 𝐹 ∈ Dom(D).

Proof. We will conduct the proof for the Gaussian case. Since 𝐷(𝐻)𝐹 =
M−1 ∘D𝐹 follows directly from (5.7) and (5.9), we need to prove that (5.8) is equal
to ℳ ∘ ̃︀D ∘ ℳ−1𝐹 , where ̃︀D stands for the Malliavin derivative in 𝐿2(𝜇𝐻). Clearly,

ℳ ∘ ̃︀D ∘ ℳ−1
(︂ ∑︁

𝛼∈ℐ
𝑓𝛼 ⊗ 𝐻𝛼

)︂
= ℳ ∘ ̃︀D(︂ ∑︁

𝛼∈ℐ
𝑓𝛼 ⊗ ̃︀ℋ𝛼

)︂
= ℳ

(︂ ∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝛼𝑘 𝑓𝛼 ⊗ 𝑒𝑘 ⊗ ̃︀ℋ𝛼−𝜀(𝑘)

)︂
=

∑︁
𝛼∈ℐ

∑︁
𝑘∈N

𝛼𝑘 𝑓𝛼 ⊗ 𝑒𝑘 ⊗ 𝐻𝛼−𝜀(𝑘) �

Example 5.2. It is well known that in 𝐿2(𝜇), the Malliavin derivative of Brow-
nian motion is D𝐵𝑡(𝜔) = 𝜒[0, 𝑡] =

∑︀∞
𝑘=1 𝑐𝑘𝜉𝑘. Thus

D(𝐻)𝐵𝑡(𝜔) = 𝑀−1𝜒[0, 𝑡] = 𝑀 (1−𝐻)(0, 𝑡) =
∞∑︁

𝑘=1
𝑐𝑘𝑒𝑘,

where
𝑐𝑘 = (𝜉𝑘, 𝜒[0, 𝑡])𝐿2(R) = (𝑀−1𝜉𝑘, 𝑀−1𝜒[0, 𝑡])𝐿2

1−𝐻
(R) =

(︀
𝑒𝑘, 𝑀 (1−𝐻)(0, 𝑡)

)︀
𝐿2

1−𝐻
(R).

Definition 5.5. Let 𝛿 : 𝑋 ⊗𝒮 ′(R)⊗(𝑄)𝑃
−1 → 𝑋 ⊗(𝑄)𝑃

−1 denote the Skorokhod
integral in sense of Definition 5.3 and Theorem 5.4. The fractional Skorokhod
integral 𝛿(𝐻) : 𝑋 ⊗ 𝒮 ′(R) ⊗ (𝑄)𝑃

−1 → 𝑋 ⊗ (𝑄)𝑃
−1 is defined for every 𝐹 ∈ Dom(𝛿)

by
(5.11) 𝛿(𝐻)𝐹 = 𝛿 ∘ M 𝐹.

Finally, for the Ornstein–Uhlenbeck operator we note that its fractional version
coincides with the regular one, i.e., from (5.10) and (5.11) it follows that

ℛ(𝐻) = 𝛿(𝐻) ∘ D(𝐻) = 𝛿 ∘ M ∘ M−1 ∘ D = 𝛿 ∘ D = ℛ.
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