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Introduction,

Hatcher [1] developed a rational shear analysis of a symmetrical rectan-
gular box girder in the case where the cross-section of the box is constant
along the span. Sibert [2] derived simple formulas for the shear distribu-
tion in a box spar of any shape and of constant cross-section along the
span, whether or not any portion of the skin is effective in bending.
Shanley and Cozzone [3] developed a unit method of beam analysis in
the case where the cross-section of the beam is not constant along the
span. Below, a different approximate method of beam analysis in the last
case is presented. In the type of box chosen, the moment of inertia and
the static moment vary continuously. Consequently the method of this note
enables one to find only the average value of the shearing stress and
shearing flow in a panel and presents an approximation. An example
shows the procedure.

Box loaded by a transverse load.

Let it be assumed that the box of a trapezoidal cross-section, tapered
in plan form and in depth, consists of heavier caps along the edges, of a
certain number of light stringers, the covering sheet, and a number of
stiffening ribs perpendicular to the longitudinal axis. All the stringers have
the same constant cross-sectional area throughout the span and are sym-
metrically located with respect to the vertical plane y,z,. The cross-
sectional areas of the caps are constant in each bay. The cross-sectional
areas of the stringers and caps included in the calculation are not those
in the planes of the normal cross sections but those in the planes of the
ribs. Throughout all the calculations, it is assumed that in the corners of
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the cross-sections of the box in the plane of a rib, the centers of gravity
of the extreme stringers coincide with the centers of gravity of the caps.
All of the longitudinal elements carry normal stresses, while the covering
sheet carries shearing stresses only. The following assumptions were
made: (a) that part of the cross-sectional area of the covering sheet which
is considered to be effective in resisting normal stresses is added to
the cross-sectional areas of stringers and caps. Thus the stringers, the
caps, and the effective width of the covering sheet, form the total cross-
sectional area carrying the normal stresses; (b) the covering sheet and
the webs carry shear only and no normal stresses; (c) the stringers offer
negligible resistance to bending, i. e., they resist only tension or com-
pression; (d) the intensity of normal stresses across the areas of stringers
and caps is constant; (e) from the condition of membrane equilibrium, it
follows that the shear stress and the shear flow will be constant in
each panel bounded by two adjacent stringers and two adjacent ribs
(Figures 1, 2, 3).

The stresses are calculated separately in each bay as if each bay
were an independent unit. Assume that the external load causes a bending
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moment and a shear force in each cross-section of the beam. From Fig. 2
one can easily see that in the first, rough approximation, the following

relations are valid:
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or in. dimensionless form:
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where the symbols denote:

gin, average shear flow in the i-th bay and n-th panel,

Fim» Gim, approximate normal force and normal stress in the i-th bay in
the plane of the m-th rib,

Fitn—1)» Sim—1,» approximate normal force and normal stress in the i-th
bay in the plane of the (m—1)-th rib,

S,, cross-sectional area of an element resisting normal stresses; this area
is in the plane of a rib, :

lims Vim, moment of inertia of all the elements resisting normal stresses
with respect to the neutral axis and the distance from the neutral

axis in the plane of the m-th rib,

lign—p» Yigm—y)» Similar to above in the plane of the (m—1)-th rib.

Qimn> Qim—pn, static moment with respect to the neutral axis of the
element S, in the plane of the m-th or (m—1)-th rib relatively,

M, bending moment in the plane of the m-th rib,

Zn, distance of the m-th rib from the external load (arm of the moment),
P, shear force constant along the full span of the box,

a, length.
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PQimn and PQi(m—l)n

represent the values of the
im lim—y)

But the expressions

shear flow due to the dimensions existing in the plane of the m-th rib
or (m—1)-th rib relatively. Consequently one may write:

din G - Gima 2, A _ Qitm—1n Am—1a (4)
P P[zm - z(m—l)] P [zm - z(m——l)]

where the symbols denote:

Gumn, Qicm—1)n, the values of the shear flows in the i-th bay and in the
plane of the m-th or (m—1)-th rib relatively due to the dimensions in these
planes. Thus the average shear flow in each panel may be approximately
calculated as the difference between two shear flows in the planes of two
consecutive ribs. These “component” shear flows may be calculated in the
way explained in Reference [2]. The values of the average shear flows in
the subsequent bays will, under the assumption that the external load P
is attached to the first rib, be given by the formulas:

an @ _ Gand
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P P P
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In the case of a triangular panel, it is assumed that the average shear
flow is equal to the shear flow in the plane of the rib where the panel
has its finite width. Of course, some other assumption may be made.

As mentioned above the “component” shear flows may be calculated
by the use of the method explained in Reference [2].

Here oniy the results will be given according to [2]. The shear flow
at the point n is given by the formula (Fig. 3, 4):
dRin Pinn

din=4qiv — dz ={qw— Iim » (6)
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or

qin a — qfva _ _Ql_\ﬂ , (7)
P P Iim

where g;, denotes the value of the shear flow at the point v, and ¢, the
value of the shear flow at the point n following the running coordinate s
from the point v; Q;,, denotes the static moment about the neutral axis
of all the elements resisting the normal stresses between the points v and
n; dR;, denotes all the unbalanced normal forces between v and n.

In case the skin resists only shearing stresses, the value of g;, for
the homogeneous material of the covering sheet, is given by the formula
in dimensionless form:

qiva a
= Ekﬂ wn)y 8
P Un Sk (ZkaQun) )]
e LT , ©)

where L. denotes the length of the arc between two specified points n and

(n—1). Attention should be called to the fact that although L. is always

taken between two consecutive poinis, the value of Q;, must be referred

to all the elements resisting normal stresses located between v and n.

For the uniform thickness ¢ of the skin, the last equation takes the form:
qiv @ a

P = (I[m ELn) (2 Lp inn) . (10)

The shearing forces in each panel along the perimeter of the cross-
section are obtained by multiplying the shear flow in this panel by the
corresponding length L, of the perimeter. Such shear forces must fulfill
two equilibrium conditions
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where the subscripts UP, and LP, mean that the corresponding sums
include all the shearing forces acting in the corresponding plane (upper
or lower). The values of the shearing forces should be taken with the pro-
per signs, i. e. positive if the vertical component is acting upwards or if
the horizontal component is acting towards the left. Because of the assump-
tion that the skin does not resist the normal stresses, the shear flow in
each panel as well as in the vertical webs will be constant in each bay.

Box loaded by the longitudinal forces.

The method explained above may be applied to the case of a box
loaded by the longitudinal forces perpendicular to the planes of the ribs.
The forces in stringers will be denoted by
Rmn, in the caps by Tna, Tms, etc. The
subscript m denotes the rib considered.
Let it be assumed that the sum of all the
forces Rmn, Tma, Tmp, etc. along the entire
perimeter of the cross-section is equal to
zero, and apply the calculation to the second
bay. The forces R,, in the upper plane and
the forces Toc, T,p, are assumed to act
towards the fixed end of the box; the for-
ces R,, in the lower plane and the forces
Tsa, Tep, are assumed to act from the
fixed end. As a positive direction of for-
ces, assume the direction towards the fixed
end. To calculate the shear flows in the consecutive panels, the modified
equations (6) and (10) will be used. Namely, instead of (PQ;,/l;») one has
to apply the expression (R,),,/(zs—2,) where the symbols (R,),, denote the
sum of all the forces R, and T, located between the point v and the spe-
cified point n taken with the proper signs. Since (z; - z2,)==2, one obtains:

din @ _ givad (Rz)vna , : (13)
P P Pz,
q_i" a — ____a E (R2) yn Ln -
P 2> Ly) P
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= — 2 Yeon - (14)
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The calculation of the shearing forces performed in the same way as in
(11)y and (12), must give in the present case

2(%) ~0, and E(%)so.

The shear flow in the second bay is assumed to be equal to the
mean value from two “component” shear flows, each of which is calculated
for the dimensions in the plane of two consecutive ribs, at the beginning
and at the end of the bay. Each of these two “component” shear flows is
calculated in the way explained above under the condition that the forces
Ron s Tea » Tog , elc. are the same for these two component shear flows
i. e. the forces are equal at both ends of the bay. In the case of a trian-
gular panel the same assumption may be valid as in the previous chapter.

Examples:

(1) The numerical subscripts in the symbols used below refer to the
ribs. The symbols used are explained in Fig. 3. Assume: Bay b, rib
2: (2a),=28", (2b));=12.6", (2b,), =9.8", (c)y=4.2", (d),=5.6". Seven strin-
gers in each plane, dimensions are given in Table la; 2z,=0", 2,=12",
tan «=0.075, fanB=0.025, o=4°1721", B=1°25'56". The following
values were calculated in the usual way: (em)e= —2,8", (ep,),=0.28",
(tan @;), = —0.02052, I,,=98.93582"%. Bay b, 1ib 3: (2a); = 36", (20;)3=16.2",
(20,);=12.6", (¢)g=5.4", (d)s=7.2". The following values were calculated:
(eons= — 3.6", (epy);=0.36", (fan Py)g == — 0.02044, [3~=163.35719"% The
external force P is attached to the first rib. The 1esults of the calculations
are given in Table la, 1b, lc.

(2) Assume that the bay & is loaded by the longitudinal forces being
in equilibrium. The values of these forces are given in the last row of the
Table la. Their sum must be equal to zero. In the case given the error
of the sum amounts of 0.054 percent. The results of the calculation are
given in the lower part of the Table lc. All the calculations were perfor-
med to the tenth decimal place. The resulis in the text are given only to
four or five decimal places. Some deviations in the last decimal place
may exist because of this cut—off. The forces in the corners of a cross-
section, in the plane of a rib, are assumed to be distributed between the
cap and the stringer, proportionally to their areas.

Various refinements may be introduced into this method similarly as
is explained in Reference [3].
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Accepting the distance between two consecutive ribs as a unit of
the beam, the explained method presents a simple ,unit* method of shear
flow analysis.
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B=bay

R=rib
a=10"
B. b, cross section

dimensions, sq. in.
B. b, R 2, x4n _inch
B. b, R 3, x4p Inch
B. b, R 2 ype inch
B. b, R. 3, yps inch
B. b, R. 2, spype in®
B. b, R. 3, snyp; iIn®
R. 2, Tea/P, Pan/P
R. 2 dimensions ia.
R. 3, dimensions in.
R 2, Qovna

Iz
R. 3, Qovna

Ips
R 2, LnQpyna

Ieo
R. 3, LnQuyna

Ips

B
0.36
14
18
4.26392
5.48051
1.53501
1.97298

—0.02639

Web

9.8

12.6

UPPER PLANE
STRINGERS AND CAPS

S, S, S S Ss

0.09 0.09 0.08 0.09 0.09
14 10 5 0 —5
14 10 b 0 -5

4.26392 4.48177 4.75409 5.02640 5.29872’
5.69867 591684 6.18954 6.46225 6.73496
0.38375 040336 0.42786 0.45237 0.47688
0.51288 0.53251 ~ 0.55706 0.58160 0.60614

—0.00659 0.01314 0.01400 0.01485 0.01571

U . PLANE, PANELS
Bi-S, Bi—S8,

B!"‘SI : Sx“Sz Sz‘ss 53‘54 SA‘SS
4.01123- 5.01403 501403 5.01403

4.01123 4.01123 5.01403 5.01403 5.01403
0.193%4 0.23471 0.27795 0.32368
0.12077 0.15217 0.18477 0.21887 | 0.25447
0.77793 1.17684 1.39368 1.62294

0.48446 0.61040 0.92645 1.09743 1.27594

0.09

~10

~10
557104
7.00766
0.50139
0.63059

0.01657

S5 - Ai
85 - Ss
5.01403

5.01403
0.37188
0.29158
1.86463

1.46199

S,
0.09
-14
-14
5.78889
7.22583
0.52100
0.65032

—0.00489

Ss had Ai
S-S,
401123

401123

0.42256

0.33018

1.69499

1.32446

A;
0.66
-14
-18
5.78889
7.44399
3.82067
4.91303

—0.03586

Table 1-a

S,—A;

401123

0.36999

1.48415

Table 1-b



1.65

8.52229
10.95724

0.00054

Web
v
12.8

16.2

0.86139

0.67075
10.85362

10.86620

Ci
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-~ 14
-18
—6.80844
—8.75260
3.47230
4.46382 )

0.04200
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4.00128
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5.0016
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1.94171
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S
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-5
-5

~6.39880
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0.57589
0.73457

~0.01926
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8~ 8
5.001

|
5.001§
0.33001
0.25909

1.65058

1.29587

S
0.09
0
0
-6.17122
~7.93472
0.55541
0.71412

-0.01862

5.0016
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5
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S3 - Sz
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8~ 8y
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S
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14

14
-5.53401
—7.29859
0.49806
0.65687

0.01295
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Dy
0.21
14
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5.53401
7.11684
1.16214
1.49453

0.03022

z
78.48754

100.91256

27.91214

28.17533

1.35

8.52229
10.95724

0.00054
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v

-0.50577
~0.39154

-0.17732
0.00053
0.00053
0.00067
0.00086
0.00132
0.00285

0.00208

C]""S7

-~0.11829
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0.04254

0.17022
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-~ >
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~0.04787

—0.04633

- 0.04710

)/
Ss—
0.02%1

0.024)1
0.014 }n
00198
0.0178

0.0534

0.0534

*—0.01376

1

~0.01422

-0.01499

Sl - Ss
0.08175

0.06382

0.04590

~0.00784

~0.00784

- 0.03922

-0.03922

0.01528

0.01681

0.01604

0.13582

0.10629

0.07676

-0.02583

-0.02583

-0.12920

~0.12920

0.04526

0.04679

0.04602

< <

~g s

0.18781

0.14750

0.10719

-0.04318
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£-0,17278
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0.07571

0.07494

S,~Di
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-0.03022
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0.05412
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ZV=1.00024
ZH=0,00175
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ZH = -0.00000
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SH=+40.00147



B=bay
R=rib
T g =10

R. 2,

Wah

v

0.35562

0.27920

0.20278

0.00221

0.00374

0.00207

UPPER PLANE, PANELS

Bi""S‘

0.15842

0.15842

- 0.02639

-0.10586
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o, <
g oy

SI"' 32
0.16168

0.12703

0.09237

- 0.03299

- 0.03299

-0.13233

-0.13233

0.05719

0.05873

0.05796

B, -,
Sz S;

0.12091
0.09443

0.06795
—0.01984
-0.01984
—0.09951
—0.09851

0.03529

8.63682

0.03605

S:% - S;
0.07766

0.06033

" 0.04299

~0.00584

~0.00584

~0.02932

-0.02032

0.01195

0.01349

0.01272

3

8,-8; !

0.03194

0.02472

0.01751

0.00900
0.00900
0.04516

0.04516

H

-0.01280

-0.01126

b

~0.01208 |

|
3

S5—Ar
85— S5

- 0.01625
-0.01237

-0.00849

0.02472

0.02472

0.12395

0.12395

~0.03899

~0.03748

-0,03822

8g— dpem

SS - 57
—-0.06693 -

- 0.05008

—0.03503
0.04129
0.04129
0.16562
0.16562

—0.06660

—0.06507

—-0.06583

S’:;"Ai

~0.09079

~0.09079

0.03640

0.14600

-0.05692

-0.05692

Table 1-¢
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