THE BUCKLING OF ARCHES WITH HINGED ENDS

by
M. DJURIC and D. RADENKOVIC (Beograd)

As is customary in the discussion of the buckling of arches, we shall
be considering an arch the center line of which is the funicular curve for
the arbitrary given load. The cross section of the arch, symmetrical with
respect to the plane of the arch, may be arbitrarily varying along the
center line. The intensity of the loading in all points of the arch may be
proportional to a common factor p so that a gradual increase of loading
is obtained by an increase of this factor. It is usually supposed that the
direction of the loading changes during the deformation so that the angle
between it and the element of the center line remains unchanged all
the time.

Fig. 1

Then, as it is known [1], the critical value of the pressure at
which the buckling of the arch in its plane occurs is given with the
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smallest eigenvalue of the homogeneous linear differential equation:
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with homogeneous end conditions corresponding to the manner in which
the ends of the arch are fixed.

In the following we shall consider a symmetrical arch with hinged
ends. If we assume that the deformation is antisymmetrical, what in this
case gives always the smallest critical load, then the conditions under
which the equation (1) should be integrated are:

M must be an odd function of ¢ and M(0)=M (g)=0 - (2.

In (1) and (2) there are: ‘
¢ - the angle between the normal on the center line (before the
buckling) and the normal in the key of the arch;

M (¢) - the bending moment in a point of the arch;

pa® ‘ .
A=t—— —the unknown eigenvalue;
]
p - the component of the loading normal to the center line in
the key;

X () - the dimensionless part of the component of the loading normal
to the center line, so that the component itself is X=pX;
a - radius of curvature in the key;

0o () — the dimensionless part of the radius of curvature (before the
buckling), so that the radius itself is py='0p,;

B,=EJ, - the stiffness of the arch in the key;

B (y) - the dimensionless part of the stifiness in a point, so tuat B = B,B.

The solutions of the differential equation (1) for some forms of the
arch and for various B (¢) are given mainly by means of numerical inte-
gration [1,2]. We give here a general solution of the problem for a two
hinged arch, applicable also in cases where the distribution of the loading
(and consequently the form of the arch) and the variation of B (p) are not
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expressed in analytical terms of the parameter ¢. This solution is based
on a more general solution of some eigenvalue problems proposed by
M. Djuri¢ [3].

Introducing the new variable

Z=oM ®3)

in the equation (1) and integrating it, considering the conditions (2), which
are the same for Z and M , we obtain

2 B - B dg
(d— +1)[_f_z + [ e qu)] 220 (1a)
de® poX 20X do
The terms
B B dp,-
ng and poX dp 4

in this equation are the given functions of ¢ that in all cases can be de-
veloped in Fourier series. The first of them can be represented as an
even periodic function with the period 2¢:

<~ . mwe
—_ = o, €0s —* )
POX mgo Po

and the second as an odd function with the same period:

B dp, % . pwe
e Bu sin —= . (6)
poX dp = 90
We shall represent the solution in the form
z=¥% Casin =F . (7)
n=1 CPO

As it is seen from (2) and (3) the end conditions have already been
fulfilled in (7).
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Introducing (5), (6), and (7) in the equation (la) we obtain

a® - - muy . AnP
%, €y COS —— Sl — -
(dcp )[ g §=:1 " P P
8
E 2 Bucy sin ¥ gin 172 a’cp] + A ch sin™® _ o .
P=1 n=l Po Po n=1 Po

The terms of the first double sum can be represented as

m . nm 1 . 3 . T
amcncosﬂsm———(?miamcn[sm (R»i»ni)-—fg + sm(n«m)i],

Po Po o Po

so that the whole sum arranged according to the sin V'R here v= 1,2 3...

takes the form ®o
‘i i %m €y COS % sin mme _ 1 ﬁ i Cn (Gy—n+tin_y— 0 y) SID— W 9)
m=0 n=1 %o %o 2 20 a3 cPo
wherein a_, =0,
In the same manner the second double sum can be written as
E E Bucn sin P gin 177
Po=l gl CPO Po
(10)
1
=— E Bnent — E 2 ¢l - Bv——n+ﬁn—v+ﬁn+v)cos‘“““ J
2 ve=1 p=1 %o
wherein By=8_,=0
With (9) and (10) the equation (8) becomes:
1 & vr
— 1-{~ Cnl(&ypn+ Oy — & +
9 v=‘{[ ((90) ]1’2‘-}1 n[( s =y n+v)
' (8a)

% ( van+3nmp+ﬁn+v)]smi} + ~§~cp 2 CaBnt+ A Ecnsm——»«:o

o n=1 ve=1 Po
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If we represent ¢ as a periodic function with the period 2 ¢, in the
form of a Fourier series, then the first simple sum in (8a) can be written
in the form:

S caa(~1)"" 2Posin 9 (1)
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Putting (11) in (8a), dividing the whole equation by 5 1—(—) ]

Do
and introducing the notations

%o
a,=—, = ’ 12
v (j (2
Po
we get
Z {leCU+ 2 cn[(“v-—”+“n—v—“n+v)+
V=1 n=1
(13)
v41 sy
+, (= Byn + Bres + Busy+ ky (= 1)7 71 B,)] sin = } 0.
Po
This equation can be fulfilled only if the coefficient by sin— hia
%o
vanishes for every v(v=1,2,3...) i. e. if
ko X Gyt 3 Col(Son+ Ony = 1) +
n=1
(14)

ay (—By—n+Bn_v+ Botv+ky (-~ 1)v+1 B“] =0.

This is an infinite system of homogeneous linear algebraic equations
with an infinite number of uncnowns which possesses the nontrivial solu-
tions only if the determinant of the system vanishes. This determinant can
easily be written:

Publications de Ilnstitut Mathématique 4



50 © M. Djuri¢ and D. Radenkovié

Ky A (2 cp— g+ 4y (BoHhy By (o —ag)+ay (Br+-Bathy Ba) {ctg—0ag)4ay (BaHBat ki Bs)
(o — )+ a5 (—PB1+Pa—ke Br) KoM+ (20— 40, (Ba—KaBo) {0~ a5} (B1+Bs—K2 ) =0
i (a0 + a5 (~BotBatKeBy)  (04—05)+ 05 (—Bi+Bst+hs Ba) Ky (2 0o~ )+ a3 (Bet- 43 Bs)

(15)

In the developed form this is an infinite polynomial in A, the roots
of which are the sought eigenvalues of the equation (1). The smallest root
of this equation can easily and quickly be found by means of successive
approximations, as will be shown in an example.

In a number of cases interesting from an engineer’s point of view

the functions :21 and :;?: ey are given in the form:
poX poX do
-?: ~cos®¢ and :TB_: gﬁi:bcosgmicpsinap . (16)
puX poX do

For example for a parabolic arch with constant cross section there
ise=7, b=3; for a parabolic arch with variable rectangular cross seciion
the height of which is varying like sec ¢ thereise~4, y=3; if the breadth
of the cross section is varying like sec ¢ thereis e=6, b=3; for a cathe-
noid with constant cross section there is e=5, b=2; if the height of a
rectangular cross section of a cathenoid is varying like sec ¢ then there
is e=2, b=2, etc.

In this case the coefficients B, can be expressed by means of the
coefficients «,,. :

From (5), (6) and (16) it is seen that

1 ik mr
Oy == — co0s ®g cos P dyp
Po Yo
~to
(17)
1 R ’{"Po -
B~ — f b cos®—lgsing sin +o2 dp .
Po Po

—@q
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By means of partial integration of the second of these expressions
we get readily:

b pr
Bu= = o (18)
€ QP

and integrating directly the first of the expressions (17) we obtain:

1 4] 3 e~ 2p .
oy e sin (e - 2p) o (19)
2° %, Eo (p ) (e—2p)? — (mn/p,)?

where p, =§:—1 for an even e, and p= E—TI for odd & . For «, there

must be taken half of the value obtained by (19).

From (19) and (18) it is easy to find «, and By for a given arch
and then from the equation (15) by means of successive approximations
the eigenvalues i .

For example in the case of a parabolic arch with constant cross
section (¢=7 and b=3) and the ratio f//=0,2 resp. «,=38%0" the deter-
minant (15) takes the form

kA +1,2710 0,5498 ~0,0653
0,2991 kA +1,2833 0,4621 | =0. (20)
-0,0190 0,3243 kgh+1,2828

Considering only the determinant of the first order we get X =13,15.
The determinant of the second order gives 11,47 and from the determinant
of the third order there is 11,11. The last of these values agrees comple-
tely with the value obtained by Lockschin by means of the numerical
integration of the equation (1).

At last it should be mentionned that the solution is applicable also
in cases where the form of the arch (resp. the corresponding loading)
and the variation of the cross section are not given in analytical terms
of ¢. Then the necessary number of coefficients can easily be found by
means of a numerical procedure (f. e. Runge’s) or by means of an analy-
sator, and then the equation (15) can be written.



59 M. Djuri¢ and D. Radenkovi¢

REFERENCES

[1] A. Lockschin — Ueber die Knickung eines gekriimmten Stabes. Zeit-
schrift fiir angewandte Mathematik und Mechanik 16 (1936), p. 49—-55.

[21 A, N. Dinnik — Stability of Arches (russian), Moskow 1946,

[8] M. Djuri¢ — On some Problems of Stability. — Presented in the Institute
of Mechanical Engineering of The Serbian Accademy of Sciences in Belgrade
(unpublished).



	045.tif
	046.tif
	047.tif
	048.tif
	049.tif
	050.tif
	051.tif
	052.tif

