CONTRIBUTION TO THE RESEARCH OF INFLUENCE OF
ROTATORY INERTIA AND SHEARING FORCE ON THE LATERAL
VIBRATIONS OF PRISMATIC BARS

. by
Ll. B. RADOSAVLIEVIC (Beograd)

The problem of lateral vibrations of prismatical bars taking into con-
siderztion the influence of rotatory inertia and shearing force conducts to
a partial differential equation of the fourth order

2 0V L Oy 0y 289
ot o z‘(lﬂeﬂazzotﬁ taebg = 0 M
where
PO -
P A G g
E - modulus of elasticity ,
G - shear modulus of elasticity ,
» - numerical factor depending on the shape of the cross section,
- iy - radius of gyration of the cross section,
I, - moment of inertia,
A - cross sectional area,
vy - weight per unit volume,
g — gravitational acceleration,
{ - length of the bar,

y(z,t) — deflection of the bar.

Particular solutions of the differential equation (1) may be obtained
by the Daniel Bernoulli method of particular solutions, i. e. by trying to
find these solutions in the form

y(z,0)=T(t) - Z(z)=(Acoswi+Bsinwt) Z(z) . 2)
This yields a linear homogenous differential equation of the fourth order
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with constant coefficients
4 2
L2 2er 14ER) BE - w1 —i2pBe)Z = 0, @)
o e

whose characteristic equation is
A4)\.4+A212‘”A0==0 Iy (4)
where
Ay=a®, Ag=i?(1+EB)v?, Ay=w?(1-i2pBu?.
The roots of (4) are

Ag=tm ’ Agq = my i,
where

m= \/2;1 (-A,+ VAZ 1 44,4) - V-cwz + Vof (@ - d) +ew?,

e

. ®
my = \/2:1 (Ag + VAZ+44,4)) - l/cm2+ Vo¥(c? - d) +ew? ,
4
_p(1+£B) d__ei@ 1
ST 39 > YT E > T

Since

2
¢—d - £ (1-Epe> 0,
G -Ep>

m, is always a real number. To make m a real number the condition
ew? > dw* should be satisfied, or

e 1
02 < = e
<73 iz
We find that
1 &G _g33. 100
pB  Yn

for Gk=8-105_ kg/em?, x=1,2, Y=7,8.10"% kg/cm? and g=981 cm/sec? .

Hence, the condition
» < i 2,89.10%

Iy
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should be satisfied, where i, is given in cm. This is practically always the
case in view of the nature of the problem.

Hence, the general solution of the differential equation (3) is:

Z(2) = Aem 4+ Bemmz 4 Cemiz 4 De—miz | (6)
or
Z(2)=C, Chmz+C, Shmz+ Cy cos myz+C, sinmyz. )

In order to facilitate the determination of the counstants of integration
C,,...,C,, solution (7} may be expressed in a more convenient form

Z2(2)=C1Z;(2)+ Co Z, (2) + G Zy(2)+Cy Z4 () 8)

by introducing the functions

Zi(2)= —é—(Ch mz+cosm, 2),
Zy(2) = —_;—(Sh mz +sin m, z) , )]
Zy(2) = -;—(Ch mz—cos my 2) ,

Z;(2) = %(Sh mz-sinmg 2} .

The constants Cy, ..., C, of solution (8) differ from those of solution (7).

The values of the functions Z; (i=1,2,3,4) and their derivatives, up to
the third inclusive, for 2=0 are given in the following table:

Z,(0) Z; (0) Z} O z ©
Zy 1 0 = (m2- m%) 0
1 1 5
z, 0 S mtm) 0 7 (m® - m}) (10)
1
Zs 0 0 5 (m2+ m?) 0
1 | P
Z, 0 5 (m - m) 0 > (m2+ m7)
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Solution (8) is also valid when we consider only the influence of
rotatory ineriia, neglecting the influence of shearing force on bar deflec-
tion when B=0. Equations (5) defining m and m, then reduce to

m = m* = \/-—~c*cu2+ VePetteat ,

(11

My = m¥% = \/c*w”—}— Vet ot + e oo? R
where
=P
2E
Since

Ver2 @t ew? > c* w?,

it follows that m* and m,* are always real numbers.

1. Bar with Hinged Ends
The end conditions are

@e0=0, @ (D=0, ©
@, o ()0 o

From the condition (@) we obtain
¢,=0, (9
and from condition ()

Cs=0. ()

Use of conditions (¢) and (d), while taking into consideration (e) and
(f), gives
C,(Shml+ sinmyl) + C,(Shml - sinm 1) = 0,

Co(m*Shml — m?sinmy Iy + Cy(m*Shml + m2sinm ) =0,



Contribution to the research of influence of rotatory inertia... 149

which, after neglecting the trivial solution C, = C, = 0 yields the frequency
equation in the following form

(m* + m?) Shml sinmg! =0 . . (12)
Since m*+m?2# 0 and ml ¥ 0, it follows that

sin my! =0,
or
7 2n 3xn nw
Bl = == ) ) o, iy —— 13
Yoo ! I (13)

Substitution of (13) into (5) yields the frequency equation
n?a?i2(1+EB) + 1 = n*a®nt

wd — i w2 4 =
o Pi2Bp T PilBp

0 (n=1,2,3,...) (14

S. P. Timoshenko [1] obtained the same equation when trying to
find the solution of (1) for the case of a bar with hinged ends in the
following form

y(z,t)=Csinﬂ—7;Ecos wpt, (1=1,2,3,..), (15)

since the function (15) satisfies the imposed end conditions.

When we neglect the influence of the shearing force and consider
only the influence of rotatory inertia, i. e. when 8 = 0, the frequency
equation becomes

n*a®nt 1

2 .

w s ==
" .

I i2m?

, (1=1,2,3,..). (16)

2. Bar with One End Built in and the Other Free

The end conditions are

@Dica=0, (@ (U)=o ()

dz?
- dZ a¢z
Rotiall =0, (b i =0. (d
de )z-:o ( ) (dzs)zal ( )
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From the condition (a) we obtain
¢, =0, (e)
and from condition (b)
my—m

Cz :.‘—
my +m

Cs - 0))

Using the conditions (c¢) and (d) and taking into consideration (e)
and (f) we obtain

2 2

Cy (m? Ch ml+ m? cos m, l) +c4(2’” M Shmt + 2™ sinmil) =0,
m+ my m+ my
8 3

Cs (m® Shml — m3 sin my1) + C4(2m ™ _Ch ml+2_’nwin_1 cosmll) =0,
m+ my m+ m,

from which, neglecting the {rivial solution Cy=C,=0, we obtain the fre-
quency equation

m*+m}

(17)

(m®—m?2) Shmi sin myl -2 mm, Chml cos m;l = L

If in (5) we put c=d=0, i. e. neglect both the influence of shearing

force and rotatory inertia, we obtain m=m; = \/%, thus the frequency

equation (17) becomes

Chmlcosmi=-1,; (18)

this is the well-known equation wich in the case of a bar with one end
built in and the other free was derived from the partial differential equation
of the laterally vibrating prismatic bar

0%y . 0%y . .

— + a?—==0. 19
of? * 0zt (19)

This equation was derived under the assumption that the cross sectional
dimensions are small in comparison to the length of the bar and neglecting
the influence of rotatory inertia and shearing force on bar deflection.
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3. Bar with Free Ends

The end condilions are

dz?

(2

LI - NG

From the condition (¢) we obtain

m2+m2
C1= m?— m12 Cﬂ’ (e)
and from condition (b)
3 3
G="*M¢c. ®
m3 - m?

Use of conditions (c) and (d) while taking into consideration (e) and
(f) yields

-

[ 2m; m 2m, m ]
(Chmi—-cosml) | +C, ——_m—z(mIShml—msmmﬂ) =0,

Col-—73
8 2 _ m2 2
| m? - m m?

[ 2mm, i 2 m? m? 1
Cs T (mShml+m, sinm! {+C, W(Ch mI—cosmll)J =0,

L

whence, neglecting the trivial solution Cg=C,=0, we obtain the frequency
equation

(m? - m?) Sh ml sin m; 1 +2 mm, Ch ml cos myl=2 mm, . (20)

For m=m, the frequency equation (20) reduces to the well-known
frequency equation

Ch ml cos ml=1. (1)
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4. Bar with Both Ends Built-in

The end conditions are

(Z)z=o=0’ (a) (Z)z=1=0, (C)
A : dZ
— =0, (b — =0. d
(dz)z=o ( ) (dz)z=l ( )
From the condition (a) we obtain
Ci =0, (e)
and from condition (b)
my — m
C-"2=2c, . (f)
m + my

Use of conditions (c) and (d) while taking into consideration (e) and
(f) yields

Ca(ChmI—cosm11)+C4( 2m, Shml — sinm11)=0,

m 4+ my m -+ m

C, (m Shmi + mlsinm11)+C4( 2 mm Chml—mcosm,l)e 0,
m -+ my m+ my

whence, neglecting the trivial solution C,=C,=0, we obtain the 'freqflency
equation

(m* — m?) Shmlsinmyl + 2mm; Chmlcosml =2mm,. (22)

Thus for a bar with built-in ends we have obtained the same fre-
quency equation as in the case of a bar with free ends.

5. Bar with One End Built -in and the Other Supported
The end conditions are

(Z)i=0=0, (a) ()i =0, (o)

(@0 o (G@l.o o
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From the condition (a) we obtain
Cy =0, (e)

and from condition (b)

m, —m
C2= ! C4- (f)
m .+ my

- Use- of conditions (¢} and (d) while taking into consideration (e) and
() yields o C

Cs (Ch ml - cos m11)+C4( 2m, Shml — smm11> =0,
m+ my m 4+ my
2m?m 2mm? .
Cs(m2Chml+mfcosmll)+C4< 1Shml+ — L smm11>=0,
m -+ my m 4+ my

whence, neglecting the trivial solution C;=C,=0, we obtain the frequency
equation
Thmi= ﬁtg myl . (23)

my

For m = m, the frequency equation (23) reduces to the well-known
frequency equation

Thml=tg ml .

If we calculate the lowest frequencies of a steel bar of rectangular
cross section with the following data: length /=100 c¢m; height to length
ratio h/l=1/5; »=6/5; E=2,1.10®° kg/cm?; G=810% kg/cm?; yv=7,8-10"3
kg/em? and g=981 cm/sec?, for the following end conditions: hinged ends,
free ends (or built-in ends), one end built-in and the other supported, we
obtain from frequency equations (14), (20) and (23) frequencies which are
lower by 1,94%/,, ~ 5,859, and ~ 2,05%/, respectively, than those calcu-
lated by the differential equation (19) which neglects the influence of rota-
tory inertia and shearing force.

If we consider the influence of rotatory inertia and neglect the influ-
ence of shearing force on bar deflection, i.e. taking B=0, we obtaio
frequencies which are lower by 1,63°,, ~ 5,04°/, and ~ 1,95%,, respec-
tively.
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In the case of a cantilever bar the influence of rotatory inertia and
shearing force can be neglected, i. e. we obtain practically the same
frequencies from frequency equations (17), (18) and from (17) for B = 0.
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