BENDING OF A RECTANGULAR PLATE WEAKENED BY A HOLE

by
DRAGOS RADENKOVIC (Beograd)

In the practice of reinforced concrete design we frequently meet with
the problem of bending of a rectangular plate weakened by a hole whose
edges are parallel to the sides of the plate. A, and L. Foppl in their
popular book Drang und Zwang') drew attention to this problem as far
back as 1920, but to our knowledge, the problem has not yet been solved.
Nevertheless, the problem can be solved in an elementary way, and this
is done in the present paper. For the
sake of simplicity the discussion is limi- %
ted to the case of a square plate with
a symmetrical hole, under uniformly
distributed load. The more general case
of a rectangular plate with a hole in
arbitrary position and under arbitrary g
loading can be treated in the same man-
ner, but this would require more nume- : ‘
rical calculations. As the solution is of A
interest for applications in reinforced c lo-2el e
concrete structures we take Poisson’s &
ratio v = 0.

¢

C _|g-2c,

Let us consider the plate shown Fig. 1
in fig. 1, with simply supported outer
boundary and with free edges of the hole, loaded with uniformly distribu-
ted load g. For the bending of this plate we have the differential equatlon

A w = g/D o S
1) First edition, p. 215. A fairly complete reference-list for the problem of bending

of plate weakened by a hole is given in'the paper of B.R. Seth inthe Quarferly Journal
of Mech. and Appl. Math, (Vol 1l, Part 2, June 1949, pp. 177—181).
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with boundary conditions:

02

w=0 and 6—2_0 on the outer boundary, @)
v
0w 3w 0w .
IV 0 and ¥ 42 =0 on the inner boundary, 3
ov? ovs oty
o*w = in the corners of the hole, 4)
ot ov

where w denotes the deflection of the plate, dv an element of the normal
and dr an element of the tangent to the contour. The condition (4) requires
that there should not exist any concentrated forces in the cornmers of
the hole.

If the plate were without opening, then for its bending we would
have the well - known Nadai’s solution. Taking the coordinate axes as
shown in fig. 1, this solution has the form:

4qa* 2 1 oy
w, = =99 20— | chagy - Y shay -
q Db k=1,23,5... k5{ , [ Sy 9 y
(5)
. )shoc‘ + %Y g % g }sinac X,
( 9 A 9 rY 9 5 kY k
where a, = —
a

To this solution we shall add in the region (1), between the straight
lines y =0, y=c and x =0, x=a the biharmonical function

1 o
wy=— ¥ @, %[A,sha,y + a,yB,cha,y]sina, x (6)
D n=1,3,5... )
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In our case there is for the reason of symmetry C,=A, and D, =B,
for v=n. : o

In order to fulfil the condition (4) we need a further function, bihar-
monical in the whole region between both boundaries, having one iree
parameter. This function is taken in the form of the known solution for
the bending of a simply supported plate without a hole loaded by a force
P at the center of the plate, the intensity P of the force being considered
as the free parameter. In the region () this solution has the form:

1 & .
W= 5 S a2 [Qsheapy + apy Rpchap y]sine, x, ®)
pv"s"« .e

where

.
Q=(-17——F a(1+f‘f’-’-‘—‘th°‘i‘5),
2a,ach 222 2 2
2
| )
P

p—!
Rp = - ("‘ 1) 2 ,_..___&_._.&‘
2apach~;-

Accordingly, the solution of our problem is given in the region
@ with
=Wg+ W +Wp, (10)

and in the region (2 with

W= Wy + Wy + Wp. (11)

All chosen functions, as it is readily seen, fulfil the .conditions
on the outer boundary, so that the coefficients A,, B, and P are deter-
mined by the conditions: 1) both functions w, and w, must be equal in
the region common to the regions (1) and (2); 2) the edges of the hole
must be free, and 3) at the corners of the hole there should be no con-
centrated forces. Because of the symmetry it is enough if we fulfil these
conditions on the part 0<Cx < a/2 of the straight line y =c.
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The condition which requires w, and w, to be equal in the common
region, will be fulfilled if we have:

and 3w, +9 B w, _ Bw, 9 03w,
ay? oy? ay? ox2y  9y® ox%0y

(12)

on the part 0<<x<a/2 of the straight line y = ¢, because similar rela-
tions must exist then on the line x = ¢ for the reason of symmetry; and,
with the chosen form of functions w, and w,, the conditions

=y, LM (13)
Vv

are secured on the rest of the boundary; and moreover there is

2., 3
0wy 0%y (14)
0xdy  0x 0y
in the point x = ¢, y=c, again for the reason of symmetry, for any
A, and B _.?)

%) That (12), (13) and (14) secure the equality of functions w, and w, in the common
region cam be séen from simple physical considerations. Namely, this region can be consi-
dered as an independent plate with two adjacent simply supported and two free edges.
Let this plate at one time be loaded on the free edges with the bending moments

03W1 Oswl
ov? otZoy

02w,
—D
ov?

and with shearing forces — D( ), and at the corner with a con-

0w,
trated force — 2D
cen ot oy

; and then let the same plate at another time be loaded in the

*w, 08w,
—= 42 d
ov® ot 20v) an

o*w
same manner with bending moments —DE;, shearing forces —D(

02w,

concentrated force — 2 D oov" The loading on the plate being the same in both cases, by
v

(12) and (14), it is clear that in both cases the plate must have identical deflections i. e.
wy = W, in the whole region,

If the plate were rectangular, then the condition (14) would not be identically satis-
fled. In this case, while constructing the solution, two biharmonical functions should be
taken instead of ene such functionr (8), and (14) would appear as an additional condition
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The condition which requires the edges of the hole to be free, assu-
mes in view of (10) on the part c¢<Cx <a/2 of the edge y=c the form

FPw, B Pw, 0wy
o (15)
0% w, 49 P w, ‘=“(63wq+2§i@i>w(asw{, 263%).
oy? 0x2 0y dy? ox¥dy/ ay® oxiay

In this way the function w, of the region (1), which with chosen
form already satisfies the conditions (2) on three edges of the region, has
besides to satisfy on the fourth edge, in view of (12) and (15), the
conditions?):

[02 wl] _ [ 0¢ wi] N [62 wq] B [d” w,,]
dy2 g=¢ | 0}’2 g=c dy‘t ye=¢ 3y" y=c¢ (16)

0<x<af2. I<x<¢ c<x<af2 c<x<qaf2

and

[ 0% w, iy b"’w,] _
| 0y° 0x20V{y=c

0 x<af2
3 3 3 3
z[aw2+2‘aw2 N L7
ay® 0x30y |y=¢ ay? 0x20y|y=c
t<x<c¢ c<x<af2
3 3
_ L g O . (17)
oy® 0x*0y )y =
e x<af2

The derivatives of the funclion w, appearing on the left side of equa-
tions (16) and (17) are given, as it is seen from (6), in the form of

3) If the plate or the opening were rectangular, then we would have to satisfy sepa-
rately conditions on y=c for w; and on x=¢ for w, In this case the coefficients of the
. series representing w, would appear as new unknowas in the conditions (16) and (17), and
the coelficients Ap, Bp would enter as unknowns in two similar conditions on x=¢,
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trigonometrical series of sines with the period 24. Introducing
A,=A,sha,c and B,=B, che,c,

in order to simplify further numerical calculations, these derivatives are
given with:

otw 1 S .

(~5y—21)y=c=7)~§[}1,,+3n @thea,c+a,c)] sin a,x, (18)
3 3 :

(0 LI W’) - (19)
oy 0%*0y/y~c

- - %En[ﬁncthanc +B,(- 1+ a,ctha,c)]sina, x.
a o .

According to this, in order to fulfil the conditions (16) and (17) by
means of comparison of coefficients, we must represent also the right
side of these equations in the form of similar trigonometrical series. This
can be achieved if we develop in such series all members of series repre-
seating the derivatives of the functions w, , w, and w, on the straight
line y=c. For this reason we represent the derivatives of w, as odd peri-
odic functions with the period 2a, having for 0 < x < c¢ values prescribed
by the form of wy, for ¢ < x < /2 zero values and for ¢/2 < x <a
values symmetrical to those on the part 0 < x < a/2. In the same man-
ner the derivatives of w, and w, are represented as odd functions, having
for 0 < x < ¢ zero values and for ¢ < x <Ca/2 values prescribed by
wy and w,. '

In this way we have:

[62%] =‘}“E(Z sha, x +B osuxchavx)sin o=
0y® |y—c D% y sha, ¢ Y cha,c Y
I<x<c

S ._IME Pv(}: by SiD 2y x)-{» §v(2 Con Sin @, x)] sin a, ¢,
D v n

n
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where &, and c¢,, are Fourier's coeflicienis:

4

4 ) .
b= — sha, x sin a, x dx ,
asha,c
' 0
4 o
o R
Con= ———— | xcha, x sin o, x dx .
acha,c -

0

After the interchange of the order of summation there is

2 — -
{?_a_v_“;z]y _ Dig [2 A, by, sin avc> + (2 B, oy sin @, ¢ )] sin a, x . (20)

Likewise:

*w, 03w
2 +2 2 — 21
5+ 2 a2n),.. e

0<x<c

- %)—Eoc, (B[S by Sin iy x] + By [S (8 bun thet, ¢4 60} Sint, ]} €05 € =
v n n
%‘2 [TvaA A, bnycosa, c]+[SvB,cos ¢ (4butha, ¢ + cq)]] sina, x.
n v v

In the same manner we have:

2 2
Owe) 481 (ch—zf‘ﬂwzi)sm,{cwﬁ th P eha,c|sina x=
0y® c D25 i# 2 a a 2

< x<al?

ge? i
= 2 SM Yy, Sin an X)),
Drﬁ};; gy ; 5
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where
a(z
4 . .
Qun=— | Sina, xsine, x dx .

a
c

Changing the order of summation we get:

0" w, ga® .

- = - T M.a,)sine, x .

[ow Lc Dt 25 ( 22 M Gni) st 2, (22)
c<x<af2

Likewise:

[‘)sw"+2‘93wq] LR i[(ch—zﬁ‘—a——g—thﬁg~c—>cha,c+
2 T
[

0y® 0x20y |y~ D k o, a 2 a
c<x<af2

( thap—aJri)sha,‘china,‘.x:
a oy a
b

=»5 2}_‘,Nksmoc,(x—-

S L (‘5‘ Qyn SiT 2, X )—
aD =n*
© qa®

= N, a, ) sine, x . 3
D w2 (V i nl) (23)

Finally for the derivatives of the function w, we have:

- 2
] =£2—Q——~—[(— 1+ 96-‘;—(3 th o%a_) sha,,c—a,,ccha,,c]sinapx=
y=c 2

- 4’35 S K, sina, x = 4112 (3 K, Q) sin a4, x 24)
3 a2 p
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and
0%w, 49 0w, _
. 0y® 0x20y | y-¢
c<x < af?
P—1
— 2

=_f_2(—1-)~——— 24+ %94m %Y cha,c—a,csha,c| sina,x—

D %, a 2 9 e v e ?

7 2qgch 2~

s P . ,

= - EEIEL » Sina, ZE(E Lpayp)sino, x . (25)
n P .
With (18) —(25) the conditions (16) and (17) become:
ng[frn + B, (2tha, c+anc)]sin oy X =
DLE (Egvb,wsin a, )+ (X B, cpysino,e) sine, x -
a1l v
P . ga® .
—— S Y Kpapp) sina, x+ —EE(ZM,{aM)Sma,,x (26)
D% P D=* 4 %

and

- —%Zn[}fn cth o, c+B,(~1+a,ctha, ¢)]sina, x =
a n

v

E%E {[E?&vvbm, cos a, c] + [EEvvcosocvc(él boytho, ¢ +c,,)])sine, x +
n, v

T P
+aD4

n

S (X Lp anp) sinay x - D E ( ZN" i) Sin o, x . (27)

These conditions will be satisfied only if for every n(n=1,3,5...):

P 2
EA@ﬁg&nﬁ%?x&T, (28)

. _ P 2
2 Ay Inv + 2 Bv}‘-ﬁv+cnz =dp ﬂg‘" s (29)
v

2
v F4
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where the meaning of the coefficients k,,, %,, etc. is obvious from (26)
and (27). With (28) and (29) we have obtained two infinite systems of
algebraic linear equations with the unknowns A,, B, and P. It is seen
that all unknowns appear in all equations of both systems. The coefficients
A, and B, converge rapidly enough, so that in numerical calculations a
relatively small number of terms has to be taken.

For the complete solution of the problem we need one more equation,
which is given by the condition (4). This condition explicitely written has
the form

02w, 0w, = 0w,
0x0y 0x0y 0x0y

or with (6), (5) and (8):

7152 [4 cthanc +B, (1+tha, ¢) ] cos a, ¢ +
n

p—!
_ 2
+£E (=D %l i ﬁ’—’g—chacpc—ozpcsh a,c | cosapc—
D% apa | 2 2 ,
205pch-‘—-~
2
L <1+a,cth f’iﬂ) shoy ¢ - (30)
D> %' nk® ’ 2

- (ockchthM— %gch—2 “—;E) chakc] cosa,c=0,

Introducing here notations the meaning of which is seen from (30)
we can write:
- = P qa®
EAvmv'*'Zva“v'l'rP_:rq*—-' (31)
Y " 4 2
The total number of equations obtained from the conditions (28),
(29) and (31) is equal to the number of unknown coefficients A,, B, and
P. In this way our problem is solved.

We can mention here that this solution is in principle applicable as
well to ihe cases of rectangular plate with a hole in arbifrary position and
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under arbifrary loading, as to the different boundary conditions on the
inner or the outer boundary. But this would require in some cases a fair
amount of numerical work. Therefore it would be perhaps of interest to
tabulate the disiribution of bending moments in the plate for some special
cases interesting in the practice.

As an example for the application of this solution we have done
numerical calculations for the ratig c¢/a=1/3. In the calculations we have
taken six first members of the

series representing w, and w,. The n An Bn

results obtained are shown in the 1 13411 1,714

table 1 and on figs. 2 and 3. The

table 1 gives the values of the cal- 3 1 —130 +0,206

culated coefficients A,, B, and P. 5 | 40,605 —0,070

Fig. 2 represenis the deflections - -

along y=c, compared with the 7] 088 +0,035
deflections of a full plate along g 40,204 —0,020

the same straight line (represented

by the dotted line). Fig 3 shows the | I | —0081 . +0,007
calculated values of bending mo- _ at
ments M, and M, along y=c (the Pl=4525 Xgn?
bending moments M, in the full Table 1.

plate along y =c are represented by

a dotted line for comparison). As it is seen from fig. 3 the calculated
value of M, for x=c is equal to half the value of M, on the same
place. In fact, immediately left of this place there ought to be M,=M,
and immediately right My,=0. This appears because the function M,, which
at this place has a finite spring, is represented by a trigonometrical series.
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It is interesting to mention here, that Foppl in the quoted place con-
sidered, that by the solution of this problem the corners of the hole ought
to be rounded “as otherwise too great stresses should be expected at
these places”. In our calculations we did not get these great stresses, we
rather obtained only a finite spring of bending moments and shearing
forces. In fact, it appears that the stresses in the corners of the hole, which
probably are very great, cannot at all be found by the approximate theory
of plates, used in this solution, because the distribution of stresses in these
places cannot be represented by stress-resultants and stress-couples. It
appears therefore, that the stresses in the vicinity of these points could
be found only by the exact theory of plates, which would be another
interesting, but much more complicated problem.*

* While this paper was being printed I was notified that our problem was discussed
by E. Wiedemann (Ingenieararchiv Vol. VII (1936), Ne 1 and 3. pp 56—70 and 196—202).
Wiedemann is making use of the finite differences method for the solution and in a nume-
rical example takes the same ratio 1:3, as we do, between the lengths of the inner and
the outer edges. It seems that our numerical results differ fundamentally. We shall refer
to this question later on in a separate note,
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