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SUMMARY

In the first six paragraphs the energetic criterion of elastic stability
is discussed and the differential equation for the critical vector of displa-
cement in orthogonal curvilinear coordinates is derived. Together with this
equation, the boundary condilion on those parts of the boundary is given,
where the displacements are free. In the last two paragraphs the correspon-
ding basic expressions for thin shells are determined, under the assump-
tion that plane sections remain plane and that surface forces behave as
hydrostatic pressure, when the body is passing over irom its critical
position of equilibrium to a neighbouring one.

Introduction

The determination of critical stresses in thin elastic bodies (rods,
arches, plates, and shells) by the use of energetic considerations is very
old. It is well known that it was first employed by G. H. Bryan in 1888
for the determination of critical stresses in a compressed plate (Proc.
Cambr. Phil. Soc. V1.). Later this method was developed mostly by prof.
S. Timoshenko in a series of papers, which are for the most part included
in his well-known work on the theory of elastic stability {6]. H. Reissner
improved this method theoretically in some detail [5], but it was E. Treiftz
[8], who first gave a general theory of elastic stability based on energetic
considerations, without taking into account the dimensions of ihe body.
But the application of these methods to stability questions of shells is
very uncertain and connected with great difficulties, because some quanti-
ties are given in Cartesian coordinates only and for other coordinates
there are known only their first order terms. Their extension to curvili-
near coordinates and to the second order terms is not always quite easy
and unambiguous.
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In the first part of our paper we shall therefore extend Trefftz’s
method to curvilinear orthogonal coordinates and establish general equa-
tions for critical stresses in elastic bodies. In the second part we shall
show how to use the general theory to determine the critical loads in
thin shells, which are obeying the Bernoulli-Navier rule of plane sections.

1. General considerations on the stability of elastic equilibrium.

Under the influence of exiernal loads all elastic bodies change their
shape. Usually, we are able to detemine the deformations of bodies under
given loads and boundary conditions only approximately, according to
rules of the strength of materials, because the corresponding problem of
the theory of elasticity cannot be soived exactly. In our paper we suppose
that these deformations of the body, after the loading has been applied,
are determined and we shall call the position of the deformed body the
initial position. If the deformations of the body under the influence of
loads are small, there will be no great difference between the so defined
initial position and the position before the loading was applied; but gene-
rally the deformations during the displacement of the body from its nafu-
ral position (before the loading) to the initial position cannot be omitted,
because by doing thus we would overlook some known phenomena of
elastic instability, which are caused just by these deformations. A charac-
teristic example for such an occurence is the instability of a round tube
bent by two couples, where the initially circular cross section becomes
more and more oval. We investigate the stability of the inital state of an
elastic body in the following way.

We suppose that all particles of the body move from their initial
position to another position, which we shall call for brevity the neighbour-
ing position. The displacements of particles during this movement we
suppose to be very small (but not infinitesimal), and to satisfy to all
boundary conditions. In this paper we shall deal only with such displace-
ments and therefore we call them simply displacements without any sup-
plementary denomination. Let the external forces during the movement of
the body from its initial position to the neighbouring one do the work
AA, and let the increment of the elastic energy of the body be AE. The
initial position of the body will be stable, if the work of the external forces
is too small to cover the increase of the elastic energy for all possible
displacements. But when the work of the external forces for one displace-
ment at least is equal to the increase of the elastic energy, the initial
position is indifferent and the loads have reached their -critical value,
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because the body itself can move from the initial position to at least one
neighbouring position without any exfernal influence. Only those parts
A® Aand A®E of the work of external forces and of the elastic energy
which are of the second order in displacements are tec be considered, as
the first variation of the potential energies of internal and external forces
in the position of equilibrium is equal to zero.

When the loads have reached their critical values, such displacements

Zdo therefore exist for which
AR E_A@ A

while for other displacements there still remains the inequality
ADE > A® A

It follows from these considerations that the functional

(1) Q(u) = A® E-A® (4)

reaches its minimum at the critical value of loads and its variation must
therefore be zero for at least one set of displacements, which we shall
call the critical displacements. From equation

(2) 8 Q (1;)=0

we get a system of differential equations for critical displacements, from
which we can also derive the values of critical loads or of critical initial
stresses. It is the purpose of the first part of our paper to establish the
general form of the functional Q (¢;) and to derive equations for the
critical displacements and stresses from it.

2. Displacements

We designate the three curvilinear orthogonal coordinates by a;, a,, a;.
Let a point P of the elastic body in the initial state be given by the
position vector

> 3 .
3 R=72Xxij,
=1

where j; are the unit vectors of a Cartesian system of coordinates. The
Cartesian coordinates x,, x,, xg of the point are functions of the three
curvilinear coordinates:

(%) Xj=xj (o4, oo, 043) -
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Introducing three fundamental coefficients

R AR
4) Hi—+ |/ R .9 21,93
()a,- boc,-«

and fundamental unit vectors along the coordinate lines

1 9
—— , (i=1,23
Hi c)ac, ( )

xd

) Ec~

_)
we obtain for the vector d R, connecting the point P («y, «,, ;) with the
point Q (&, +da,, d,+da,, as+deg), the form

__)
(6) ik~ 3R
 da

“M‘“

As nearly all summations in this paper are to be taken from one to three,
we shall usually drop the designation of the summation limits and shall
mark them only if the sum is not to be taken between those limits.

For applications, it is very important to know the projections of the

-
derivalives of the fundamental unit vectors E; with respect to the coordi-
nates o,, @,, 3. These derivates are given by the equations (see e. g.
Lagally, Vektorrechung, pp. 94—96) of the type

aE_ 1 OH, 2 1 0H,2

T 4—53 )
do, Hy, Oa, Hy da,
OE, 1 0H, 2
E
(7) P=—2E,
da, H, 0o,
oF, Lot
6063 H, 0a,

the equations for derivatives of the other two vectors follow immediately
through cyclic permutation of the indices,
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Let the point P come into the position P, during ils movement from
the initial to the neighbouring state and let the displacement be given by

the vector
- >

8) ?=12ux i
where the components »,, u,, u; are functions of the curviliniear coordi-
nates a,, a,, ;:

®) m=u (o, 0, a5) , (i=1, 2, 3).

The position vector to the point P, will be
> 9

9) r=R+p,

— -3 -»> —
so that the former vector PQ = dR changes to dr=P,Q, where

dr=dR+3 9% % day; = 2H(E+ 1 a" )daci.
i Baq Hi o%;

Introducing three new vectors
2 1 o
P
E + =
(m) H; 0a;
which we call net vectors and which are nearly equal to the unit vectors

H (f'-":la 29 3)

> -
E; if the displacements are small, we can write the equation for dr also
in the form:

1) Gr=SH - - da,
where the right hand term has the same form as the expression for
dl—?’ in (6).

It follows from the orthogonality of the fundamental unit vectors,

———ge
that the square of the line segment PQ is given by

2
(12) dR =T H? do} = 3 ds? ,
{ i
if we denote for brevity
(129 ds;=H, da; .

Publications de 1'Institut Mathématique 6
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For the square of the line segment P,Q, we get from (11)
’ 52 5> -
(13) ) dr =2 3% H,‘Hj e - & doc,- d“j=22gij dS; de
{7 ' B

and for the coefficients g; of the last quadratic form we obtain from (10)
the expression
o o s 190 2 10 2. 1 % o
(14) gy=ei-g=E E+ — L . E4 — % g~ % %
Hl' ()OC,' Hj c)ocj Hi Hj acx,- chj
If we designate the coefficients of the corresponding quadratic form
for PQ? by G, we get from (12)
<>
(14”) Gij =Eg » E,‘ *B,}' 3
where &;--1 for i=j, and 3;;=0 for i#j. The variation of coefficients of
the square of the line segment PQ during its movement from the initial
to the neighbouring position is therefore
1o 2,10 2. 1 3 o
(18)  Agy=gy~Gy= — T Epp O Ep o E
H,' aazi Hj aij Hi Hj ()06,' boc,
The first two right - hand terms thereby are evidently linear in the dis-

_)
placement p, while the last one is of the second order.

3. Stresses and elastic energy.

..)
We decompose the stress vector p,, acting across the surface element

H;H; de; da; (i, j#h), into components in the directions of the net vectors
e A e
€1, €3, €3

> -
(16) . Pr= X Pui e
7

R .
and we define p, as the quotient of the force, divided by the inital area
of the element H;. H;. da;. da;.

When the displacements are not infinitesimal, the vectors Zi are not
unit vectors and so the quantities py,; are not the components of the stress
in the usual sense of word. But we shall see that by introducing these
components, we obtfain relatively simple expressions for all quantities;
moreover, as these components are approaching the values of the stress
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components in the usual sense, if the neighbouring state is approaching
the initial state, there can be no serious objections against their introduction.

Let us consider a curved element of the elastic body, bounded by
the surfaces «, + % de, == consi, o, 4 -;—dczz = const,, a3 & %—doc3=gonsi. The
force across a curvilinear element of the surface e, = const, whose sides
are given by the two vectors H, Zza'acz and H, z':dccg, is |H, HS[_): dey, doug.

" force across an element of the surface a, - %dal is then

and the vector to its center is

-» -+ da
r“erl * ‘—“‘i .
2

The moment of this force about the center of the volume element is

',’
Oty Hyp) | doy

"+H§gﬁ-x HH«’w dow, de
112 2 i3 Py om, 5 g Gy

and the moment of the opposite force about the same point is;

—}
- >
+H1 - gg’l’ X [Hg HSPI*F‘Q{?'M' E{gl] dﬂz dﬁzg .

da,
The expressions for moments of forces across other surfaces of the ele-
mentary body are similar.
Summing up the contributions of forces across all sides of the con-

sidered body element, we obtain the following moment condition of
equilibrium, if neglecting small terms of higher order
-+ - -+ -» 2>
H; H, Hy (e, X py) + Hy Hy Hy (e, X po) +H, Hy Hy (€5 X pg) = 0

and from there we obtain the well known relation between the stress
components

(17) Pij =Dji » (L j:"'" 1’ 2’ 3)'
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In fact, the moment condition can be written in the form:

> 2 3
ey Xpyt+e, X py+egXps=0 ;

or, decomposing the stress vectors into their components, and omitting
> > 9 '
such vector products as e; X py, e;, which vanish, we get
- -> -> -> > -» -> - -
eX (P12 + P1se€s) + € X (Pay €y + Pags) + €5 X (Psg €3 + Paa @) = 0
or
~» ~»
ey X €3 (Pas—Psa) = 0,
+> 2
ey X e (psy - Pys) = 0,
-»>
ey X € (Pyz—pay) = 0,
from where equations (17) follow immediately.
In a similar way we obtain that the resultant traction force across

the surfaces o, + %Z‘A ==Const,, o, + %'5?« ==const.,, and og + E’gi == const.

is given by the expression

> - >
0 (HyHypy) " 0 (Hy Hy p,) + 0 (Hy H, ps)
day, 0 ay 0 ag

(18) die'p-._-.[ ] da, day da .

The work of the two traction forces across the surfaces mij;%da, of

—)
the elementary body for the displacement 3r of its center is given by

...)
é_(_Hz Hs p;) oy

..’
> 03r do
doy do - 5r—-—-—-——i)+
P 2} 2 T (

Q
aA,=~[H2Hspx~ o
:

- >
4 > 357 day\
+[H2H3p1+§_.(£§._ﬂ_“£1_) E{‘ﬁ.} doty daa.(g,+__’_i’ii_)
V %y 2 oo, 2

or fo the third order terms in the differentials du,, da,, dog

-+ -+ :
- >
5 A, =[a-~(”2ﬁ$wp*) . &r+H, Hy py - Q% 5’] dotg dog dag .
%y dey

It is well known that the first right side term in this equation represents

the contribution of the traction forces across the surfaces a, 4 9251, which
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are necessary for compensating the mass forces. (In fact, we can deduce
from equation (18) that the corresponding surface force in the expression
for 8 A, is equal and opposite to a part of the vector sum of the mass
and inertia forces). The work corresponding to the second term is accu-

mulated during the displacement 5-’r in the volume element as elastic
energy. If we designate therefore by 3e the increment of the elastic energy
per unit of the original volume H, H, H; da, da, da;, we get from the last
equation

1> 28r. 12 o8 1 > 387
(19) e H; P1 do, * H, Pz da,, * H, Ps Oog

_’
or

_)
From equation (11) we obtain: Fyl H; e; and so
o ’
a_a_’ﬂaf’_’—a(ﬁ o) = Hide,
ou; da;

We can therefore write the expression for the change of the elastic
energy per unit of the initial volume in the form

I T T T
(20) Se=p, -Be, +p, - Bey+pg- e,
or, introducing the stress components p,; from equation (16),

-+ o

(20') Se=2732 Pij- €+ 62,‘ .
ij

But from equations (14') and (15) we deduce

e T
8gij=8(gy - Gy)=e;-Be;+e; - Be;=8g,
and so every two symmetrical terms in equation (20’) can be wrltten as
follows
5g” + 8gjl

5> o > -
pijej-8e +pji e;-8e;=p; — 5 - ? (pij 8gis +pyi 8gii)

because of the symmetry of stress components. The definitive expression
for the increment of elastic energy per unit of volume is therefore

20) be— L 23p, 8.
2 i
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4, The variation of elastic energy during the transition from the
initial to the neighbouring position.

Each stress component p;; in an intermediate position of the body
can be written as a sum of the relative stress component o; in the initial
state and of the additional stress component t,;, caused by displacements
g, Uy, Ug
(21) Pij =0;+%; -

Equation (20%) for the variation of the elastic energy per unit of volume

during the transition from the initial position to a neighbouring one is
therefore

1 1
(22) Ag= f&ez —f}:}:c,jbg,-j+ —‘J'EE‘CU Bg,-,- .
27 iy 2J 1y

But ¢;=const. during the transition period and so the first right - hand
term in the last equation can be written

1 1
23Ty 3ot
(23)

=—~EEG;,-[——- j —~—-Ee+
21 H; 0x; H; 0o H,Hj 9, Oz,

1dop 2 100 2 1 0p 00
P.E.+ ¢ _E__P_]'

The second' right-hand term of eq. (22) represents the elastic
energy of additional stresses t; and here only first order approximations
are necessary, since all third and higher powers of displacements can be
omitted in Ae. Because of the orthogonality of the coordinates «,, a5, a
we obtain for this term in the case of three — dimensional state of
stresses the well- known expression (see e. g. A. E. H. Love, Theory
of elasticity, 4t edition, p. 302):

O% -2 (e ey te,e5+858) +

1 —
(24) a == ?.[!.2§ng sg,jr— E {}___V

2{(+v) U-2»
1y
+ *2_(7%2"*'«753'*' Ygl)} .

In the bidimensional case we have

-1
2 12

(25a) a { 2+ e2+2ve e+ l—;l sz] ,
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and if all other stresses except t,, and t,, vanish, this expression becomes
E 1
25b a= =&+ —-—-y2 }.
(20b) 2( : 2(1+v)Y'2>
In the above equations ¢, ¢,, ¢; are the dilatations in the direction

of coordinate lines and y,,, Yss, Y3, are the corresponding shearing sirains.
From the definition of ¢; and y;;

dS,"*ng —_— 1 - >
=S8 _yer 1 and yy= ——— - dr, - dr;
; ds, &ij Tij ds; ds; i
we obtain
1o = 1
g— Fgf. . Ei=§A<1> Ziis
(26a, b) i om
1 3% =2 1o =2 1 o0
fy= e Ejp— - o BRI _ A,
HI aOﬂg H} c)ocj Hi Hj aa; aocj

where A®Mg, denote first order differences between g; and G,;.

The variation of the total elastic energy AE = [e . dV (where dV is
the volume element and the integration is to be extended over the whole
body) can be decomposed in a linear term AME and a second order term
A®E in the displacements and from eq. (22) and (23) we get

- -

(27a) avp=l [ s oif (,_1,‘)_9 - E; + J__Qigl) . dV
2 ) i i Oy H; 9%

and
1 1 % o

(27b) APE=—- |sx——.q; 2. %4y 4 [ aav.
2 ) ¢iHH, da;  Og; ‘

5. The work of external forces and energy criterion of stability.

On the elastic body two kinds of external forces are acting, the
components of which are given by the equation

-3

._)
(28) X=X E,
i
for the body forces and by the equation

~» >
(29) F=3F; E
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for the surface forces. From the equilibrium condition on the surface of
the body we obtain the well - known relation between the surface force

> -
F and the stresses p,
- > -» 2 >
(299 F=% p; cos (n, E;),
i

where ;2’ is the unit vector in the direction of the outer normal to the
surface,

During the transition from the initial state the body forces (weight
c. a.) usually do not change and we shall take therefore

(30) | AX=0 .

The surface forces are often changing their direction, intensity or both
during the {transition phase. We shall decompose therefore the force

> -> -
F into its component P in the initial position and in the increment AF

T > -
(31) F=P+AF=3P,E,+AF .
: i

- -»>
If, for example, the components F; change their direction from E, to ¢,
the variation of F is given by

_}
@1) AF=% P, (e/-E) .
i

The vectors Zi——lt:i must be determined to the first order terms in dis-
placements only, because in the expression for the work the increment of
the force must be multiplied by the vecior of the elementary displacement
and so the product contains all terms of the second order.

The work of external forces during the transition from the initial
position contains therefore terms of the first and second order

(32) AA=ADA £ A®A |

with

(33a) A<x>A=f§-§dv+f§-Z¢s
and

(33b) A® A~ f (AF - 50) dS ,

where dS signifies the element of the external surface of the body.

It is known from the principle of virtual work, and can be easily
verified directly, that the difference between the first order terms of the
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work of external forces and the corresponding terms of the internal
energy vanishes

(34) AV A-AWE=Q,

In fact, by integrating pariially the volume integral for A® E in the expres-
sion (27a), we obtain a surface and a volume integral which appear also
in (33a) as a first order approximation of A A. For the functional Q (u))
of equation (1) we obtain therefore the following expression

-> -»
1 1 dp Op =~ 32
35 V=L 1Tss 289 gy fadV— ff[AF'B s
(35) Q) 2ffj H,Hjsj oa; 0g; . P]

The quantily a is given by equation (24) and A F is determined by eq.

-

(32') under the condition that the force F on the surface is changing its
direction only during the transition from the initial to the neighbouring
position.

The above expression for the functional Q (u;) forms the starting
point for deducing the differential equations of the critical displacements,
which we shall deal with in the next paragraphs. Besides, it can be used
immediately for an approximate determination of critical values for concent-

-> - -
rated forces Q, line loads ¢ or surface pressures p, following the well-
-known method developed mainly by prof. S. Timoshenko.

6. Differential equations for critical stresses.

In order to obtain the general form of differential equations for cri-
tical displacements we must take that the variation of Q (u;) in equation
(35) is equal fo zero. In the first right- hand term the only quantity

->
that must be varied is the displacement vector p and its derivatives. Taking
into account that

dV=H; - Hy - H; « da, - da, - dag

we obtain here nine integrals of the type

lip= fff ‘2 68P H3 dow, dowg doty
0w, 0oy,
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and integrating by parts we get

> -
0 SO 0 0 >
1= fff{“a:(l']scm - p - ;5—2‘) - 5;:(”3 * O13 :)f;) : 5P}d“1 doy dog =
1

where (n,L-?:) is the angle between the normal n to the surface of the

elastic body and the vector 1::)1 and the surface integral is to be taken
over those parts of the surface, where no displacements are prescribed.
By doing so for all nine summands of the first right - hand term of eq.
(35) we have for the variation of this term the following expression

5.0, (1)~ ff{zxc,} .cos (n, E)-i--a—-.} -5;-.0‘8—

&j

2z H—’a 50) dee, do. d
~[[[ 22 (oo 5E) - 5 - dn ey iy

Hy H,

i

where

Hy=Hy, k==i, j for i=Z=j and H,=

y ky I==1, k=1 for | =j

> o
But we can replace the sum oy - cos (u, E;) according to eq. (29') by F;
and the definitive form of & Q, (¢) is therefore

(36) 3Q, (w)= ”‘(] g-a%) 5 - dS—

-
fjfzzm(c,}h"kj—a) . S;dosldoczdoca.
1j da da;

The variation & Q, (u;) of the integral [adV is known from the theory
of elasticity (see, e. g., A. E. H. Love, Theory of elasticity, 4" ed.,
p. 167 — 168)

Qs ()= f8a-dV=(ry dey+ -+ +73 3y5)8V.

But variations of the six strain components e, ¢, &5, Yia, Yess Ys1, €an
be expressed, according to equations (26a, b), as variations of the coeffi-
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cients g; and G;;, where only first order terms are to be taken into
account. Integrating the expression for &, Q (u;) by parts we obtain finally

>
1 65p 3 1 ()Ep 2 1 9% 2

8 ‘Eytte|-— —-E +4 ‘Ej )+

Q. (u)= fff{u 1(H16 2 H, da 1)

+ -.}H1H2H,da1da2das=
(37) _
- - - 2 g
=ff{[‘anl+112E2+'--]cos(n,E1)+---}-59dS—

3 > > >
—fff{:);—[Hsz(TuE1+T1aEz+ )+ -~~}o59da1do&2da3 .
L0ay

From equations (36) and (37) we obtain for the variation & Q (u,) of
the functional Q (z,) a sum of a volume integral, which must be extended
over the whole elastic body and of a surface integral over those parts of
the surface where no displacements are prescribed

aQ(u)=ff{ b ;; +E?t,,cos(n,E)E,—- AF] So-dS—
] 1

il e B s

The vector p, in the last sum signifies the vector of the resultant addmonal
stress in the surface normal to the «;—line, i. e.

(38)

> >

(38,) [;i=2.'5”' E_,' .
. J

When the initial stresses o;; reach their critical value and the displa-

_)
cement p is a critical one, the variation 3 Q(z;) must vanish. This involves
that both the volume and the surface integral in (38) must be equal to
zero. So we obtain a vectorial differential equation for the critical stresses

5 (H: ijk) 0 ( 9
39 229 (m. 0
(39) PR Vi R aak)
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and a vectorial condition on such parts of the surface, where no displa-
cements are prescribed

...)
2> > > -
(40) ZF—’-»QP—»’rEET,-; cos(n, E)YE;—AF=0.
iHj ooy 1
In equation (39) we have as in the expression for 8 Q,{u)

(41) H=Hyiit for itk H="m,

Lm==i,lg=m for j=k.

Equation (39) gives three partial differential equations for components
of the critical displacement and for critical initial stresses, while eq. (40)
represents three boundary conditions for these quantities.

7. Displacements and deformations in thin shells,

Let the position vector to a point on the middle surface of the shell
be denoted by %:

(42) X =% (2, 25),

where «,, &, are Gaussian coordinates along the lines of curvature on the
surface. By using: the coordinate lines in these directions, many of the
following formulae will take a much more simple form than usually. Then,
denoting by «g the distance of a point in the shell from the middle sur-
face, we have for the position vector to this point

> ->
(43) R=% (00, @g) + @3- E;,

..)
where Ej; is the unit vector in the direction of the normal to this surface.
Denoting the quantilies H, and H, in the middle surface by A,, A, we have

B_AE, a2
oo, do; Oa,
(44)
0% 2 o0xX o\ L 2 3
IR _ALF Ay F 9\ _
3oy 2Ly, 2 (60:2 da2)2 Es=E XE,
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> > 2

Equations for the derivatives of the unit vectors E,, E,, E; can be

obtained for this special case without any trouble using the well- known
formulae of Gauss and Weingarten

> > -
- > >
QEL=_L%EZ+§L53;2&=L%52;%=Q
Oag A, 0oy R, day, A, 0oy Ooig
0, 10A,2 OE,  104,2 A, OF
us PP 1oA OB oA A 0B
ooy A, 0oy, 60(2 A, 0oy R, Ocg
> > >
B, __ Ay B __Mp

oo, R, doy R, 2 Oog

where R, and R, are the two principal radiuses of curvature (positive, if
=

the «, - and «,-lines have E, on their concave side). With the above

5
results the derivatives of the position vector R are

R P Y: 5> R -
_IizA‘(_ﬁs_)El,_R=A2(1__“i)52”__&=58

ooy A oo, R, Ocg
and thus the coefficients H,, H,, H; are given by
46 Hy=A ——°°—3),H=A(~“—">,H-_—1.
( ) 1 1( Rl 2 2 R2 8

It is sometimes advantageous to supersede some derivatives by
equivalent forms which follow from the well-known theorems of Mainardi
— Codazzi and of Gauss (theorema egregium) about certain mixed deri-
vatives of higher order. As the coordinates «;, «, are taken along the
lines of curvature, those theorems have the following simple form

i(ég),;_l.a_éz L(éz_)zi%
dou, \Ry) R, day =~ oy \Ry) R, 0oy

_a_(id_{l_i +L(LQA3)=_A_1'E
dos \ A, 60&2>' da, \A, O, R.R,

(47)

As in the case of beams and plates we suppose that the strains in
a shell are sufficiently determined by deformations of its middle surface.
To this purpose we assume with J. Bernoulli and Navier that plane cross
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sections of the shell remain plane and orthogonal to the middle surface

-
after {he deformation. Denoting by p,=p, (%, @,) the vector of displace-
ment of the point ¥ («,, «,) in the middle surface, we have for the posi-
tion vector of this point after deformation

_)
(48) =% +g,= %-}-EU

Taking into account equations (45), we obtain for the first derivati-
ves of g the following equations

B (4 e U2y A 2 UG
1

oa, 0x, A, da, R, ‘6;3 A, doy
+ (.a_y_"' & A )Es ,
aal R1
(U, U, 94, U, U, 04, Az)
B - Ey+ (A, + 2+ 028y eV
da, (6&1 A, 60&,) ' ( da, A, Oa, Ry
AU, A2>
+ (-2 4+ U, 2 E
(aag 2R2 3

With these expressions the position of the tangential plane to the middle
surface in the neighbouring position can be determined. The quantities
A,;, A, change over to A’, A’,, which are given by their first order
approximations

A,lz(_a_g_ a&.)‘l’NA (1+...1__‘)_Ui U, Q:él_.ui)
O, Oa, Ay 0a, A;A 02, R,
A'zz(ézg__ o )%NA ( 1 aUZ‘;.;_g_L?_éE_g_&)_
duy, Oa, Ay 0y, A A,00, R,
From the definition of the net vectors (equations 10) we obtain in
the case of a shell
;:—<l+1 aU1+ U, 04, Us)_g (1 oU, U ‘)Ai)-52+
A; 0%, A A, du,
_}

) (1 auugl) 2
i
L3

A 0a, A A 0m, R) 4, 0m oy

A, 0oy

(L2 U B 1

2= E;+
Ay 0o, A, Agoay

aUz+_}_’1,é{‘3_%).“’
Agoay, A Ay0a R, ?

b
(1 oUs Uy ) E, ,
A, 0o,
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> -
and for the unit vectors ¢’,, ¢', in direction of the deformed lines of curva-
ture we have as a first order approximation

> >
e LR (10 U O (10 Uy
A’y 0a, A,0a, A, A,0a, A;0a;, R,
(49)
—.’
erz\/(*l_a_u’.__g__aA)ElTEz <i%+u>g .
Ay0a, A A,00 A,02, R,

+
The unit vector ¢y in the direction of the normal to the deformed middle
surface is given by
2, _0%X 0%

A 6&1 60:2

/(E' o-F),

where E', F', G' are the coefficients of the first fundamental Quadratic form
for the deformed middle surface. As a first order aproximation in displa-
cements we obtain

-> ‘ -»> > -
(49)) ¢y = —(La—qw%)lip(—l— s Uz)E2+E3-
. Al a«'ll R1 A2 a“2 RZ

With these preliminary results we can obtain the expression for the
displacement of any point of the shell. Using the Bernouili supposition

_)
we get for the position vector r to such a point

- - - -
r=%-+oazey=%+py+age,

and the displacement vector of this point is

3 9 3
p=r-— R-—r—(%+a353)
or
5> > o
(50) p=pot+as(es-Es) .

> -
Using equations (48) and (49') for p, and ¢'; we obtain the components o

> . . > 9
p in the direction of E,, E,, E;

- o ag OU. o o, oU.
50 ~ 8 _ 878 E. 4+ ( - i) , - 328 E U E .
(50") ¢ [( ) 1 a, 9%, ] 1+ [ R, 2 A, 0y ] 2+ Ug Ly



96 A. Kuhelj

But in thin shells the terms o4/R, and «4/R, are small against the unity
and therefore we have approximately

- ag 0Ug\ 2 g 0U,\ 2 -
51 ~ U——3—3>-E+(U--3—J)-E + Uy -E
( ) 14 ( 1 A16a1 1 2 A26a2 2 g Lg
or decomposing this vector in components
oU. a, OU
51" u=U -2 g0, - By vy,
( ) 1 1 Aladl 2 2 A2 Boc: 3 3

8. The functional Q (;) for thin shells

We shall give an expression for Q (u,) in thin shells with the use of
equation (35), which will hold under the following assumptions

a) in the initial stage the stresses o, 6,5, 6;, are constant across the
thickness of the shell and all other stress components are zero (mem-
brane state),

b) the shell is thin and the quantities «z/R, and «3/R, can be neglected
against unity,

c) the surface forces are of the hydrostatic type, i.e. they are always
normal to the middle surface. During the transition from the initial to the

5
neighbouring position the variation of F is therefore

U
=+

2 3 2 1 oU;\ 2 U 1 oUg\ 2
52 AF =p(e's—Eg) = - — I E -p| 2+ = —v-"')E
(92) p(es 3) P(R1 Alaal) 1 P( 2

Rz A2 aocz
(if p has the direction of 1_5’3) and the work of this force can be calculated

under the assumption, that the displacements are varying together propor-
tionately :

U=Us-L, 0<A<1 andi=1, 2 3.

(Here we denote provisionally by U;, the displacements in the neighbouring
position and by U, those in an intermediate position!)

We have then

- : - -
AF= — pl(U'O + L%)E —-p 1(2‘-1.0_ +_1_0_Uﬂ))1:’

R, Ay 0o )’ R, A, day ) °
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and
> 5,
5P=5P0 + ag 6(33"‘E3) s
where
- ->
8PO=52\ . iEUlo E;‘ .

' - -
The work of A F during an infinilesimal displacement 3p is
I T s - 2>, o > . -,
AF . Sp=AF - 3py+asAF - 8(e3~ Eg)=AF - 8py +agp(es—Eg) - &(e3 - Eg)

and for the work during the whole transition we have, dropping thereby
the index , for displacements in the final position

[oF 5o - B((Ly LU (o) il
; 2 \R, A4, 0, R/ Ay 0

+(g—‘": +iaU”[U2(1_ ﬁ) _ 20U, }
R, A, 6“2 R, A, aocz

As]the quantities «g/R, and «4/R, are small against unity, we can write
definitively

IAF. 5;: — _g_{(_{é + ,qu_s) (Ui"' ﬁ%){_
A

Rl Ajraal A1 a“l
U, 19U, ( oy OU; }
=2 T2 LUy - = 22 .
+ (R2 A, azxz) : A, 6052)

If the pressure on the surface ay;= - g- (h =thickness of the shell) is deno-

ted by p,;and the pressure on the other side ay= + —g— is p,, then

p=p, for aa3=——§—and p=p, for ag=+

The last equation becomes therefore for the work of pressures on
both sides

(53) fAf:’.agz- ELQZEE_{UI (gl+_1_a_11§) +U2(_li’_2+iég.§)}_

R, A, oa, R, A, da,
et (U LOU)1 30, Uy, 10Uy 100
2 2{ R, A, ¢)oc,)A1 LA R, Agoa,/A, Oc,
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The diiference p, —p, gives the resultant pressure p for both free
surfaces of the shell and the corresponding term in (53) is the most impor-
tant. For practical purposes the work of additional forces in the case of
hydrostatic pressure is therefore given by the following equation

¥ —). —q)___. __( 2+ U16U3 UzaU)
(53) fAF 8p= - Rz-thA1 aa1+Az oay

As all displacements of the points in the shell are expressed by
displacements of its middle surface, all volume integrals on the right side
of equation (35) can be integrated over the shell thickness, if the deriva-

-
tives of p with respect to «,, «,, o3 are known. But from eq. (45) and (51)

_)
we obtain the following expressions for the derivatives of p with respect
to «, and «,

_)
e _ {Mﬂ s _yhs g _.@.-(-1_5_%)+ 1 04, "Us]}m
o, oy A, Oy R, Oa, \A, Oy Az 6«2 Oc,
(54)

Oy A, Oa, Oa, A 60&2 A}A2 oo, Oa, aa, f\’l

Y {aul U, 4, [a (1aus) 104 aus]}E
> - 1

0x, da, A, Oa, Oogs VA, 0, A A, é)oc, oo,

(54) +{‘—)&+ﬂ9¢‘3—¥— v e - o [0 (1 ‘)U3>+L-’344-2‘393 }131
oo, A, 0oy R, 6@2 A, oy A2 Oay da,
oU, A
—+ U ’]E ,
{0062 R

where in the last bracket of each equation the terms 25 U, and % 90U,

Ry du Ry O,

respectively were omitted as being small when compared with the first ones.

= 3
The derivative of p with respect to o3 is much simpler, because the
e
unit vectors E,, E,, E; are independent of «;. Starting from equation (51)

we obtain
: -»
op | OU,, 1 0U,7

55 X TR p .~ TT3F,
(59) ooy A, Oa = A, ooy :
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but if using equation (50') we would get
O _ N(U1 + L 1 c‘iU,,)E1 (U2 S 1 aUg)l52 ‘

(55) 2
Oug R, A 0oy

-152— A, Oa,
We can omit here the terms U,/R, and U,/R, against the - expressions on
the right side of equation (55) for the same reason as in (80Y) : if, for

instance, U, be such that i} U, and — % U, would be of the same order,

1 1 0%
then for thin shells the following f{irst- order approximation would hold
- -> -» 5> 9
p=U, Es+ U, E,+ U Eg=p,
This means that no substantial buckling would exist and such cases are
not interesting. We shall therefore accept equation (55) as a sufficiently
good approximation and in equations {54) we shall neglect the same terms
as in (65'), where they appear together with terms from equation (55).
With these approximations we first introduce the strain quantities of
the middle surface
19U, U, 04; U,
€0 = te——— - ==
A doy A A, 0o, R,
19U, U 04, U
Eg0 = + o =
A da, A A, Boc, R,

b

, 1 oU, U, 94, 19U, U, 04,
(66)  Yi=- o = L
A, 0oy A A, ()ocz A2 oo, A, A,0x
oAUy, 1,
A, 0o, A, dm,

- L[ (L) Lo
A, {0, \A, Oun, Ak Oa, Ox,
17Ta /10U, 1 0A,0U,
[ L
Ay | 0oy \ Ay Oay/ A day Oay
(56")
m L[ (Lo L amou)
A, | 02, \ A, da,/ A A, Oy Oay
XEZL”,P_(L‘)_‘!&) 1 a4, OUS] .
Ayl 0a,\ A, 02y) A, A2 0c, O,
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>
Then the derivatives od p with respect to the coordinates «,, o, «; can
be written '

1 a; - > '—>
— —— =(&39 ~ %%)E1 4 (Y10~ %M)E; + Y4'Es,
A, Oy

_)
1 0p - > 2
(87) —— —— = (Yoo ~ %ghg)Ey + (g0 — agp)Ex + 1,4"Ey
A; Oa,
1 o
P ->
— = -y E.—Y"E
A, das YsL1—Ys Lo

Neglecting in (46) the terms o«g/R, and «4/R, against unity we have
Hy=A,, Hy=A,, Hz=1 and we obtain for portions of the first right-
-hand term in (35) the following expressions

and
5>
ﬁl_ﬁ._.a._e. €0 Y + € Y +Y’Y”._
H, Hy 00, 92 10 Yo + €20 Y10 3Y3
~ &g (e1gAg + E3p Ay + Yyo % + Yoo %) + aZ (% Ay + %3 4y) .

Integrating across the thickness the complete first right-hand term of
(35) becomes

t

1 d% %
Q, () = ffEEH,H,-cU- 9 4y -
2 ij 9

o Daj

oy, A n o H*
=[5 [ vor v ot 0] +
(58)

2z h ' h?
+ L-; [ego Yot Y508+ l%)] +

h2
+012 h |:E1o Y20 + 520 YIO + Y:’} Y:’;’ + E (xi )\2 + xz Ai)]} Al AZ d“j da3 .
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When forming the expression for the second right-hand volume
integral of Q(u;) we may suppose that the stresses in thin shells are nearly
plane. The elastic energy per unit volume of the additional stresses can
be therefore calculated from equation (25a), where according to equa-
tions (26 a, b) ‘

_)
1 1 9p 2
(59) 51%§A(1)g11='[’1‘5§—‘E13510_ %3 Ay
1 00y
and
100 2 1 3 2
(59”) Yiz=A gy ~ L. Ey+ — 2. Ei=Yi1o+Yao —as(Xs +2,) ,

H, 0a, H, 0a,

if we neglect the difference between H,, H, and A,, A,. With these results
we obtain for the second volume integral in the expression for Q (u,)

Eh
Q. (u,)=fadV= ffﬂl - vz){ e2)+e2, +2ve e+

(60)

1-v T 1-v 2]\
+T(Y1°+Yzo)+ﬁ W+ 12+ 20 %y ny + 5 (A +2.)2[A; A, da, day, .

J

The functional @ (u;) for thin shells and for surface forces P_: of the
hydrostatic pressure type can be therefore written as a surface integral
of the form

. [fo(Y s v,
(61) Q)= 01 (u) + Qu(u) ~ [ [ B 54 24 51800, L0} 4t o,
where Q, (¢;) and Q,(u) are given by (58) and (60) respectively. The
quantities in the last two equations can be expressed by components
U,, U,, U of the displacement of the middle surface through equations
(56"} and (56").

Forming the first variation of Q (u;) and integrating by parts we would
obtain a surface and a line integral. The integrand of the first integral
gives a set of three partial differential equations for the components
U,, U,, U, of the displacement of the middle surface, while the second
integrand gives a set of conditions on those parts of the boundary of the
middle surface where the displacements are not prescribed. Such equations
for general shapes of shells are too complicated to be written down here
explicitely, but for some special types the expressions are not so intricate.
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