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Abstract. We consider some properties of Armendariz and rigid rings. We
prove that the direct product of rigid (weak rigid), weak Armendariz rings is a
rigid (weak rigid), weak Armendariz ring. On the assumption that the factor
ring 𝑅/𝐼 is weak Armendariz, where 𝐼 is nilpotent ideal, we prove that 𝑅 is a
weak Armendariz ring. We also prove that every ring isomorphism preserves
weak skew Armendariz structure. Armendariz rings of Laurent power series
are also considered.

1. Introduction

Throughout this paper 𝑅 denotes an associative ring with identity, 𝜎 denotes an
endomorphism of 𝑅 and 𝑅[𝑥;𝜎] denotes a skew polynomial ring with the ordinary
addition and the multiplication subject to the relation 𝑥𝑟 = 𝜎(𝑟)𝑥. When 𝜎 is
an automorphism, 𝑅[𝑥, 𝑥−1;𝜎] denotes a skew Laurent polynomial ring with the
multiplication subject to the relation 𝑥−1𝑟 = 𝜎−1(𝑟)𝑥.

The notion of Armendariz ring is introduced by Rege and Chhawchharia [1].
They defined a ring 𝑅 to be Armendariz if 𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑎𝑖𝑏𝑗 = 0, for all
polynomials 𝑓(𝑥) =

∑︀𝑛
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝑔(𝑥) =
∑︀𝑚
𝑗=0 𝑏𝑗𝑥

𝑗 from 𝑅[𝑥]. The motivation
for those rings comes from the fact that Armendariz had shown that reduced rings
(𝑎2 = 0 implies 𝑎 = 0) satisfy this condition. The notion of Armendariz ring is
natural and useful in understanding the relation between annihilators of rings 𝑅
and 𝑅[𝑥] (see [4]). Those rings were also studied by Armendariz himself, Hong and
Kim [5], Chen and Tong [3], Krempa [6] and others.

An endomorphism 𝜎 is rigid if 𝑎𝜎(𝑎) = 0 implies 𝑎 = 0, for all 𝑎 ∈ 𝑅 (Krempa
[6]). Following Hong, a ring is said to be rigid if it has a rigid endomorphism. Hong
also generalized the notions of Armendariz and rigid ring to 𝜎-skew Armendariz
ring. Ring𝑅 is called 𝜎-skew Armendariz if 𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑎𝑖𝜎𝑖(𝑏𝑗)= 0, for all
𝑓(𝑥) =

∑︀𝑛
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝑔(𝑥) =
∑︀𝑚
𝑗=0 𝑏𝑗𝑥

𝑗 from 𝑅[𝑥;𝜎] (see [5]). As a generalization
of 𝜎-skew Armendariz rings, Ouyang (see [2]) introduced a notion of weak 𝜎-skew
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Armendariz ring 𝑅 as a ring in which 𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑎𝑖𝜎𝑖(𝑏𝑗) is the nilpotent
element of 𝑅 for all 𝑓(𝑥) =

∑︀𝑛
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝑔(𝑥) =
∑︀𝑚
𝑗=0 𝑏𝑗𝑥

𝑗 from 𝑅[𝑥;𝜎]. Ouyang
also introduced a notion of weak 𝜎-rigid ring as a ring with an endomorphism 𝜎
that satisfies 𝑎𝜎(𝑎) ∈ nil(𝑅) if and only if 𝑎 ∈ nil(𝑅) for all 𝑎 ∈ 𝑅 where nil(𝑅) is
the set of all nilpotent elements of 𝑅. In [3] is shown that 𝑅 is 𝜎-rigid if and only if
𝑅 is weak 𝜎-rigid and reduced. Here we show that if 𝐴 is 𝜎1-rigid and 𝐵 is 𝜎2-rigid,
then 𝐴×𝐵 is 𝛾-rigid, where endomorphism 𝛾 is such that 𝛾(𝑎, 𝑏) = (𝜎1(𝑎), 𝜎2(𝑏)).
In this paper we consider conditions which characterize 𝜎-rigid rings and prove
that 𝑅 is 𝜎-skew Armendariz ring if and only if 𝑅[𝑥, 𝑥−1;𝜎] is 𝜎-skew Armendariz
ring. Chen and Tong (see [3]) have proved that if 𝑅 and 𝑆 are rings and 𝜎 is an
isomorphism of rings 𝑅 and 𝑆 and 𝑅 is 𝛼-skew Armendariz ring, then 𝑆 is 𝜎𝛼𝜎−1-
skew Armendariz ring. In this paper we prove a variant of this theorem for weak
skew Armendariz rings. We also prove that if 𝛼 is endomorphism of ring 𝑅, and
the factor ring 𝑅[𝑥]/(𝑥𝑛) is weak ̃︀𝛼-skew Armendariz, then 𝑉𝑛(𝑅) is weak ̃︀𝛼-skew
Armendariz.

2. Rigid rings and weak rigid rings

In this section we give a simple and straightforward proof that the finite direct
product of rigid (weak rigid) rings is a rigid (weak rigid) ring. We also show how
the notion of rigidity of a ring can be naturally transferred to the notion of rigidity
of the corresponding ring of polynomials.

Lemma 2.1. If 𝐴 is 𝜎1-rigid ring and 𝐵 is 𝜎2-rigid ring, then 𝐴×𝐵 is 𝛾-rigid,
where 𝛾(𝑎, 𝑏) = (𝜎1(𝑎), 𝜎2(𝑏)).

Proof. Suppose that (𝑎, 𝑏)𝛾(𝑎, 𝑏) = (0, 0); then (𝑎, 𝑏)(𝜎1(𝑎), 𝜎2(𝑏)) = (0, 0) so
that (𝑎𝜎1(𝑎), 𝑏𝜎2(𝑏)) = (0, 0). Since 𝑎𝜎1(𝑎) = 0, 𝑏𝜎2(𝑏) = 0, from the fact that 𝐴,𝐵
are rigid rings we have (𝑎, 𝑏) = (0, 0), which means that 𝐴×𝐵 is a 𝛾-rigid ring. �

Corollary 2.1. Finite direct product of 𝜎𝑖-rigid rings, 1 6 𝑖 6 𝑛, is 𝛾-rigid
ring, where 𝛾(𝑎1, 𝑎2, . . . , 𝑎𝑛) = (𝜎1(𝑎1), 𝜎2(𝑎2), . . . , 𝜎𝑛(𝑎𝑛)).

Lemma 2.2. If 𝐴 is a weak 𝜎1-rigid ring and 𝐵 is a weak 𝜎2-rigid ring, then
𝐴×𝐵 is a weak 𝛾-rigid ring, where 𝛾 is such that 𝛾(𝑎, 𝑏) = (𝜎1(𝑎), 𝜎2(𝑏)).

Proof. Suppose that (𝑎, 𝑏)𝛾(𝑎, 𝑏) ∈ nil(𝐴 × 𝐵). From the definition of 𝛾, we
have (𝑎, 𝑏)(𝜎1(𝑎), 𝜎2(𝑏)) ∈ nil(𝐴 × 𝐵), so that (𝑎𝜎1(𝑎), 𝑏𝜎2(𝑏)) ∈ nil(𝐴 × 𝐵) which
means that (𝑎𝜎1(𝑎), 𝑏𝜎2(𝑏))𝑛 = (0, 0) for some 𝑛 > 2. Therefore (𝑎𝜎1(𝑎))𝑛 = 0,
(𝑏𝜎2(𝑏))𝑛 = 0 and 𝑎𝜎1(𝑎) ∈ nil(𝐴), 𝑏𝜎2(𝑏) ∈ nil(𝐵). From the assumption that 𝐴 is
weak 𝜎1-rigid and 𝐵 weak 𝜎2-rigid we have 𝑎 ∈ nil(𝐴) and 𝑏 ∈ nil(𝐵), so that there
exist 𝑛1, 𝑛2 such that 𝑎𝑛1 = 0, 𝑏𝑛2 = 0. Finally we have (𝑎, 𝑏)max(𝑛1,𝑛2) = (0, 0)
which means that (𝑎, 𝑏) ∈ nil(𝐴×𝐵).

Conversely, if (𝑎, 𝑏) ∈ nil(𝐴×𝐵), using the same arguments we can show that
(𝑎, 𝑏)𝛾(𝑎, 𝑏) ∈ nil(𝐴×𝐵). �

Corollary 2.2. The finite direct product of weak 𝜎𝑖-rigid rings, 1 6 𝑖 6 𝑛, is
a weak 𝛾-rigid ring, where 𝛾(𝑎1, 𝑎2, . . . , 𝑎𝑛) = (𝜎1(𝑎1), 𝜎2(𝑎2), . . . , 𝜎𝑛(𝑎𝑛)).
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We now show how the notion of rigidity naturally transferees from the ring 𝑅 to
the ring 𝑅[𝑥]. If 𝜎 is an endomorphism of a ring 𝑅, then the map 𝜎 can be naturally
extended to an endomorphism 𝜎′ of the ring 𝑅[𝑥] by 𝜎′(

∑︀𝑛
𝑖=0 𝑎𝑖𝑥

𝑖) =
∑︀𝑛
𝑖=0 𝜎(𝑎𝑖)𝑥𝑖.

Theorem 2.1. If 𝑅 is 𝜎-rigid, then 𝑅[𝑥] is 𝜎′-rigid ring.
Proof. Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥𝑛 and 𝑓(𝑥)𝜎′(𝑓(𝑥)) = 0. We have to

prove that 𝑓(𝑥) = 0. From the relation
(𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥𝑛)(𝜎(𝑎0) + 𝜎(𝑎1)𝑥+ · · ·+ 𝜎(𝑎𝑛)𝑥𝑛) = 0,

we have that 𝑎0𝜎(𝑎0) = 0, which means 𝑎0 = 0. Since the coefficient of 𝑥2 has to
be zero, we have 𝑎0𝜎(𝑎2) + 𝑎1𝜎(𝑎1) + 𝑎2𝜎(𝑎0) = 0, so that 𝑎1𝜎(𝑎1) = 0, and since
𝑅 is 𝜎-rigid, we have 𝑎1 = 0. Continuing in this way, since the coefficient of 𝑥2𝑛−2

has to be zero, and since 𝑎𝑛−2 = 0, from the previous step, we have
𝑎𝑛−2𝜎(𝑎𝑛) + 𝑎𝑛−1𝜎(𝑎𝑛−1) + 𝑎𝑛𝜎(𝑎𝑛−2) = 0,

which means that 𝑎𝑛−1𝜎(𝑎𝑛−1) = 0, so that from the rigidity of the ring 𝑅 we have
𝑎𝑛−1 = 0. Finally, from the fact that the coefficient of 𝑥2𝑛 has to be zero, we obtain
𝑎𝑛𝜎(𝑎𝑛) = 0, which means that 𝑎𝑛 = 0 and so 𝑓(𝑥) = 0. �

3. Skew Polynomial Laurent series Rings

In this section we introduce Laurent 𝜎-Armendariz rings and Laurent 𝜎-skew
power series rings and we give their useful characterization in terms of 𝜎-skew
Armendariz rings. Throughout this section 𝜎 is a ring automorphism.

A ring 𝑅 is a 𝜎-skew Armendariz ring of Laurent type if for every two polyno-
mials 𝑓(𝑥) =

∑︀𝑞
𝑖=−𝑝 𝑎𝑖𝑥

𝑖, and 𝑔(𝑥) =
∑︀𝑠
𝑗=−𝑡 𝑏𝑗𝑥

𝑗 from 𝑅
[︀
𝑥, 𝑥−1;𝜎

]︀
,

𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑎𝑖𝜎𝑖(𝑏𝑗) = 0,−𝑝 6 𝑖 6 𝑞,−𝑡 6 𝑗 6 𝑠.
We say that 𝑅 is a 𝜎-skew power series Armendariz ring of Laurent type if

for every 𝑓(𝑥) =
∑︀∞
𝑖=−𝑝 𝑎𝑖𝑥

𝑖, and 𝑔(𝑥) =
∑︀∞
𝑗=−𝑡 𝑏𝑗𝑥

𝑗 from the power series ring
𝑅[[𝑥, 𝑥−1;𝜎]],

𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑎𝑖𝜎𝑖(𝑏𝑗) = 0,−𝑝 6 𝑖 6∞,−𝑡 6 𝑗 6∞.
In the following two theorems we give a useful characterization of Laurent

𝜎-skew Armendariz rings and Laurent 𝜎-skew power series rings.
Theorem 3.1. The following conditions are equivalent:
(1) 𝑅 is a 𝜎-skew Armendariz ring,
(2) 𝑅 is a 𝜎-skew Armendariz ring of Laurent type.

Proof. Suppose that 𝑓(𝑥) =
∑︀𝑞
𝑖=−𝑝 𝑎𝑖𝑥

𝑖 and 𝑔(𝑥) =
∑︀𝑠
𝑗=−𝑡 𝑏𝑗𝑥

𝑗 are polyno-
mials from the ring 𝑅[𝑥, 𝑥−1;𝜎] such that 𝑓(𝑥)𝑔(𝑥) = 0. Since 𝑥𝑝𝑓(𝑥) and 𝑥𝑡𝑔(𝑥)
are polynomials from the ring 𝑅[𝑥;𝜎] we have that 𝑥𝑝𝑓(𝑥)𝑔(𝑥)𝑥𝑡 = 0 which gives
𝜎𝑝(𝑎𝑖)𝜎𝑖+𝑝(𝑏𝑗) = 0,−𝑝 6 𝑖 6 𝑞,−𝑡 6 𝑗 6 𝑠. Since 𝜎 is an automorphism,

𝜎𝑝(𝑎𝑖𝜎𝑖(𝑏𝑗)) = 0,
so that we have 𝑎𝑖𝜎𝑖(𝑏𝑗) = 0. The converse is evident since 𝑅[𝑥;𝜎] ⊂ 𝑅

[︀
𝑥, 𝑥−1;𝜎

]︀
.
�
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Theorem 3.2. The following conditions are equivalent:
(1) 𝑅 is a 𝜎-skew power series Armendariz ring,
(2) 𝑅 is a 𝜎-skew power series Armendariz ring of Laurent type.

Proof. The same as the proof of the previous theorem. �

We close this section with an interesting remark which gives a sufficient condi-
tion for the power series ring 𝑅[[𝑥;𝜎]] to be reduced.

Theorem 3.3. If an endomorphism 𝜎 of a reduced ring 𝑅 satisfies the so-called
compatibility condition: 𝑎𝜎(𝑏) = 0⇔ 𝑎𝑏 = 0, then the power series ring 𝑅[[𝑥;𝜎]] is
reduced.

Proof. Let 𝑓(𝑥) =
∑︀∞
𝑖=0 𝑎𝑖𝑥

𝑖 and (𝑓(𝑥))2 = 0. We have to prove that 𝑓(𝑥)=0.
It is clear that 𝑎2

0 = 0, so that 𝑎0 = 0. Now, since the coefficient of 𝑥2 has to be zero,
we have 𝑎0𝑎2 + 𝑎1𝜎(𝑎1) + 𝑎2𝜎

2(𝑎0) = 0, so that we obtain 𝑎1𝜎(𝑎1) = 0. From the
compatibility condition we obtain 𝑎2

1 = 0 and since 𝑅 is reduced, we have 𝑎1 = 0.
Continuing in this way, since the coefficient of 𝑥2𝑛 is zero, we have 𝑎𝑛𝜎𝑛(𝑎𝑛) = 0
and, using compatibility condition once again, we have 𝑎𝑛𝜎𝑛−1(𝑎𝑛) = 0 and in the
same way 𝑎𝑛𝜎(𝑎𝑛) = 0, so that 𝑎𝑛 = 0. By induction, we have 𝑎𝑖 = 0, for all 𝑖.
This means that 𝑓(𝑥) = 0 and so the ring 𝑅[[𝑥;𝜎]] is reduced. �

Without compatibility condition the previous theorem is not true. Since if the
ring 𝑅 = 𝑍2 ⊕ 𝑍2 and 𝜎 is defined by 𝜎(𝑎, 𝑏) = (𝑏, 𝑎), it is easy to check that
𝑅[[𝑥;𝜎]] is not reduced. Observe that (1, 0)(0, 1) = (0, 0) but (1, 0)𝜎(0, 1) ̸= (0, 0).

4. Weak Armendariz rings

In this section we generalize some results from [3], which are related to 𝜎-skew
Armendariz rings, to the weak 𝜎-skew Armendariz case.

A ring 𝑅 is weak Armendariz if 𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑎𝑖𝑏𝑗 ∈ nil(𝑅) for every
two polynomials 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥𝑛, 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + · · · + 𝑏𝑚𝑥𝑚
from the ring 𝑅[𝑥]. This definition is equivalent with the fact that ideal 0 is weak
Armendariz ideal. We will prove that the class of weak Armendariz rings is closed
for direct products. Also, if the factor ring 𝑅/𝐼 is a weak Armendariz ring, for
some nilpotent ideal 𝐼, then the ring 𝑅 is weak Armendariz.

Theorem 4.1. The finite direct product of weak Armendariz rings is a weak
Armendariz ring.

Proof. Suppose that 𝑅1, 𝑅2, . . . , 𝑅𝑛 are weak Armendariz rings and 𝑅 =∏︀𝑛
𝑖=1𝑅𝑖. If 𝑓(𝑥)𝑔(𝑥) = 0 for some polynomials

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥+ 𝑎2𝑥
2 + · · ·+ 𝑎𝑛𝑥𝑛, 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥+ · · ·+ 𝑏𝑚𝑥𝑚 ∈ 𝑅[𝑥],

where 𝑎𝑖 = (𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛), 𝑏𝑖 = (𝑏𝑖1, 𝑏𝑖2, . . . , 𝑏𝑖𝑛) are elements of the product
ring 𝑅, define

𝑓𝑘(𝑥) = 𝑎0𝑘 + 𝑎1𝑘𝑥+ · · ·+ 𝑎𝑛𝑘𝑥𝑛, 𝑔𝑘(𝑥) = 𝑏0𝑘 + 𝑏1𝑘𝑥+ · · ·+ 𝑏𝑚𝑘𝑥𝑚.
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From 𝑓(𝑥)𝑔(𝑥) = 0, we have 𝑎0𝑏0 = 0, 𝑎0𝑏1 + 𝑎1𝑏0 = 0, . . . , 𝑎𝑛𝑏𝑚 = 0, and this
implies

𝑎01𝑏01 = 𝑎02𝑏02 = · · · = 𝑎0𝑛𝑏0𝑛 = 0
𝑎01𝑏11 + 𝑎11𝑏01 = · · · = 𝑎0𝑛𝑏1𝑛 + 𝑎1𝑛𝑏0𝑛 = 0

𝑎𝑛1𝑏𝑚1 = 𝑎𝑛2𝑏𝑚2 = · · · = 𝑎𝑛𝑛𝑏𝑚𝑛 = 0.

This means that 𝑓𝑘(𝑥)𝑔𝑘(𝑥) = 0 in 𝑅𝑘[𝑥], 1 6 𝑘 6 𝑛, and since 𝑅𝑘 are weak
Armendariz rings, we have 𝑎𝑖𝑘𝑏𝑗𝑘 ∈ nil(𝑅𝑘). Now, for each 𝑖, 𝑗, there exists positive
integers 𝑚𝑖𝑗𝑘 such that (𝑎𝑖𝑘𝑏𝑗𝑘)𝑚𝑖𝑗𝑘 = 0 in the ring 𝑅𝑘, 1 6 𝑘 6 𝑛. If we take
𝑚𝑖𝑗 = max{𝑚𝑖𝑗𝑘 : 1 6 𝑘 6 𝑛}, then it is clear that (𝑎𝑖𝑏𝑗)𝑚𝑖𝑗 = 0 and this means
that 𝑅 is a weak Armendariz ring. �

Theorem 4.2. If 𝐼 is a nilpotent ideal of ring 𝑅 such that 𝑅/𝐼 is a weak
Armendariz ring, then 𝑅 is a weak Armendariz ring.

Proof. Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥𝑛 and 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + · · · + 𝑏𝑚𝑥𝑚
are polynomials from 𝑅[𝑥] such that 𝑓(𝑥)𝑔(𝑥) = 0. This implies

(𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥𝑛)(𝑏0 + 𝑏1𝑥+ · · ·+ 𝑏𝑚𝑥𝑚) = 0,

and since 𝑅/𝐼 is weak Armendariz, we have that 𝑎𝑖𝑏𝑗 ∈ nil(𝑅|𝐼). From the fact
that the ideal 𝐼 is nilpotent, we obtain that 𝑎𝑖𝑏𝑗 ∈ nil(𝑅). �

Recall that a ring 𝑅 is weak 𝜎-rigid if 𝑎𝜎(𝑎) ∈ nil(𝑅)⇔ 𝑎 ∈ nil(𝑅). It is easy
to see that the notion of weak 𝜎-rigid ring generalizes the notion of a 𝜎-rigid ring.
Every homomorphism 𝜎 of rings 𝑅 and 𝑆 can be extended to the homomorphism
of rings 𝑅[𝑥] and 𝑆[𝑥] by

∑︀𝑚
𝑖=0 𝑎𝑖𝑥

𝑖 ↦→
∑︀𝑚
𝑖=0 𝜎(𝑎𝑖)𝑥𝑖, which we also denote by 𝜎.

Chen and Tong in [3] prove that if 𝜎 is a ring isomorphism of rings 𝑅 and 𝑆 and
𝑅 is 𝛼-skew Armendariz, then 𝑆 is a 𝜎𝛼𝜎−1 skew Armendariz ring. We prove the
weak skew Armendariz variant of this theorem.

Theorem 4.3. Let 𝑅 and 𝑆 be rings with a ring isomorphism 𝜎 : 𝑅 → 𝑆. If
𝑅 is weak 𝛼-skew Armendariz, then 𝑆 is weak 𝜎𝛼𝜎−1-skew Armendariz.

Proof. Let 𝑓(𝑥) =
∑︀𝑚
𝑖=0 𝑎𝑖𝑥

𝑖 and 𝑔(𝑥) =
∑︀𝑚
𝑗=0 𝑏𝑗𝑥

𝑗 are polynomials from the
ring 𝑆[𝑥;𝜎𝛼𝜎−1]. We have to prove that 𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑎𝑖(𝜎𝛼𝜎−1)𝑖(𝑏𝑗) ∈
nil(𝑆), for all 𝑖 and 𝑗.

As we noted, 𝜎 extends to the isomorphism of the corresponding polynomial
rings, so that there exist polynomials 𝑓1(𝑥) =

∑︀𝑚
𝑖=0 𝑎

′
𝑖𝑥
𝑖 and 𝑔1(𝑥) =

∑︀𝑚
𝑗=0 𝑏

′
𝑗𝑥
𝑗

from 𝑅[𝑥] such that

𝑓(𝑥) = 𝜎(𝑓1(𝑥)) =
𝑚∑︁
𝑖=0
𝜎(𝑎′𝑖)𝑥𝑖 and 𝑔(𝑥) = 𝜎(𝑔1(𝑥)) =

𝑚∑︁
𝑗=0
𝜎(𝑏′𝑗)𝑥𝑗 .

First, we shall show that 𝑓(𝑥)𝑔(𝑥) = 0 implies 𝑓1(𝑥)𝑔1(𝑥) = 0. If 𝑓(𝑥)𝑔(𝑥) = 0, we
have

𝑎0𝑏𝑘 + 𝑎1(𝜎𝛼𝜎−1)(𝑏𝑘−1) + · · ·+ 𝑎𝑘(𝜎𝛼𝜎−1)𝑘(𝑏0) = 0,
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for any 0 6 𝑘 6 𝑚. From the definition of 𝑓1(𝑥) and 𝑔1(𝑥), we have,
𝜎(𝑎′0)𝜎(𝑏′𝑘) + 𝜎(𝑎′1)(𝜎𝛼𝜎−1)𝜎(𝑏′𝑘−1) + · · ·+ 𝜎(𝑎′𝑘)(𝜎𝛼𝜎−1)𝑘𝜎(𝑏′0) = 0,

so that (𝜎𝛼𝜎−1)𝑡 = 𝜎𝛼𝑡𝜎−1 we obtain
𝑎′0𝑏
′
𝑘 + 𝑎′1𝛼(𝑏′𝑘−1) + · · ·+ 𝑎′𝑘𝛼𝑘(𝑏′0) = 0,

which means that 𝑓1(𝑥)𝑔1(𝑥) = 0 in the ring 𝑅[𝑥;𝛼].
It remains to prove that 𝑓1(𝑥)𝑔1(𝑥) = 0 implies 𝑎𝑖(𝜎𝛼𝜎−1)𝑖(𝑏𝑗) ∈ nil(𝑆). From

the fact that 𝑅 is weak 𝛼-skew Armendariz we have 𝑎′𝑖𝛼𝑖(𝑏′𝑗) ∈ nil(𝑅), and since
𝑎′𝑖 = 𝜎−1(𝑎𝑖), 𝑏′𝑗 = 𝜎−1(𝑏𝑗), we have 𝜎−1(𝑎𝑖)𝛼𝑖𝜎−1(𝑏𝑗) ∈ nil(𝑅). This implies

𝜎−1(𝑎𝑖)𝜎−1𝜎𝛼𝑖𝜎−1(𝑏𝑗) = 𝜎−1(𝑎𝑖(𝜎𝛼𝜎−1)𝑖(𝑏𝑗)) ∈ nil(𝑅)
and finally we obtain

𝑎𝑖(𝜎𝛼𝜎−1)𝑖(𝑏𝑗) ∈ nil(𝑆), 0 6 𝑖, 𝑗 6 𝑚.
Hence 𝑆 is weak 𝜎𝛼𝜎−1-skew Armendariz. �

In our closing result, we shall show that, under certain condition, the subring of
upper triangular skew matrices over a ring 𝑅 has a weak skew Armendariz structure.

Let 𝐸𝑖𝑗 = (𝑒𝑠𝑡 : 1 6 𝑠, 𝑡 6 𝑛) denotes 𝑛 × 𝑛 unit matrices over ring 𝑅, in
which 𝑒𝑖𝑗 = 1 and 𝑒𝑠𝑡 = 0 when 𝑠 ̸= 𝑖 or 𝑡 ̸= 𝑗, 0 6 𝑖, 𝑗 6 𝑛, for all 𝑛 > 2. If
𝑉 =
∑︀𝑛−1
𝑖=1 𝐸𝑖,𝑖+1, then 𝑉𝑛(𝑅) = 𝑅𝐼𝑛 +𝑅𝑉 + · · ·+𝑅𝑉 𝑛−1 is the subring of upper

triangular skew matrices.

Corollary 4.1. Suppose that 𝛼 is an endomorphism of ring 𝑅. If the factor
ring 𝑅[𝑥]/(𝑥𝑛) is weak ̃︀𝛼-skew Armendariz, then 𝑉𝑛(𝑅) is weak ̃︀𝛼-skew Armendariz.

Proof. Suppose that 𝑅[𝑥]/(𝑥𝑛) is weak ̃︀𝛼-skew Armendariz and define the
ring isomorphism 𝜃 : 𝑉𝑛(𝑅)→ 𝑅[𝑥]/(𝑥𝑛) by

𝜃(𝑟0𝐼𝑛 + 𝑟1𝑉 + · · ·+ 𝑟𝑛−1𝑉
𝑛−1) = 𝑟0 + 𝑟1𝑥+ · · ·+ 𝑟𝑛−1𝑥

𝑛−1 + (𝑥𝑛).
Now we have that 𝑉𝑛(𝑅) is weak 𝜃−1̃︀𝛼𝜃-skew Armendariz and
𝜃−1̃︀𝛼𝜃(𝑟0𝐼𝑛 + 𝑟1𝑉 + · · ·+ 𝑟𝑛−1𝑉

𝑛−1)
= 𝜃−1̃︀𝛼(𝑟0 + 𝑟1𝑥+ · · ·+ 𝑟𝑛−1𝑥

𝑛−1 + (𝑥𝑛))
= 𝜃−1(𝛼(𝑟0) + 𝛼(𝑟1)𝑥+ · · ·+ 𝛼(𝑟𝑛−1)𝑥𝑛−1 + (𝑥𝑛))
= 𝛼(𝑟0)𝐼𝑛 + 𝛼(𝑟1)𝑉 + · · ·+ 𝛼(𝑟𝑛−1)𝑉 𝑛−1

= ̃︀𝛼(𝑟0𝐼𝑛 + 𝑟1𝑉 + · · ·+ 𝑟𝑛−1𝑉
𝑛−1),

which means that 𝑉𝑛(𝑅) is a weak ̃︀𝛼-skew Armendariz ring. �
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