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Abstract. A spectral graph theory is a theory in which graphs are studied
by means of eigenvalues of a matrix 𝑀 which is in a prescribed way defined
for any graph. This theory is called 𝑀 -theory. We outline a spectral theory of
graphs based on the signless Laplacians 𝑄 and compare it with other spectral
theories, in particular with those based on the adjacency matrix 𝐴 and the
Laplacian 𝐿. The 𝑄-theory can be composed using various connections to
other theories: equivalency with 𝐴-theory and 𝐿-theory for regular graphs,
or with 𝐿-theory for bipartite graphs, general analogies with 𝐴-theory and
analogies with 𝐴-theory via line graphs and subdivision graphs. We present
results on graph operations, inequalities for eigenvalues and reconstruction
problems.

1. Introduction

The idea of spectral graph theory (or spectral theory of graphs) is to exploit
numerous relations between graphs and matrices in order to study problems with
graphs by means of eigenvalues of some graph matrices, i.e., matrices associated
with graphs in a prescribed way. Since there are several graph matrices which can
be used for this purpose, one can speak about several such theories so that spectral
theory of graphs is not unique. Of course, the spectral theory of graphs consists of
all these special theories including their interactions.

By a spectral graph theory we understand, in an informal sense, a theory in
which graphs are studied by means of the eigenvalues of some graph matrix 𝑀 .
This theory is called 𝑀 -theory. Hence, there are several spectral graph theories
(for example, the one based on the adjacency matrix, that based on the Laplacian,
etc.). In that sense, the title “Towards a spectral theory of graphs based on the
signless Laplacian" indicates the intention to build such a spectral graph theory
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(the one which uses the signless Laplacian without explicit involvement of other
graph matrices).

Recall that, given a graph, the matrix 𝑄 = 𝐷 +𝐴 is called the signless Lapla-
cian, where 𝐴 is the adjacency matrix and 𝐷 is the diagonal matrix of vertex
degrees. The matrix 𝐿 = 𝐷 −𝐴 is known as the Laplacian of 𝐺.

In order to give motivation for such a choice we introduce some notions and
present some relevant computational results.

Graphs with the same spectrum of an associated matrix𝑀 are called cospectral
graphs with respect to 𝑀 , or M-cospectral graphs. A graph 𝐻 cospectral with a
graph 𝐺, but not isomorphic to 𝐺, is called a cospectral mate of 𝐺. Let 𝒢 be a
finite set of graphs, and let 𝒢′ be the set of graphs in 𝒢 which have a cospectral
mate in 𝒢 with respect to 𝑀 . The ratio |𝒢′|/|𝒢| is called the spectral uncertainty
of (graphs from) 𝒢 with respect to 𝑀 (or, in general, spectral uncertainty of the
𝑀 -theory).

The papers [11], [17] provide spectral uncertainties 𝑟𝑛 with respect to the
adjacency matrix 𝐴, 𝑠𝑛 with respect to the Laplacian 𝐿 and 𝑞𝑛 with respect to the
signless Laplacian 𝑄 of sets of all graphs on 𝑛 vertices for 𝑛 6 11:

𝑛 4 5 6 7 8 9 10 11
𝑟𝑛 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211
𝑠𝑛 0 0 0.026 0.125 0.143 0.155 0.118 0.090
𝑞𝑛 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038

We see that numbers 𝑞𝑛 are smaller than the numbers 𝑟𝑛 and 𝑠𝑛 for 𝑛 > 7.
In addition, the sequence 𝑞𝑛 is decreasing for 𝑛 6 11 while the sequence 𝑟𝑛 is
increasing for 𝑛 6 10. This is a strong basis for believing that studying graphs by
𝑄-spectra is more efficient than studying them by their (adjacency) spectra.

Since the signless Laplacian spectrum performs better also in comparison to
spectra of other commonly used graph matrices (Laplacian, the Seidel matrix), an
idea was expressed in [11] that, among matrices associated with a graph (general-
ized adjacency matrices), the signless Laplacian seems to be the most convenient
for use in studying graph properties.

This suggestion was accepted in [4] where it was also noted that almost no
results in the literature on the spectra of signless Laplacian existed at that time.
Moreover, connection with spectra of line graphs and the existence of a well devel-
oped theory of graphs with least eigenvalue −2 [8] were used as additional argu-
ments for studying eigenvalues of the signless Laplacian.

In order to avoid repetitions and to reduce the list of references we shall refer to
our previous papers, in particular to the survey paper [9]. (Concerning the papers
on the signless Laplacian published before 2003, here we mention only [13]). The
present paper extends the surveys [9] and [10] by providing further results and
comments.

Only recently has the signless Laplacian attracted the attention of researchers.
As our bibliography shows, several papers on the signless Laplacian spectrum (in
particular, [2], [5], [10], [12], [14], [15], [16], [24], [26], [28], [29], [30], [31], [32],



SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I 21

[35], where the signless Laplacian is explicitly used) have been published since 2005.
We are also aware that several other papers are being prepared, or are already in
the process of publication. Therefore, we are now in position to summarize the
current development. We shall, in fact, outline a new spectral theory of graphs
(based on the signless Laplacian), and call this theory the 𝑄-theory.

The rest of this paper is organized as follows. Section 2 presents the main
spectral theories, including the 𝑄-theory, and their interactions. In this way, the
𝑄-theory is mostly composed from several patches borrowed from other spectral
theories. Section 3 contains several comparisons of the effectiveness of solving
various classes of problems within particular spectral theories with an emphasis on
the performance of the 𝑄-theory. This survey will be continued in the second part
of this paper.

2. Main spectral theories and their interactions

In 2.1 we list existing spectral theories including 𝐴-theory and 𝐿-theory as the
most developed theories. In the rest of the section we show how the 𝑄-theory can
be composed using various connections to other theories:
∙ equivalency with 𝐴-theory and 𝐿-theory for regular graphs (Subsection 2.2),
∙ equivalency with 𝐿-theory for bipartite graphs (Subsection 2.3),
∙ general analogies with 𝐴-theory (Subsection 2.4),
∙ analogies with 𝐴-theory via line graphs (Subsection 2.5),
∙ analogies with 𝐴-theory via subdivision graphs (Subsection 2.6).
This fragmentation appears in this presentation because the 𝑄-theory has at-

tracted attention only after other theories had already been developed. It is quite
possible to present the 𝑄-theory smoothly if it is a primary goal.

The notions of enriched and restricted spectral theories will be considered in
the second part of this paper.

2.1. Particular theories. We shall start with some definitions related to a
general 𝑀 -theory.

Let 𝐺 be a simple graph with 𝑛 vertices, and let𝑀 be a real symmetric matrix
associated to 𝐺. The characteristic polynomial det(𝑥𝐼 −𝑀) of 𝑀 is called the
M-characteristic polynomial (or M-polynomial) of 𝐺 and is denoted by 𝑀𝐺(𝑥).
The eigenvalues of 𝑀 (i.e., the zeros of det(𝑥𝐼 − 𝑀)) and the spectrum of 𝑀
(which consists of the 𝑛 eigenvalues) are also called the M-eigenvalues of 𝐺 and
the M-spectrum of 𝐺, respectively. The 𝑀 -eigenvalues of 𝐺 are real because 𝑀 is
symmetric, and the largest eigenvalue is called the M-index of 𝐺.

In particular, if 𝑀 is equal to one of the matrices 𝐴, 𝐿 and 𝑄 (associated to
a graph 𝐺 on 𝑛 vertices), then the corresponding eigenvalues (or spectrum) are
called the 𝐴-eigenvalues (or 𝐴-spectrum), 𝐿-eigenvalues (or 𝐿-spectrum) and 𝑄-
eigenvalues (or 𝑄-spectrum), respectively. Throughout the paper, these eigenvalues
will be denoted by 𝜆1 > 𝜆2 > · · · > 𝜆𝑛, 𝜇1 > 𝜇2 > · · · > 𝜇𝑛 and 𝑞1 > 𝑞2 > · · · > 𝑞𝑛,
respectively. They are the roots of the corresponding characteristic polynomials
𝑃𝐺(𝑥) = det(𝑥𝐼 − 𝐴), 𝐿𝐺(𝑥) = det(𝑥𝐼 − 𝐿) and 𝑄𝐺(𝑥) = det(𝑥𝐼 − 𝑄) (note,
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𝑃𝐺(𝑥) stands for 𝐴𝐺(𝑥)). The largest eigenvalues, i.e., 𝜆1, 𝜇1 and 𝑞1, are called the
𝐴-index, 𝐿-index and 𝑄-index (of 𝐺), respectively.

Together with 𝑄-theory we shall frequently consider the relevant facts from
𝐴-theory and 𝐿-theory as the most developed spectral theories and therefore useful
in making comparisons between theories.

We shall mention in passing theories based on the matrix �̂� = 𝐷−1/2𝐿𝐷−1/2,
the normalized (or transition) Laplacian matrix1; (see [3]) and on the Seidel matrix
𝑆 = 𝐽 − 𝐼 − 2𝐴 (see, for example, [6]).

Since the eigenvalues of the matrix 𝐷 are just vertex degrees, the 𝐷-theory is
not, in practice, a spectral theory although it formally is. This example shows that
the study of graphs by any sequence of structural graph invariants can be formally
represented as a spectral theory.

2.2. Regular graphs. An important characteristic of a spectral theory is
whether or not regular graphs can be recognized within that theory. Such a question
is answered for a broad class of graph matrices in [11]. The answer is positive for
matrices 𝐴, 𝐿 and 𝑄, but it is negative for the matrix 𝑆. For the signless Laplacian
see Proposition 3.1 of [9], where it is also stated that the number of components in
regular graphs is equal to the multiplicity of the 𝑄-index.

The following characterization of regular graphs, known in the 𝐴-theory (cf. [6,
p. 104]), can be formulated also in the 𝑄-theory.

Proposition 2.1. A graph 𝐺 is regular if and only if its signless Laplacian
has an eigenvector all of whose coordinates are equal to 1.

Of course, for regular graphs we can express the characteristic polynomial of
the adjacency matrix and of the Laplacian in terms of the 𝑄-polynomial and use
them to study the graph. Thus for regular graphs the whole existing theory of
spectra of the adjacency matrix and of the Laplacian matrix transfers directly to
the signless Laplacian (by a translate of the spectrum). It suffices to observe that
if 𝐺 is a regular graph of degree 𝑟, then 𝐷 = 𝑟𝐼, 𝐴 = 𝑄− 𝑟𝐼 and we have

𝑃𝐺(𝑥) = 𝑄𝐺(𝑥+ 𝑟).

The mapping 𝜑(𝑞) = 𝑞− 𝑟 maps the 𝑄-eigenvalues to the 𝐴-eigenvalues and can be
considered as an isomorphism of the 𝑄-theory of regular graphs to the correspond-
ing part of the 𝐴-theory.

Example. We give 𝐴-eigenvalues, 𝐿-eigenvalues and 𝑄-eigenvalues2 for two
representative classes of regular graphs: complete graphs and circuits. Provided
one kind of eigenvalues is known, the other two kinds can be calculated by above
formulas.

1Here we assume that 𝐺 has no isolated vertices.
2Superscripts are used to denote the multiplicities of eigenvalues.
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complete graph 𝐾𝑛 (𝑛 > 2) : cycle 𝐶𝑛 (𝑛 > 3) :
𝐴 : 𝑛− 1, (−1)𝑛−1 𝐴 : 2 cos 𝜋2𝑛𝑗 (𝑗 = 0, 1, . . . , 𝑛− 1)
𝐿 : 0, 𝑛𝑛−1 𝐿 : 2− 2 cos 𝜋2𝑛𝑗 (𝑗 = 0, 1, . . . , 𝑛− 1)
𝑄 : 2𝑛− 2, (𝑛− 2)𝑛−1 𝑄 : 2 + 2 cos 𝜋2𝑛𝑗 (𝑗 = 0, 1, . . . , 𝑛− 1)

For regular graphs many existing results from the 𝐴-theory can be reformulated
in the 𝑄-theory.

Proposition 2.2. Let 𝐺 be a regular bipartite graph of degree 𝑟. Then the
𝑄-spectrum of 𝐺 is symmetric with respect to the point 𝑟.

This symmetry property is an immediate consequence of the well-known sym-
metry about 0 of the adjacency eigenvalues in bipartite graphs. Thus 𝑞 is a 𝑄-eigen-
value of multiplicity 𝑘 if and only if 2𝑟 − 𝑞 is also a 𝑄-eigenvalue of multiplicity 𝑘;
moreover, the eigenvalues 0 and 2𝑟 are always present.

We can go on and reformulate in the 𝑄-theory, for example, all results from
Section 3.3 of [6] and several related results for regular graphs.

2.3. Bipartite graphs. For bipartite graphs we have 𝐿𝐺(𝑥) = 𝑄𝐺(𝑥) (cf.
Proposition 2.3 of [9]). In this way, the 𝑄-theory can be identified with the 𝐿-
theory for bipartite graphs.

For non-regular and non-bipartite graphs the 𝑄-polynomial really plays an
independent role; for other graphs it can be reduced to either 𝑃𝐺(𝑥) or 𝐿𝐺(𝑥), or
to both.

Unlike the situation with the regularity property, the problem here is that
bipartite graphs cannot always be recognized by the 𝑄-spectrum. This difficulty
can be overcome by requiring that always, together with the 𝑄-spectrum of a graph,
the number of components is given, as explained in [4] (and [9]).

Among many results on bipartite graphs in the 𝐿-theory, let us mention a
theorem from [20] (and [16]) saying that no starlike trees3 are cospectral. (It was
known before that the same statement holds also in the 𝐴-theory [21].) Now this
statement holds also in the 𝑄-theory.

2.4. Analogies with A-theory. The results which we survey in this subsec-
tion are obtained by applying to the signless Laplacian the same reasoning as for
corresponding results concerning the adjacency matrix.

For example, the well known theorem concerning the powers of the adjacency
matrix [6, p. 44] has the following counterpart for the signless Laplacian.

Theorem 2.3. Let 𝑄 be the signless Laplacian of a graph 𝐺. The (𝑖, 𝑗)-entry
of the matrix 𝑄𝑘 is equal to the number of semi-edge walks of length 𝑘 starting at
vertex 𝑖 and terminating at vertex 𝑗.

3A starlike tree is a tree with exactly one vertex of degree greater than two.
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For the proof and definition of semi-edge walks see [9].

The following statement and its proof is analogous to an existing result related
to the adjacency spectrum [6, Theorem 3.13].

Theorem 2.4. Let 𝐺 be a connected graph of diameter 𝐷 with 𝑘 distinct 𝑄-
eigenvalues. Then 𝐷 6 𝑘 − 1.

The proof uses Theorem 2.3 (see [5]).
For other examples of analogies with 𝐴-theory, see also Theorems 3.2 and 3.3.
Let 𝐺 be a graph on 𝑛 vertices with vertex degrees 𝑑1, 𝑑2, . . . , 𝑑𝑛. Let 𝐷(𝐺)

be the (multi-)digraph obtained from 𝐺 by adding 𝑑𝑖 loops to the vertex 𝑖 for each
𝑖 = 1, 2, . . . , 𝑛. It was noted in [9] that the proof of Theorem 2.3 can be carried out
by applying the theorem on powers of the adjacency matrix to the digraph 𝐷(𝐺).

This observation can be generalized. In fact, the 𝑄-theory of graphs 𝐺 is
isomorphic to the 𝐴-theory of digraphs 𝐷(𝐺). In this way we have a useful tool in
establishing analogies between the 𝑄-theory and 𝐴-theory.

We shall provide some examples.
The interlacing theorem in its original form can be applied in a specific way in

𝑄-theory. It is sufficient to use digraphs 𝐷(𝐺) instead of graphs 𝐺.

Theorem 2.5. The 𝑄-eigenvalues of a graph 𝐺 and the 𝐴-eigenvalues of any
vertex deleted subdigraph 𝐷(𝐺)− 𝑣 of 𝐷(𝐺) interlace each other.

The same applies to the divisor concept (see [6, Chapter 4]). The theory of
divisors anyway deals with multidigraphs. Hence we have the following theorem.

Theorem 2.6. The 𝐴-polynomial of any divisor of 𝐷(𝐺) divides the 𝑄-poly-
nomial of 𝐺.

This theorem was implicitly used in [32] (cf. Lemma 5.6 from that paper). For
some related questions concerning graph homomorphisms see [12].

2.5. Line graphs. Let 𝐺 be a graph on 𝑛 vertices, having 𝑚 edges and let 𝑅
be its vertex-edge incidence matrix. The following relations are well-known:

𝑅𝑅𝑇 = 𝐷 +𝐴, 𝑅𝑇𝑅 = 𝐴(𝐿(𝐺)) + 2𝐼,

where 𝐴(𝐿(𝐺)) is the adjacency matrix of 𝐿(𝐺), the line graph of 𝐺. Since the
non-zero eigenvalues of 𝑅𝑅𝑇 and 𝑅𝑇𝑅 are the same, we immediately get that

(1) 𝑃𝐿(𝐺)(𝑥) = (𝑥+ 2)𝑚−𝑛𝑄𝐺(𝑥+ 2).

Therefore it follows that

(2) 𝑞1 − 2, 𝑞2 − 2, . . . , 𝑞𝑛 − 2, and (−2)𝑚−𝑛

are the 𝐴-eigenvalues of 𝐿(𝐺); note, if 𝑚 − 𝑛 < 0 then 𝑞𝑚+1 = · · · = 𝑞𝑛 = 0 and
thus the multiplicity of −2 is non-negative.

The results which we survey in this subsection are obtained indirectly via line
graphs using formula (1) and results from 𝐴-theory.

This method can be used to calculate 𝑄-eigenvalues of some graphs.
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Example. The 𝐴-eigenvalues of 𝐿(𝑃𝑛) = 𝑃𝑛−1 are 2 cos 𝜋𝑛𝑗 (𝑗 = 1, 2, . . . , 𝑛−1)
and by (2) the 𝑄-eigenvalues of 𝑃𝑛 are 2 + 2 cos 𝜋𝑛𝑗 = 4 cos2 𝜋

2𝑛𝑗 (𝑗 = 1, 2, . . . , 𝑛).
Alternatively, one can say that 𝑄-eigenvalues of 𝑃𝑛 are 4 sin2 𝜋

2𝑛𝑗 (𝑗 = 0, 1, ..., 𝑛−1).

Example. The 𝐴-eigenvalues of 𝐿(𝐾𝑚,𝑛) are𝑚+𝑛−2,(𝑛−2)𝑚−1, (𝑚−2)𝑛−1,
(−2)(𝑚−1)(𝑛−1) and were obtained in [6, p. 175] via the sum of graphs. By formula
(1) we see that the 𝑄-eigenvalues of 𝐾𝑚,𝑛 are 𝑚+ 𝑛, 𝑛𝑚−1,𝑚𝑛−1, 0.

A specific form of the interlacing theorem for 𝑄-eigenvalues was established in
[9] and a proof using line graphs was given in [10]. In this version we delete edges
instead of vertices.

Another example of deriving results on 𝑄-eigenvalues via line graphs is Theo-
rem 4.7 of [9] giving a lower and an upper bound on the 𝑄-index in terms of vertex
degrees.

The paper [23] contains a new and shorter proof of the fact (previously known
in the literature) that the multiplicity of the 𝐴-eigenvalue 0 in line graphs of trees
is at most 1. Having in mind formula (1) one can say that the multiplicity of the
𝑄-eigenvalue 2 in trees is at most 1.

Suppose that 𝐺′ is obtained from 𝐺 by splitting a vertex 𝑣: namely if the edges
incident with 𝑣 are 𝑣𝑤 (𝑤 ∈𝑊 ), then 𝐺′ is obtained from 𝐺−𝑣 by adding two new
vertices 𝑣1 and 𝑣2 and edges 𝑣1𝑤1 (𝑤1 ∈ 𝑊1), 𝑣2𝑤2 (𝑤2 ∈ 𝑊2), where 𝑊1 ∪𝑊2 is
a non-trivial bipartition of 𝑊 .

The following theorem is analogous to a theorem for 𝐴-index, proved in [25]
(see also [7, p. 56]).

Theorem 2.7. If 𝐺′ is obtained from the connected graph 𝐺 by splitting any
vertex then 𝑞1(𝐺′) < 𝑞1(𝐺).

Proof. We first note that 𝐿(𝐺′) is a proper (spanning) subgraph of 𝐿(𝐺).
Thus 𝜆1(𝐿(𝐺′)) < 𝜆1(𝐿(𝐺)). Then the proof follows from (2). �

See also Subsection 3.1 for further examples of using line graphs to derive
results in the 𝑄-theory.

2.6. Subdivision graphs. Let 𝐺 be a graph on 𝑛 vertices, having 𝑚 edges.
Let 𝑆(𝐺) be the subdivision graph of 𝐺. As noted in [10], the following formula
appears implicitly in the literature (see e.g., [6, p. 63] and [34]):
(3) 𝑃𝑆(𝐺)(𝑥) = 𝑥𝑚−𝑛𝑄𝐺(𝑥2),
Therefore it follows that
(4) ±√𝑞1,±

√
𝑞2, . . . ,±

√
𝑞𝑛, and 0𝑚−𝑛

are the 𝐴-eigenvalues of 𝑆(𝐺) (with the same comment as with (2) if 𝑚− 𝑛 < 0).
It is worth mentioning that formulas (1) and (3) provide a link between 𝐴-

theory and 𝑄-theory (and corresponding spectra, see (2) and (4)). While formula
(1) has been already used in this context [9], the connection with subdivision graphs
remains to be exploited. Some results in this direction have been obtained in [5].

Here we first have the following observation.
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Theorem 2.8. Let 𝐺 be a connected graph with 𝐴-index 𝜆1 and 𝑄-index 𝑞1.
If 𝐺 has no vertices of degree 1 and is not a cycle, then 𝑞1 < 𝜆2

1. If 𝐺 is a cycle,
then 𝑞1 = 𝜆2

1 = 4. If 𝐺 is a starlike tree, then 𝑞1 > 𝜆2
1.

The proof of the theorem is based on the behaviour of the 𝐴-index when all
edges are subdivided (see, [18], or [6, p. 79]). Subdividing an edge which lies in the
path appended to the rest of a connected graph increases the 𝐴-index, otherwise
decreases except if the graph is a cycle. Since the 𝐴-index of 𝑆(𝐺) is equal to √𝑞1
we are done.

Let deg(𝑣) be the degree of the vertex 𝑣. An internal path in some graph
is a path 𝑣0, 𝑣1, . . . , 𝑣𝑘+1 for which deg(𝑣0),deg(𝑣𝑘+1) > 3 and deg(𝑣1) = · · · =
deg(𝑣𝑘) = 2 (here 𝑘 > 0, or 𝑘 > 2 whenever 𝑣𝑘+1 = 𝑣0).

Theorem 2.9. Let 𝐺′ be the graph obtained from a connected graph 𝐺 by
subdividing its edge 𝑢𝑣. Then the following holds:

(i) if 𝑢𝑣 belongs to an internal path then 𝑞1(𝐺′) < 𝑞1(𝐺);
(ii) if 𝐺 ̸= 𝐶𝑛 for some 𝑛 > 3, and if 𝑢𝑣 is not on the internal path then
𝑞1(𝐺′) > 𝑞1(𝐺). Otherwise, if 𝐺 = 𝐶𝑛 then 𝑞1(𝐺′) = 𝑞1(𝐺) = 4.

Proof. Assume first that 𝑢𝑣 is on the internal path. Let 𝑤 be a vertex inserted
in 𝑢𝑣 (to obtain 𝐺′). Then 𝑆(𝐺′) can be obtained from 𝑆(𝐺) by inserting two new
vertices, one in the edge 𝑢𝑤 the other in the edge 𝑤𝑣. Note that both of these
vertices are inserted into edges belonging to the same internal path. But then
𝜆1(𝑆(𝐺′)) < 𝜆1(𝑆(𝐺)) (by the result of Hoffman and Smith from 𝐴-theory). The
rest of the proof of (i) immediately follows from (4).

To prove (ii), assume that 𝑢𝑣 is not on the internal path. Then, if 𝐺 ̸= 𝐶𝑛, 𝐺
is a proper subgraph of 𝐺′ and hence, 𝑞1(𝐺′) > 𝑞1(𝐺). Finally, if 𝐺 = 𝐶𝑛, then
𝑞1(𝐺′) = 𝑞1(𝐺) = 4, as required. �

A direct proof of the above theorem has recently appeared in [15].
Theorem 2.10. Let 𝐺(𝑘, 𝑙) (𝑘, 𝑙 > 0) be the graph obtained from a non-trivial

connected graph 𝐺 by attaching pendant paths of lengths 𝑘 and 𝑙 at some vertex 𝑣.
If 𝑘 > 𝑙 > 1 then 𝑞1

(︀
𝐺(𝑘, 𝑙)

)︀
> 𝑞1
(︀
𝐺(𝑘 + 1, 𝑙 − 1)

)︀
.

Proof. Consider the graphs 𝑆(𝐺(𝑘, 𝑙)) and 𝑆(𝐺(𝑘+1, 𝑙−1)). By using the cor-
responding result of [22] for the 𝐴-index, we immediately get that 𝜆1

(︀
𝑆(𝐺(𝑘, 𝑙))

)︀
>

𝜆1
(︀
𝑆(𝐺(𝑘 + 1, 𝑙 − 1))

)︀
. The rest of the proof immediately follows from (4). �

Some other results of the same type will be considered in the second part of
this paper.

3. Solving problems within Q-theory

Although the 𝑄-theory has a smaller spectral uncertainty than other frequently
used spectral theories (as can be expected by the computational results from [11]-
see Section 1), it seems that we do not have enough tools at the moment to exploit
this advantage. In this section we present some results supporting such feelings.
Our results refer to graph operations, inequalities for eigenvalues and reconstruction
problems.
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3.1. Graph operations. There are very few formulas for 𝑄-spectra of graphs
obtained by some operations on other graphs. This is quite different from the
situation with 𝐴-spectrum (see, for example, [6], where the whole Chapter 2 is
devoted to such formulas). Even with the 𝐿-spectrum the situation is better than
in the 𝑄-spectrum.

First, in common with many other spectral theories, the 𝑄-polynomial of the
union of two or more graphs is the product of 𝑄-polynomials of the starting graphs
(i.e., the spectrum of the union is the union of spectra of original graphs). In
other words, the 𝑄-polynomial of a graph is the product of 𝑄-polynomials of its
components.

Formula (1) connects the 𝑄-eigenvalues of a graph with the 𝐴-eigenvalues of
its line graph, while formula (3) does the same thing with respect to its subdivision
graph.

If 𝐺 is a regular graph of degree 𝑟, then its line graph 𝐿(𝐺) is regular of degree
2𝑟 − 2 and we have 𝑄𝐿(𝐺)(𝑥) = 𝑃𝐿(𝐺)(𝑥− 2𝑟 + 2). Formula (1) yields

𝑄𝐿(𝐺)(𝑥) = (𝑥− 2𝑟 + 4)𝑚−𝑛𝑄𝐺(𝑥− 2𝑟 + 4).

Thus if 𝑞1, 𝑞2, . . . , 𝑞𝑛 are the 𝑄-eigenvalues of 𝐺, then the 𝑄-eigenvalues of 𝐿(𝐺)
are 𝑞1 + 2𝑟−4, 𝑞2 + 2𝑟−4, . . . , 𝑞𝑛+ 2𝑟−4 and 2𝑟−4 repeated 𝑚−𝑛 times. We see
that in line graphs of regular graphs the least 𝑄-eigenvalue could be very large.

We do have a useful result in the case of the sum of graphs (for the definition
and the corresponding result for the adjacency spectra see, for example, [6, pp. 65–
72]).

If 𝑞(1)
𝑖 , 𝑞

(2)
𝑗 are 𝑄-eigenvalues of 𝐺1, 𝐺2, then the 𝑄-eigenvalues of 𝐺1 +𝐺2 are

all possible sums 𝑞(1)
𝑖 + 𝑞(2)

𝑗 , as noted in [5].

Example. The 𝑄-eigenvalues of a path have been determined in Subsection
2.5. The sum of paths 𝑃𝑚 + 𝑃𝑛 has eigenvalues 4

(︀
sin2 𝜋

2𝑚 𝑖 + sin2 𝜋
2𝑛𝑗
)︀

(𝑖 =
0, 1, . . . ,𝑚− 1, 𝑗 = 0, 1, . . . , 𝑛− 1).

For the product we have the following interesting formula

(5) 𝑄𝐺×𝐾2(𝑥) = 𝑄𝐺(𝑥)𝐿𝐺(𝑥) = 𝐿𝐺×𝐾2(𝑥).

The formula is easily obtained by elementary determinantal transformations.
Therefore it follows that 𝑞1, 𝑞2, . . . , 𝑞𝑛 and 𝜇1, 𝜇2, . . . , 𝜇𝑛 are the 𝑄-eigenvalues (and
as well the 𝐿-eigenvalues) of the graph 𝐺 × 𝐾2. In particular, we have that the
𝑄-indices of 𝐺 and 𝐺×𝐾2 are equal (as is the case for 𝐴-indices of these graphs;
see [6, p. 69]).

While for the 𝐿-polynomial there is a formula involving the complement of the
graph (see, for example, [6, p. 58]), no similar formula for the 𝑄-polynomial seems
possible.

Let 𝐺 be a graph rooted at vertex 𝑢 and let 𝐻 be a graph rooted at vertex
𝑣. 𝐺𝑢𝑣𝐻 denotes the graph obtained from disjoint union of graphs 𝐺 and 𝐻 by
adding the edge 𝑢𝑣. Let 𝐺 + 𝑣 be obtained from 𝐺 by adding a pendant edge 𝑢𝑣
and let 𝐻+𝑢 be obtained from 𝐻 by adding a pendant edge 𝑣𝑢. Then the following
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formula holds

(6) 𝑄𝐺𝑢𝑣𝐻(𝑥) = 1
𝑥

(︀
𝑄𝐺+𝑣(𝑥)𝑄𝐻(𝑥) +𝑄𝐺(𝑥)𝑄𝐻+𝑢(𝑥)− (𝑥− 2)𝑄𝐺(𝑥)𝑄𝐻(𝑥)

)︀
This formula is derived by applying to the line graph 𝐿(𝐺𝑢𝑣𝐻) the well-known
formula for the 𝐴-polynomial of the coalescence of two graphs (see, for example,
[6, p. 159]).

If we put 𝐻 = 𝐾1, we get a useless identity for 𝑄𝐺+𝑣(𝑥), indicating that no
simple formula for 𝑄𝐺+𝑣(𝑥) could exist (in contrast to the formula 𝑃𝐺+𝑣(𝑥) =
𝑥𝑃𝐺(𝑥) − 𝑃𝐺−𝑢(𝑥), see, for example, [6, p. 59]). However, if we take 𝐻 = 𝐾2, we
obtain 𝑄𝐺𝑢𝑣𝐻(𝑥) = (𝑥− 2)𝑄𝐺+𝑣(𝑥)−𝑄𝐺(𝑥), which is analogous to the mentioned
formula in the 𝐴-theory.

We shall need the formula

(7) 𝑃
(𝑘)
𝐺 (𝑥) = 𝑘!

∑︁
𝑆𝑘

𝑃𝐺−𝑆𝑘(𝑥),

where the summation runs over all 𝑘-vertex subsets 𝑆𝑘 of the vertex set of 𝐺. For
𝑘 = 1 the formula is well-known [6, p. 60] and says that the first derivative of the
𝐴-polynomial of a graph is equal to the sum of 𝐴-polynomials of its vertex deleted
subgraphs. We can obtain (7) by induction, as noted in [9]. If we apply (7) to the
line graph 𝐿(𝐺) of a graph 𝐺 and use (2), we immediately obtain

(8) 𝑄
(𝑘)
𝐺 (𝑥) = 𝑘!

∑︁
𝑆𝑘

𝑄𝐺−𝑈𝑘(𝑥),

where the summation runs over all 𝑘-edge subsets 𝑈𝑘 of the edge set of 𝐺. In
particular, the first derivative of the 𝑄-polynomial of a graph is equal to the sum
of 𝑄-polynomials of its edge deleted subgraphs. The last statement is of interest in
reconstruction problems presented in Subsection 3.3.

3.2. Inequalities for eigenvalues. There are several ways to establish in-
equalities for 𝑄-eigenvalues. This area of investigation is very promising as is the
case of the other spectral theories.

Paper [10] is devoted to inequalities involving 𝑄-eigenvalues. It presents 30
computer generated conjectures in the form of inequalities for 𝑄-eigenvalues. Con-
jectures that are confirmed by simple results already recorded in the literature,
explicitly or implicitly, are identified. Some of the remaining conjectures have been
resolved by elementary observations; for some quite a lot of work had to be invested.
The conjectures left unresolved appear to include some difficult research problems.

One of such difficult conjectures (Conjecture 24) has been confirmed in [2] by
a long sequence of lemmas. The corresponding result reads:

Theorem 3.1. The minimal value of the least 𝑄-eigenvalue among connected
non-bipartite graphs of prescribed order is attained for the odd-unicyclic graph ob-
tained from a triangle by appending a hanging path.

Many of the inequalities contain eigenvalues of more than one graph matrix.
In particular, largest eigenvalues 𝜆1, 𝜇1 and 𝑞1 of matrices 𝐴,𝐿 and 𝑄, respectively,
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satisfy the inequalities 𝜇1 6 𝑞1 and 2𝜆1 6 𝑞1, with equality in the first place if and
only if the graph is bipartite. See [10] for references (Conjectures 10 and 11).

These inequalities imply that any lower bound on 𝜇1 is also a lower bound on
𝑞1 and that doubling any lower bound on 𝜆1 also yields a valid lower bound on 𝑞1.
Similarly, upper bounds on 𝑞1 yield upper bounds on 𝜇1 and 𝜆1. Paper [24] checks
whether known upper bound on 𝜇1 hold also for 𝑞1 and establishes that many of
them do hold.

Best upper bounds for 𝑞1 under some conditions are given in an implicit way
by the following two theorems. First we need a definition.

A graph 𝐺 with the edge set 𝐸𝐺 is called a nested split graph4 if its vertices
can be ordered so that 𝑗𝑞 ∈ 𝐸𝐺 implies 𝑖𝑝 ∈ 𝐸𝐺 whenever 𝑖 6 𝑗 and 𝑝 6 𝑞.

The following theorem can be proved in the same way as the corresponding
result in 𝐴-theory [9].

Theorem 3.2. Let 𝐺 be a graph with fixed numbers of vertices and edges, with
maximal 𝑄-index. Then 𝐺 does not contain, as an induced subgraph, any of the
graphs: 2𝐾2, 𝑃4 and 𝐶4. Equivalently, 𝐺 is a nested split graph.

Moreover, we also have [9]:

Theorem 3.3. Let 𝐺 be a connected graph with fixed numbers of vertices and
edges, with maximal 𝑄-index. Then 𝐺 does not contain, as an induced subgraph,
any of the graphs: 2𝐾2, 𝑃4 and 𝐶4. Equivalently, 𝐺 is a nested split graph.

Theorems 3.2 and 3.3 have been announced in [9] and complete proofs appear
in [10]. The result has been repeated independently in [32]. In particular, by
Theorem 3.3 we easily identify the graphs with maximal 𝑄-index within trees,
unicyclic graphs and bicyclic graphs (of a fixed number of vertices). Namely, each
of these sets of graphs has a unique nested split graph (see [10]). The result for
bicyclic graphs has again been independently rediscovered in [14].

We see that both the 𝐴-index and 𝑄-index attain their maximal values for
nested split graphs. The question arises whether these extremal nested split graphs
are the same in both cases. For small number of vertices this is true as existing
graph data show. However, among graphs with 𝑛 = 5 vertices and 𝑚 = 7 edges
there are two graphs (No. 5 and No. 6 for 𝑛 = 5 in Appendix of [9]) with maximal
𝑄-index while only one of them (No. 5) yields maximal 𝐴-index. In fact, for any
𝑛 > 5 and 𝑚 = 𝑛+ 2 there are two graphs with a maximal 𝑄-index [32].

In the next theorem we demonstrate another use of Theorem 3.3 by providing
an analogue of Hong’s inequality from 𝐴-theory (see [19]) in 𝑄-theory.

Theorem 3.4. Let 𝐺 be a connected graph on 𝑛 vertices and 𝑚 edges. Then

𝑞1(𝐺) 6
√︀

4𝑚+ 2(𝑛− 1)(𝑛− 2).

The equality holds if and only if 𝐺 is a complete graph.

4This term was used in [10] with an equivalent definition. The present definition is used in
[7], where the graphs in question were called graphs with a stepwise adjacency matrix.
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Proof. Recall first that

𝜆1(𝑀) 6 max
16𝑖6𝑛

{︂ 𝑛∑︁
𝑗=1
𝑚𝑖𝑗

}︂
,

holds for any non-negative and symmetric 𝑛 × 𝑛 matrix 𝑀 = (𝑚𝑖𝑗). In addition,
the equality holds if and only if all-one vector is an eigenvector for the 𝑀 -index
of 𝑀 .

By Theorem 3.3 we may assume that 𝐺 is a nested split graph. Consider the
matrix 𝑄2 (= (𝐷 + 𝐴)2 = 𝐷2 +𝐷𝐴 + 𝐴𝐷 + 𝐴2). Let 𝑑𝑖 the degree of a vertex 𝑖
of 𝐺. Consider next a multigraph 𝐺2 corresponding to matrix 𝑄2. Then, for the
vertex 𝑖 in the 𝐺2 we have

𝑛∑︁
𝑗=1

(𝑄2)𝑖𝑗 = (𝑑2𝑖 ) +
(︂∑︁
𝑗∼𝑖
𝑑𝑗

)︂
+ (𝑑2𝑖 ) +

(︂∑︁
𝑗∼𝑖

(𝑑𝑗 − 1) + 𝑑𝑖
)︂
,

or
𝑛∑︁
𝑗=1

(𝑄2)𝑖𝑗 = 2
[︂
𝑑2𝑖 +
∑︁
𝑗∼𝑖
𝑑𝑗

]︂
.

Assume now that 𝑑𝑖 < 𝑑𝑘. By the definition of nested split graphs we now have:

𝑑2𝑖 +
∑︁
𝑗∼𝑖
𝑑𝑗 < 𝑑

2
𝑘 +
∑︁
𝑙∼𝑘

𝑑𝑙,

since this is equivalent to

𝑑2𝑖 − 𝑑𝑖 +
∑︁
𝑗∈Γ̄(𝑖)

𝑑𝑗 < 𝑑
2
𝑘 − 𝑑𝑘 +

∑︁
𝑙∈Γ̄(𝑘)

𝑑𝑙,

where Γ̄(𝑣) stands for the closed neighbourhood of 𝑣 (observe also that Γ̄(𝑖) ⊂ Γ̄(𝑘)
in our situation.

Let 𝑠 be a vertex of 𝐺 of maximum degree (= 𝑛−1). such a vertex exists since
𝐺 is a nested split graph. Then we have (for any vertex 𝑖)

𝑛∑︁
𝑗=1

(𝑄2)𝑖𝑗 6 2
[︂
𝑑2𝑠 +
∑︁
𝑡∼𝑠
𝑑𝑡

]︂
= 4𝑚+ 2(𝑛− 1)(𝑛− 2),

and thus 𝑞1(𝐺)2 6 4𝑚+ 2(𝑛− 1)(𝑛− 2), as required.
The equality can hold only if 𝐺 is a nested split graph (indeed, any other graph

has the 𝑄-index strictly less than some nested split graph). In addition, this nested
split graph should be regular

(︀
otherwise, all-one vector is not its eigenvector of 𝑄2

for 𝑞21 ; note 𝑞21 = 2
(︀
𝑑2𝑖 +
∑︀
𝑗∼𝑖 𝑑𝑗

)︀
should hold for each 𝑖

)︀
. The only graph 𝐺 with

these properties is a complete graph. �

Next we prove an inequality relating the algebraic connectivity (the second
smallest 𝐿-eigenvalue) and the second largest 𝑄-eigenvalue of a graph.

Theorem 3.5. Let 𝑎 be the second smallest 𝐿-eigenvalue and 𝑞2 the second
largest 𝑄-eigenvalue of a graph 𝐺 with 𝑛 (𝑛 > 2) vertices. We have 𝑎 6 𝑞2 + 2 with
equality if and only if 𝐺 is a complete graph.
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Proof. Since 2𝐴 = 𝑄 − 𝐿, the Courant–Weyl inequality for the third eigen-
value of 2𝐴 yields 2𝜆3 6 𝑞2 − 𝑎, i.e., 𝑎 6 𝑞2 − 2𝜆3. It was proved in [1] that for
graphs with at least four vertices the inequality 𝜆3 > −1 holds with equality if and
only if 𝐺 = 𝐾𝑝,𝑞 ∪ 𝑟𝐾1. Now we obtain 𝑎 6 𝑞2 + 2 but equality holds only for 𝐾𝑛.
Namely, if 𝑝, 𝑞 > 1 we have by direct calculation that 𝑎 6 𝑛 − 2 and 𝑞2 = 𝑛 − 2.
(In this case 𝑄-eigenvalue 0 of 𝐺 has the multiplicity at least 2 with an eigenvector
𝑥 orthogonal to all-one vector. The vector 𝑥 is an eigenvector of 𝑞2 = 𝑛− 2 in 𝐺).
For 𝑛 = 2, 3 the theorem trivially holds. �

Theorem 3.5 confirms Conjecture 19 of [10].
We can treat in a similar way Conjecture 20 of [10] as well.

Theorem 3.6. Let 𝑎 be the second smallest 𝐿-eigenvalue and 𝑞2 the second
largest 𝑄-eigenvalue of a non-complete graph 𝐺 with 𝑛 (𝑛 > 2) vertices. We have
𝑎 6 𝑞2.

Proof. The inequality 𝑎 6 𝑞2 − 2𝜆3 immediately confirms the statement of
the theorem for graphs with 𝜆3 > 0. It was proved in [1] that for graphs with at
least four vertices the inequality 𝜆3 < 0 holds if and only if the complement of 𝐺
has exactly one non-trivial component which is bipartite. The case 𝐺 = 𝐾𝑝,𝑞 ∪ 𝑟𝐾1
from the previous theorem is excluded here. Hence 𝐺 contains a subgraph isomor-
phic to 𝑃3 whose 𝑄-eigenvalues are 3, 1, 0. By the interlacing theorem the 𝑄-index
of 𝐺 is at least 3. As in the proof of previous theorem we have 𝑞2 = 𝑛 − 2 while
𝑎 6 𝑛− 3. �

The question of equality in Theorem 3.6 remains unsolved. Graphs for which
equality holds are among the graphs with 𝜆3 = 0. To this group belong the graphs
mentioned with Conjecture 20 in [10] (stars, cocktail-party graphs, complete bi-
partite graphs with equal parts). We can add here regular complete multipartite
graphs in general (cocktail-party graphs and complete bipartite graphs with equal
parts are special cases).

3.3. Reconstruction problems. Studying graph reconstruction from collec-
tions of subgraphs of various kind is a traditional challenge in the graph theory.

It was proved in [13] that the 𝑄-polynomial of a graph 𝐺 is reconstructible
from the collection of vertex deleted subgraphs 𝐺−𝑣 of 𝐺. The same result for the
𝐴-theory is well known [33].

Next result involves edge deleted subgraphs.

Theorem 3.7. The 𝑄-polynomial of a graph 𝐺 is reconstructible from the col-
lection of the 𝑄-polynomials of edge deleted subgraphs of 𝐺.

Proof. Given the 𝑄-polynomials of edge deleted subgraphs of 𝐺, we can cal-
culate by formula (2) the 𝐴-polynomials of vertex deleted subgraphs of the line
graph 𝐿(𝐺) of 𝐺. As is well-known, the 𝐴-eigenvalues of line graphs are bounded
from below by −2. By results of [27] the 𝐴-polynomial of 𝐿(𝐺) can now be recon-
structed. Again by formula (2), we obtain the 𝑄-polynomial of 𝐺. �
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The reconstruction of the 𝑄-polynomial of a graph 𝐺 from the collection of the
𝑄-polynomials of edge deleted subgraphs of 𝐺 corresponds to the reconstruction of
the 𝐴-polynomial of a graph 𝐺 from the collection of the 𝐴-polynomials of vertex
deleted subgraphs of 𝐺. While the first problem is positively solved by Theorem 3.7,
the corresponding problem in the 𝐴-theory remains unsolved in the general case.
Therefore Theorem 3.7 says much about the usefulness of the 𝑄-theory.
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