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STRUCTURAL THEOREMS FOR
QUASIASYMPTOTICS OF DISTRIBUTIONS

AT INFINITY

Jasson Vindas

Abstract. Complete structural theorems for quasiasymptotics of distribu-
tions are presented in this article. For this, asymptotically homogeneous func-
tions and associate asymptotically homogeneous functions at infinity with re-
spect to a slowly varying function are employed. The proposed analysis, based
on the concept of asymptotically and associate asymptotically homogeneous
functions, allows to obtain easier proofs of the structural theorems for quasi-
asymptotics at infinity in the so far only known case: when the degree of the
quasiasymptotic is not a negative integer. Furthermore, new structural theo-
rems for the case of negative integral degrees are obtained by this method.

1. Introduction and Preliminaries

The present article characterizes the quasiasymptotic behavior of Schwartz dis-
tributions at infinity. It continues my joint work with Pilipović [15] in which we
have obtained complete structural theorems for the quasiasymptotic behavior of
distributions at the origin.

We start this section by explaining the notation and concepts to be considered
in this paper. The Schwartz spaces of test functions and distributions on the real
line R are denoted by D and D′, respectively; the spaces of rapidly decreasing
functions and its dual, the space of tempered distributions, are denoted by S and
S ′. We refer the reader to [10, 17, 5] for the properties of these spaces. Let us
recall that a real-valued measurable function defined in some interval of the form
[A,∞), A > 0, is called slowly varying function at infinity if L is positive for large
arguments and

lim
x→∞

L(ax)
L(x)

= 1,

2000 Mathematics Subject Classification: Primary 41A60, 46F10; Secondary 42A24, 46F05,
46F99.

Key words and phrases: Slowly varying functions, quasiasymptotics of distributions, almost
homogeneous functions.

The author gratefully acknowledges support by the Louisiana State Board of Regents grant
LEQSF(2005-2007)-ENH-TR-21.

159



160 VINDAS

for any a > 0. The standard reference for slowly varying functions is [11].
Let L be slowly varying. We say that f ∈ D′ has quasiasymptotic behavior at

infinity (has quasiasymptotic at infinity) in D′ with respect to λαL(λ), α ∈ R, if for
some g ∈ D′ and every φ ∈ D,

(1.1) lim
λ→∞

〈 f(λx)
λαL(λ)

, φ(x)
〉

= 〈g(x), φ(x)〉.

If (1.1) holds, we also say that f has quasiasymptotic of degree α at infinity with
respect to the slowly varying function L. Because of [11, Lemma 1.2], the function
L can be assumed to be positive and defined on [0,∞). The quasiasymptotic of
distributions at the origin is defined in a similar way. The last definition was
introduced by Pilipović in [8] and [9], where it is assumed g 6= 0, but we extend
the definition by allowing g to be 0. The quasiasymptotic behavior was originally
defined by Zavialov in [18] for distributions with support bounded at the left, so due
to historical reasons, it is also usual in the literature to define the quasiasymptotic at
infinity only for tempered distributions with support bounded on one side [18, 17];
the second reason for this is, probably, that in the case when the degree of the
quasiasymptotic is not an negative integer, one has a decomposition theorem [17,
p. 134] that allows to reduce the two sided case to the one sided case. However,
the most interesting results of this article are concerned with the negative integral
degree case.

We also express (1.1), a more convenient notation for our purposes, by saying

(1.2) f(λx) = λαL(λ)g(x) + o(λαL(λ)) as λ →∞ in D′,
which should always be interpreted in the weak topology of D′, i.e., in the sense of
(1.1).

It is easy to prove (see [5, p. 161], [9] and [17]) that (1.2) forces g to be homoge-
neous with the degree of homogeneity α. Since we know explicitly all homogeneous
distributions on the real line [5, p.72], then either g has the form

g(x) = C−xα
− + C+xα

+, if α /∈ {−1,−2,−3, . . . },
for some constants C− and C+, or

g(x) = γδ(k−1)(x) + βx−k, if α = −k ∈ {−1,−2,−3, . . . },
for some constants γ and β, where here we are following the notation from [5,
Chapter 2]. Other particular distributions used in this article are the Heaviside
function H(x) and the distributions Pf(H(x)/xk), for k ∈ N, they are also defined
in [5, Chapter 2].

The quasiasymptotic of distributions (1.2) has been characterized when α /∈
{−1,−2, . . . }. Indeed, one has the following structural theorem [9, Theorem 4] (see
also [17, p. 134]). Let f ∈ D′ have the quasiasymptotic behavior at infinity in D′,

f(λx) = C−L(λ)
(λx)α

−
Γ(α + 1)

+ C+L(λ)
(λx)α

+

Γ(α + 1)
+ o(λαL(λ)), λ →∞,
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α /∈ {−1,−2, . . . }, then there exist a non-negative integer m and an m-primitive F
of f , that is F (m) = f , such that F is continuous and

lim
x→±∞

Γ(α + m + 1)F (x)
xm|x|αL(|x|) = C±.

As a consequence of our analysis in terms of asymptotically homogeneous func-
tions, we will give a new proof of this theorem in Section 2. Furthermore, in Section
3, we will complete the characterization of quasiasymptotics of Schwartz distribu-
tions by obtaining the structural theorem for negative integral degrees, it will be
the main result of this paper.

Suppose f ∈ D′ has quasiasymptotic in D′, then this condition implies that f
is a tempered distribution [8, 9, 5]. If we replace the space D by S in (1.1), then we
say that f has quasiasymptotic at infinity with respect to λαL(λ) in S ′. When the
degree of the quasiasymptotic is not a negative integer, Pilipović has shown in [8,
Theorem 4] that the existence of the quasiasymptotic in D′ implies the existence of
the quasiasymptotic in S ′. In Section 3, this result is extended to negative integral
degrees as a direct consequence of the structural theorem, Theorem 3.3. This fact
is stated in Remark 3.1. Further related questions are discussed in Section 4.

2. Asymptotically Homogeneous Functions

In this section two classes of functions of regular asymptotic behavior at infin-
ity are discussed, the class of asymptotically homogeneous functions at infinity and
the class of associate asymptotically homogeneous functions of degree 0 at infinity.
These functions are the analog to asymptotically homogeneous functions and asso-
ciate asymptotically homogeneous functions at the origin with respect to a slowly
varying function [15]. We will later derive the announced structural theorems for
quasiasymptotics at infinity from the fundamental properties of these classes of
functions. The technique to be used here is based in the analysis of the parametric
coefficients resulting after performing several integrations of the quasiasymptotic.
This has been previously applied in [4, 12, 13, 14] to the study of pointwise Fourier
inversion formulas for distributional point values and jump behavior of distribu-
tions; furthermore, in [15], asymptotically homogeneous functions have been effec-
tively used to obtain a complete characterization for quasiasymptotics of Schwartz
distributions at the origin. Let us proceed to define asymptotically homogeneous
functions at infinity.

Definition 2.1. A function b is said to be asymptotically homogeneous of
degree α at infinity with respect to the slowly varying function L, if it is measurable
and defined in some interval [A,∞), A > 0, and for each a > 0,

b(ax) = aαb(x) + o(L(x)) , x →∞.

In the following, some of the fundamental properties of asymptotically homo-
geneous functions at infinity are stated and discussed. As previously mentioned,
the author and Pilipović has introduced and studied the class of asymptotically ho-
mogeneous functions at the origin in the cited article. In fact, one has that asymp-
totically homogeneous functions at infinity are of the form b(x) = c(1/x) where c is
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asymptotically homogeneous at the origin, and hence most of the properties of this
class of functions can be obtained by reducing to those of asymptotically homoge-
neous functions at the origin by the change of variables x ↔ x−1 and, obviously,
the same holds in the opposite direction.

Concerning to the next following three results, Theorem 2.1, Lemma 2.1 and
Theorem 2.2, the proofs have been obtained for asymptotically homogeneous func-
tions at the origin in [15, Section 3], and will be therefore omitted here. Before
going to the statements, the author would like to make some comments. I learned
recently from [11, Section 2.4] that the mentioned results could be also obtained
from properties of a class of functions studied by Bojanić and Karamata in [2], but,
at the time we wrote [15], we were not aware of the existence of such results. This
class of functions has been studied in [1, 11] as well. The functions introduced
by Bojanić and Karamata are measurable functions defined in some interval of the
form [A,∞), A > 0, satisfying

(2.1) c(ax) = c(x) + τ(a)xαL(x) + o(xαL(x)), x →∞;

so if b is asymptotically homogeneous at infinity of degree α with respect to L,
then c(x) = b(x)/xα satisfies (2.1) with τ(a) = 0 and α replaced by −α. So,
Theorem 2.1, Lemma 2.1 and Theorem 2.2 are consequences of the results from
[11, Section 2.4] as well.

The properties of asymptotically homogeneous functions at infinity are sum-
marized in the following results. The first theorem estimates the behavior of such
functions at infinity when the degree is negative.

Theorem 2.1. Let b be asymptotically homogeneous of degree α < 0 at infinity
with respect to the slowly varying function L. Then b(x) = o(L(x)), x →∞.

Note that in Definition 2.1 no uniformity with respect to a is assumed; however,
we have the following lemma.

Lemma 2.1. Let b be an asymptotically homogeneous function of degree α at
infinity with respect to L. Then, the relation b(ax) = aαb(x) + o(L(x)), x → ∞,
holds uniformly for a in compact subsets of (0,∞).

The next theorem explores the asymptotic behavior of asymptotically homo-
geneous functions of positive degree.

Theorem 2.2. Suppose that b is asymptotically homogeneous of degree α > 0 at
infinity with respect to the slowly varying function L. Then, there exists a number
γ such that,

(2.2) b(x) = γxα + o(L(x)), x →∞.

In particular, for each σ > 0 we have b(x) = γxα + o(xσ), x →∞.

Notice that (2.2) trivially implies that b is asymptotically homogeneous of de-
gree α with respect to L.

We now make the link between asymptotically homogeneous functions and
quasiasymptotic behavior of distributions. The proof of the next proposition is
analogous to that of [15, Proposition 3.1].
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Proposition 2.1. Let f ∈ D′ have quasiasymptotic behavior at infinity

(2.3) f(λx) = L(λ)g(λx) + o(λαL(λ)) as λ →∞ in D′,
where L is a slowly varying function and g is a homogeneous distribution of degree
α ∈ R. Let n ∈ N. Suppose that g admits a primitive of order n, that is Gn ∈ D′
and G

(n)
n = g, which is homogeneous of degree n + α. Then, for any given Fn,

an n-primitive of f in D′, there exist functions b0, . . . , bn−1, continuous on (0,∞),
such that

(2.4) Fn(λx) = L(λ)Gn(λx) +
n−1∑

j=0

λα+nbj(λ)
xn−1−j

(n− 1− j)!
+ o

(
λα+nL(λ)

)

as λ →∞ in D′, where each bj is asymptotically homogeneous of degree −α−j−1.

Proof. Relation (2.4) follows from (2.3) and the definitions of convergence in
D′ and primitives in D′ (see [15, Proposition 3.1] for a complete argument).

Thus we shall concentrate in showing the property of the bj ’s. We set Fm =
F

(n−m)
n and Gm = G

(n−m)
n ,m ∈ {1, . . . , n}. By differentiating relation (2.4) (n −

m)-times, it follows that

(2.5) Fm(λx) = L(λ)Gm(λx) +
m−1∑

j=0

λα+mbj(λ)
xm−1−j

(m− 1− j)!
+ o

(
λα+mL(λ)

)

as λ →∞ in D′. Choose φ ∈ D such that
∫∞
−∞ φ(x)xjdx = 0 for j = 1, . . . ,m− 1,

and
∫∞
−∞ φ(x) dx = 1. Then evaluating (2.5) at φ, we have that as λ →∞

(aλ)α+mbm−1(aλ) + L(aλ)〈Gm(aλx), φ(x)〉+ o
(
λα+mL(λ)

)

= 〈Fm(aλx), φ(x)〉 =
1
a

〈
Fm(λx), φ

(x

a

)〉

= λα+mbm−1(λ) + L(λ) 〈Gm(aλx), φ(x)〉+ o
(
λα+mL(λ)

)
,

and so, with j = m− 1 ∈ {0, . . . , n− 1}, for each a > 0,

bj(aλ) = a−α−j−1bj(λ) + o (L(λ)) , λ →∞. ¤

Suppose now that f ∈ D′ is so that

f(λx) = C−L(λ)
(λx)α

−
Γ(α + 1)

+ C+L(λ)
(λx)α

+

Γ(α + 1)
+ o (λαL(λ)) as λ →∞ in D′,

where α /∈ {−1,−2, . . . }. Then, on combining Proposition 2.1, Theorem 2.1, and
Theorem 2.2, one obtains that for each n ∈ N and Fn, an n-primitive of f , there
exist constants γ0, . . . , γn−1 such that in the sense of convergence in D′,
(2.6)

Fn(λx) =
n−1∑

j=0

γj
(λx)j

j!
+C−

(−1)nL(λ)(λx)α+n
−

Γ(α + n + 1)
+C+

L(λ)(λx)α+n
+

Γ(α + n + 1)
+ o

(
λα+nL(λ)

)

as λ →∞. This produces a new proof of the structural theorem from [9] mentioned
at the introduction.
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Theorem 2.3. Let f ∈ D′ have quasiasymptotic behavior at infinity in D′,

(2.7) f(λx) = C−L(λ)
(λx)α

−
Γ(α + 1)

+ C+L(λ)
(λx)α

+

Γ(α + 1)
+ o (λαL(λ)) , λ →∞.

If α /∈ {−1,−2, . . . }, then there exist a non-negative integer m > −α − 1 and an
m-primitive F of f such that F is continuous and

(2.8) lim
x→±∞

Γ(α + m + 1) F (x)
xm|x|αL(|x|) = C±.

Conversely, if these conditions hold, then (by differentiation) (2.7) follows.

Proof. It follows from the definition of convergence in D′ that there is m ∈ N
such that any m-primitive of f is continuous and (2.6) holds (with n = m) uniformly
for x ∈ [−1, 1]. Pick a specific m-primitive of f , say Fm, then from (2.6) there is a
polynomial p of degree at most m− 1 such that

Fm(λx) = p(λx)+C−L(λ)
(−1)m(λx)α+m

−
Γ(α + m + 1)

+C+L(λ)
(λx)α+m

+

Γ(α + m + 1)
+o

(
λα+mL(λ)

)

as λ → ∞, uniformly for x ∈ [−1, 1]. Then setting F = Fm − p, x = 1,−1 and
replacing λ by x, relation (2.8) follows at once. ¤

Remark 2.1. Since pm−1(x) = o(xm+αL(x)) → 0, x →∞, whenever α > −1,
we have that in such a case the polynomial is irrelevant in the proof of the last
Theorem. Hence in fact (2.8) holds for every m-primitive of f , provided that
α > −1.

Remark 2.2. We obtain at once the decomposition theorem from [17, p.134].

We now give a second application of asymptotically homogeneous functions,
here we turn our attention to quasiasymptotics whose degrees are negative integers.

Proposition 2.2. Let f ∈ D′ have the quasiasymptotic behavior at infinity

(2.9) f(λx) = L(λ)g(λx) + o
(
λ−kL(λ)

)
as λ →∞ in D′,

where k ∈ {2, 3, . . . } and g is a homogeneous distribution of degree −k. Let G be
a homogeneous distribution of degree −1 such that G(k−1) = g. Then for some
(k − 1)-primitive of f , Fk−1, we have that

(2.10) Fk−1(λx) = L(λ)G(λx) + o
(
λ−1L(λ)

)
as λ →∞ in D′.

Conversely, relation (2.10) implies (2.9).

Proof. It follows directly from Proposition 2.1 and Theorem 2.2. ¤
Proposition 2.2 reduces our study to the case of quasiasymptotics of degree −1

which we shall postpone for the next section. We now set the ground for the next
section. What makes impossible the application of Proposition 2.1 to the -1 degree
case is the fact that in general we cannot single out homogeneous distributions
from the primitives of a homogeneous distribution of degree −1. In Section 3,
the technique of integrating the quasiasymptotic and studying the coefficients of
integration is employed again; moreover, the main coefficient of this integration
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will fit into the context of associate asymptotically homogeneous functions, which
we now define.

Definition 2.2. A function b is said to be associate asymptotically homoge-
neous of degree 0 at infinity with respect to the slowly varying function L, if it is
measurable and defined in some interval [A,∞), A > 0, and for each a > 0,

(2.11) b(ax) = b(x) + β log aL(x) + o(L(x)), x →∞,

for some constant β.

Note that the property (2.11) is exactly (2.1) with α = 0 and τ(a) = β log a;
indeed, when α = 0, it can be shown [11, Theorem 2.9] that (2.1) forces τ to
have this form. It can be also shown by using a classical argument of Korevaar,
van Aardenne Ehrenfest and de Bruijn that (2.11) must hold uniformly for a on
compact sets (for the usage of this argument see [6], [11, Theorem 2.12] and [15,
Lemma 3.5]).

Using Theorem 2.1, we can roughly estimate the behavior of associate asymp-
totically homogeneous functions of degree 0 at infinity.

Proposition 2.3. Let b be associate asymptotically homogeneous of degree 0
at infinity with respect to L, then for each σ > 0,

(2.12) b(x) = o(xσ), x →∞.

Proof. It is known that L(x) = o(xσ), for each σ > 0 [11]. Hence b(ax) =
b(x) + o(xσ) and thus x−σb(x) is asymptotically homogeneous of degree −σ with
respect to L ≡ 1, so (2.12) follows from Theorem 2.1. ¤

The next theorem will be very important in the next section. Recall that H
denotes the Heaviside function, i.e., the characteristic function of (0,∞).

Theorem 2.4. Let b be a locally integrable associate asymptotically homoge-
neous function of degree zero at infinity with respect to the slowly varying function
L. Suppose that b is defined on [A,∞). Then

(2.13) b(λx)H(λx−A) = b(λ)H(x) + L(λ)β log xH(x) + o(L(λ))

as λ →∞ in S ′, where H is the Heaviside function.

Proof. Let λ0 be any positive number. The function b can be decomposed as
b = b1 + b2, where b1 ∈ L1(R) has compact support and b2(x) = b(x)H(x − λ0) is
associate asymptotically homogeneous function of degree zero at infinity. Since b1

satisfies the moment asymptotic expansion [5], it follows that b1(λx) = O(λ−1) =
o(L(λ)) as λ →∞ in S ′. Therefore, we can always assume that A = λ0, where λ0

is selected at our convenience.
Our aim is to show that there is some λ0 > 1 such that

J(x, λ) := φ(x)
b(λx)− b(λ)− βL(λ) log x

L(λ)
H(λx− λ0)
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is dominated by an integrable function, whenever φ ∈ S, for the use of the Lebesgue
dominated convergence theorem. For this goal, we can always assume that L is pos-
itive everywhere and satisfies the following estimate (see for example the arguments
given in [15, Section 2]),

(2.14)
L(λx)
L(λ)

6 M max
{

x−1/4, x1/4
}

, x, λ ∈ (0,∞),

for some positive constant M . Because of the uniformity of (2.11) on compact sets,
there exists a λ0 > 1 such that |b(λx) − b(λ) − βL(λ) log x| < L(λ), x ∈ [1, 2],
λ0 < λ. Let n be a positive integer. We keep λ0 < λ and x ∈ [

2n, 2n+1
]
. Then

|b(λx)− b(λ)− βL(λ) log x| 6 |b(λx)− b(λ)|+ |β|L(λ) log x

6 |β|L(λ) log x + |b(2(λx/2))− b(λx/2)− βL(λx/2) log 2|
+ |β|L(λx/2) log 2 + |b(λx/2)− b(λ)|

6 |β|L(λ) log x + (1 + |β| log 2) L(λx/2) + |b(λx/2)− b(λ)|

6 (1 + |β| log 2)
n∑

j=1

L
(
2−jλx

)
+ |β|L(λ) log 2x + L(λ)

6
(

Mx1/4(1 + |β| log 2)
n∑

j=1

(1/2)j/4 + |β| log 2x + 1
)

L(λ),

where the last inequality follows from (2.14). So if λ0 < λ and 1 < x, then∣∣∣∣
b(λx)− b(λ)− βL(λ) log x

L(λ)

∣∣∣∣ 6 M1x
1/4,

for some M1 > 0. Now if λ0/λ < x < 1, we have that∣∣∣∣
b(λx)− b(λ)− βL(λ) log x

L(λ)

∣∣∣∣

6
(

1 +
L(λx)
L(λ)

)
|β log x|+

∣∣∣∣
b(λ)− b(λx)− βL(λx) log x−1

L(λ)

∣∣∣∣

6
(
1 + Mx−1/4

)
|β log x|+ L(λx)

L(λ)

∣∣∣∣
b(λx(x−1))− b(λx)− βL(λx) log x−1

L(λx)

∣∣∣∣

6
(
1 + Mx−1/4

)
|β log x|+ MM1x

−1/2.

Therefore J(x, λ) is dominated by an integrable function for λ > λ0, so we apply Le-
besgue dominated convergence theorem to deduce that limλ→∞

∫∞
0

J(x, λ) dx = 0.
Finally,

〈
b(λx)H(λx− λ0), φ(x)

〉− b(λ)
∫ ∞

0

φ(x) dx− βL(λ)
∫ ∞

0

log x φ(x) dx

=
∫ ∞

λ0/λ

b(λx)φ(x) dx− b(λ)
∫ ∞

0

φ(x) dx− βL(λ)
∫ ∞

0

log x φ(x) dx

= L(λ)
∫ ∞

0

J(x, λ) dx + L(λ) O

(
log λ

λ

)
+ O

(
b(λ)
λ

)
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= o(L(λ)) + L(λ)O

(
b(λ)

λL(λ)

)
= o(L(λ)), λ →∞,

where in the last equality we have used Proposition 2.3 and the fact that slowly
varying functions are o(λσ) for any σ > 0 [11]. This completes the proof of (2.13).

¤
Corollary 2.1. Let b be an associate asymptotically homogeneous function of

degree 0 at infinity with respect to L. Then, there exists an associate asymptotically
homogeneous function c ∈ C∞[0,∞) such that b(x) = c(x) + o(L(x)) as x →∞.

Proof. We may assume that L ∈ C∞[0,∞) [11, Section 1.4]. Find B such
that b is locally bounded in [B,∞), this can be done because of Proposition 2.3.
Take φ ∈ D such that

∫∞
0

φ(t) dt = 1 and set

c(x) =
∫ ∞

B/x

b(xt)φ(t) dt− βL(x)
∫ ∞

0

φ(t) log t dt,

the corollary now follows from Theorem 2.4. ¤
We may also use Corollary 2.1 to obtain a representation formula for associate

asymptotically homogeneous functions, this is the analog to [11, Theorem 1.2] for
slowly varying functions.

Theorem 2.5. The function b is associate asymptotically homogeneous of de-
gree 0 at ∞ satisfying (2.11) if and only if there is a positive number A such that

(2.15) b(x) = η(x) +
∫ x

A

τ(t)
L(t)

t
dt, x > A,

where η is a locally bounded measurable function on [A,∞) such that η(x) = M +
o(L(x)) as x →∞, for some number M , and τ is a C∞-function such that τ(x) =
β + o(1) as x →∞.

Proof. Assume first that b1 is C∞, defined on [0,∞) and satisfies that hypoth-
esis of the theorem. We can find L1 ∼ L which is C∞ and satisfies xL′1(x) = o(L(x))
as x →∞ [11, p. 7]. Let φ and c as in the proof of Corollary 2.1 corresponding to
b1 and L1, additionally assume that supp φ ⊆ (0,∞). From Theorem 2.4, we have
that

b′1(λx) =
b1(λ)

λ
δ(x) + β

L(λ)
λ

Pf
(

H(x)
x

)
+ o

(
L(λ)

λ

)
as λ →∞

in S ′, since distributional asymptotics can be differentiated. Then, for x positive

xc′(x) = x

∫ ∞

0

b′1(xt) t φ(t) dt− βxL′1(x)
∫ ∞

0

φ(t) log t dt

= x

∫ ∞

0

b′1(xt) t φ(t) dt + o(L(x))

= b1(x) · 0 + βL(x)
∫ ∞

0

φ(t) dt + o(L(x))

= βL(x) + o(L(x)) as x →∞.
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Set τ(x) = xc′(x)/L(x). Find A > 0 such that L is locally integrable on [A,∞),
one has that b1(x) = c(A) +

∫ x

A
τ(t)(L(t)/t) dt + o(L(x)).

In the general case, let A be a number such that b and L are locally bounded on
[A,∞) and let b1 the function from Corollary 2.1 such that b(x) = b1(x)+ o(L(x)),
then we can apply the previous argument to b1 to find τ as before, so we obtain
(2.15) with η(x) = b(x)− ∫ x

A
τ(t)(L(t)/t) dt = c(A) + o(L(x)). ¤

Remark 2.3. A slightly different representation formula is given in [11, The-
orem 2.13], but, except for the smoothness of τ , both are equivalent.

3. Quasiasymptotic of Negative Integral Degree

This section will be dedicated to the quasiasymptotic with negative integral
degree. Because of Proposition 2.2, we start with case of degree −1.

We should introduce some notation that will be needed. In the following for
all n ∈ N we denote by ln the primitive of log |x| with the property that ln(0) = 0
and l′n = ln−1. We have an explicit formula for them:

ln(x) =
xn

n!
log |x| − xn

n!

n∑

j=1

1
j
, x ∈ R,

which can be easily verified by direct differentiation. They satisfy

(3.1) ln(ax) = anln(x) +
(ax)n

n!
log a , a > 0.

Theorem 3.1. Let f ∈ D′ have quasiasymptotic at infinity of the form

(3.2) f(λx) = γλ−1L(λ) δ(x) + βλ−1L(λ) x−1 + o
(
λ−1L(λ)

)
as λ →∞ in D′.

For each n ∈ N, choose an n-primitive Fn of f such that F ′n = Fn−1. Then, there
exists an associate asymptotically homogeneous function b satisfying

(3.3) b(ax) = b(x) + β log aL(x) + o(L(x), x →∞,

such that for any n the distribution Fn+1 satisfies

(3.4) Fn+1(λx) = b(λ)
(λx)n

n!
+ γL(λ)

(λx)n

2n!
sgnx + βL(λ)λnln(x) + o(λnL(λ))

as λ → ∞, in the sense of convergence in D′. Moreover, there exists n0 ∈ N such
that for all n > n0 the distribution Fn+1 is a continuous function and (3.4) holds
uniformly for x ∈ [−1, 1]. In particular, for n > n0 one has that

(3.5) Fn+1(x) = b(|x|)xn

n!
+ γ

xn

2n!
L(|x|) sgn x− βL(|x|)xn

n!

n∑

j=1

1
j

+ o(|x|nL(|x|))

as x → ±∞, in the ordinary sense. Conversely, it follows from Theorem 2.4 that
relation (3.5) implies (3.4), and (by differentiation) (3.2) follows.
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Proof. We shall study, as we have been doing, the coefficients of the integra-
tion of (3.2). We now proceed to integrate (3.2) once, so we obtain

(3.6) F1(λx) = b(λ) +
γ

2
L(λ) sgn x + βL(λ) log |x|+ o(L(λ)) as λ →∞

in D′. Now, using the standard trick of evaluating at φ ∈ D with the property∫∞
−∞ φ(x)dx = 1, one obtains that

b(λa) +
γ

2
L(λa)

∫ ∞

−∞
sgn x φ(x) dx + βL(λa)

∫ ∞

−∞
log |x|φ(x) dx + o(L(λ))

= 〈F1(λax), φ(x)〉 =
1
a

〈
F1(λx), φ

(x

a

)〉

= b(λ) +
γ

2
L(λ)

∫ ∞

−∞
sgn xφ(x) dx + βL(λ)

∫ ∞

−∞
log |ax|φ(x) dx + o(L(λ)),

λ → ∞, for each a > 0. So, we see that b satisfies (3.3) for each a > 0. Further
integration of (3.6) gives,

Fn+1(λx) = b(λ)
(λx)n

n!
+

n∑

j=1

λnbj(λ)
xn−j

(n− j)!
+ γL(λ) sgn x

(λx)n

2n!

+ βL(λ)λnln(x) + o(λnL(λ)) as λ →∞ in D′.
As in the proof of Proposition 2.1, one shows that the bj ’s are asymptotically
homogeneous functions of degree −j with respect to L, hence (3.4) follows from
Theorem 2.1 applied to the bj ’s. The next assertion follows from the definition of
convergence in D′. Relation (3.5) is shown by making x = ±1 in (3.4) and then
changing λ ↔ x. Finally, since only the behavior of b at infinity plays a roll in
(3.5), we may assume that b is locally integrable, so the converse is obtained after
application of Theorem 2.4 and [8, Theorem 3]. ¤

Theorem 3.1 is a structural theorem, but we shall give a version free of b.

Theorem 3.2. Let f ∈ D′. Then f has quasiasymptotic at infinity of the form
(3.2) if and only if there exists an (m + 1)-primitive F of f , continuous, such that
for each a > 0,

(3.7) lim
x→∞

m!
(
a−mF (ax)− (−1)mF (−x)

)

xmL(x)
= γ + β log a.

Proof. The limit (3.7) follows from (3.5), (3.3) and (3.1) by direct computa-
tion. For the converse, rewrite (3.7) as

a−mF (ax)− (−1)mF (−x) = (γ + β log a)
xm

m!
L(x) + o(xmL(x)), x →∞,

for each a > 0. Set

b(x) = m!x−mF (x)−
(

γ

2
− β

m∑

j=1

1
j

)
L(x), x ∈ (0,∞).
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By setting a = 1 in (3.7), one sees that for x < 0, as x → −∞,

F (x) = b(|x|)xm

m!
+ γL(|x|) xm

2m!
sgnx− βL(|x|)xm

m!

m∑

j=1

1
j

+ o
(|x|mL(|x|)).

Since

a−mF (ax)− F (x) = β log a
xm

m!
L(x) + o(xmL(x)), x →∞,

it is clear that for each a > 0, we have

b(ax) = b(x) + β log aL(x) + o(L(x)), x →∞. ¤

It is remarkable that, initially, no uniform condition on a is assumed in (3.7).
However, the proof of Theorem 3.2 forces this relation to hold uniformly for a in
compact subsets.

We are now ready to state the general structural theorem for negative inte-
gral degrees which now follows directly from Proposition 2.2, Theorem 3.1 and
Theorem 3.2.

Theorem 3.3. Let f ∈ D′ and k be a positive integer. Then f has the quasi-
asymptotic behavior in D′ at infinity,

f(λx) = γλ−kL(λ) δ(k−1)(x) + (−1)k−1(k − 1)!βL(λ)(λx)−k + o(λ−kL(λ))

if and only if there exist m ∈ N, m > k, an associate asymptotically homogeneous
function b of degree 0 at infinity with respect to L satisfying

b(ax) = b(x) + β log aL(x) + o(L(x)), x →∞,

for each a > 0, and an m-primitive F of f which is continuous and satisfies

F (x) = b(|x|) xm−k

(m− k)!
+ γL(|x|) xm−k

2(m− k)!
sgnx

− βL(|x|) xm−k

(m− k)!

m−k∑

j=1

1
j

+ o
(|x|m−kL(|x|))

as x → ±∞, in the ordinary sense. The last property is equivalent to

(3.8) lim
x→∞

(m− k)!
(
ak−mF (ax)− (−1)m−kF (−x)

)

xm−kL(x)
= γ + β log a,

for each a > 0.

It should be noticed that in (3.8) is not absolutely necessary to assume that
the limit is of the form γ + β log a. Indeed, we have the following corollary.

Theorem 3.4. Let f ∈ D′. Then f has quasiasymptotic at infinity of degree
−k, k ∈ {1, 2, . . . } if and only if there exists a continuous m-primitive F of f ,
m > k, such that the following limit exists for each a > 0,

lim
x→∞

(
ak−mF (ax)− (−1)m−kF (−x)

)

xm−kL(x)
= I(a).
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Proof. We show that I(a) must be of the form I(1)+β log a, for some constant
β. We easily see that I is measurable and satisfies I(ab) = I(a)+I(b)−I(1), setting
h(x) = eI(x)−I(1), one has that h is positive, measurable and satisfies h(ab) =
h(a) h(b), from where it follows [11] that h(x) = xβ , for some β, and so I has the
desired form. ¤

We end this section with two remarks.

Remark 3.1. Theorem 3.3 and Proposition 2.3 imply that if f ∈ D′ has quasi-
asymptotic of negative integral degree, then f ∈ S ′. In fact, the structural theorem,
Theorem 3.3, combined with Theorem 2.4 and [8, Theorem 3] imply that f has the
same quasiasymptotic in S ′.

Remark 3.2. The structural theorem for the quasiasymptotic of degree −1
implies at once the pointwise Fourier inversion formula for distributional point
values given in [12, 13] and the formula for jump behavior of tempered distributions
[12, 13]. For instance, in the case of 2π-periodic distributions, it states that f(x) =∑∞
−∞ aneinx has the jump behavior at x0

lim
ε→0+

f(x0 + εx) = γ−H(−x) + γ+H(x) in D′,

if and only if there exists m ∈ N such that

lim
x→∞

∑

−x6n<ax

aneinx0 =
γ+ + γ−

2
+

1
2πi

(γ+ − γ−) log a (C,m),

for each a > 0. Note that when γ+ = γ−, we fall into the case of Estrada’s
characterization of ÃLojasiewicz point values of periodic distributions [4, 7].

4. Other Results

We end this article studying the following problem. Suppose that a distribution
f ∈ D′ with support in [0,∞) has quasiasymptotic of degree α in the spaceD′(0,∞),
that is, for each φ ∈ D(0,∞)

(4.1) lim
λ→∞

〈 f(λx)
λαL(λ)

, φ(x)
〉

=
〈
g(x), φ(x)

〉
.

What can we say about the quasiasymptotic properties of f in D′?
We can apply the techniques of Sections 2 and 3 to give a complete answer to

this question. The answer depends on α.
Let us start with the case α > −1. It is not difficult to show that g must be

of the form Cxα
+/Γ(α + 1), for some constant C. Next, Proposition 2.1 still holds

replacing the space D′ by D′(0,∞) (actually this holds without the restriction
α > −1). Hence, the same argument given in Theorem 2.3 applies here, but this
time we only require the uniform convergence on [1/2, 2], and hence we can still
conclude the existence of the integer such that (2.8) holds with the limit taken only
as x → ∞. Actually, because α > −1, relation (2.8) holds for any m-primitive of
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f . Let F be the m-primitive of f supported on the interval [0,∞), then we have
that

F (x) ∼ Cxα+mL(x)
Γ(α + m + 1)

, x →∞,

so we have that F (λx) = CL(λ)(λx)α+m
+ /Γ(α+m+1)+o(λα+mL(λ)) in the space

S ′, differentiating m-times, we obtain the following result.

Theorem 4.1. Let f ∈ D′ be supported on [0,∞). If f has quasiasymptotic
behavior of degree α > −1 in D′(0,∞), then it is a tempered distribution and has
the same quasiasymptotic behavior in the space S ′.

Suppose now that α < −1 and α is not a negative integer. This case differs
from the last case essentially in one point, we cannot conclude (2.8) for every m-
primitive of f but only for some of them. In any case, denoting again by F the
m-primitive (we keep m > −α − 1) of f supported on [0,∞), we have that there
exists a polynomial of degree at most m− 1 such that

F (x)− p(x) ∼ Cxα+mL(x)
Γ(α + m + 1)

, x →∞ ;

therefore,

F (λx) =
CL(λ)(λx)α+m

+

Γ(α + m + 1)
+

m−1∑

j=0

aj(λx)j
+ + o(λα+mL(λ)) as λ →∞,

in the space S ′, for some constants a0, . . . , am−1. Thus, our arguments immediately
imply the next theorem.

Theorem 4.2. Let f ∈ D′ be supported on [0,∞). Suppose that

f(λx) = CL(λ)
(λx)α

+

Γ(α + 1)
+ o(λαL(λ)) as λ →∞ in D′(0,∞).

If α < −1 and α is not a negative integer, then f is a tempered distribution.
Moreover, there exist constants a0, a1, . . . , an (n < −α− 1) such that

f(λx) = CL(λ)
(λx)α

+

Γ(α + 1)
+

n∑

j=0

aj
δ(j)(x)
λj+1

+ o(λαL(λ)) as λ →∞ in S ′.

When α = −k, k being a positive integer, the distribution g in (4.1) must
have the form Cx−k ∈ D′(0,∞), for some constant C; these distributions are
homogeneous as elements ofD′(0,∞), but they do not have homogeneous extensions
to D. The behavior of f(λx) as λ →∞ in S ′ is described in the next theorem.

Theorem 4.3. Let f ∈ D′ be supported on [0,∞). Suppose that

f(λx) = CL(λ)
H(x)
(λx)k

+ o

(
L(λ)
λk

)
as λ →∞ in D′(0,∞),
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where k is a positive integer. Then f is a tempered distribution and there exist an
associate asymptotically homogeneous function b satisfying

(4.2) b(ax) = b(x) +
(−1)k−1

(k − 1)!
CL(x) log a + o(L(x)), x →∞,

for each a > 0, and constants a0, a1, . . . , ak−1 such that

(4.3) f(λx) = C
L(λ)
λk

Pf
(

H(x)
xk

)
+

b(λ)
λk

δ(k−1)(x) +
k−1∑

j=0

aj
δ(j)(x)
λj+1

+ o

(
L(λ)
λk

)

as λ →∞ in S ′.
Proof. For each n ∈ N, let Fn denote the n-primitive of f with support in

[0,∞). Set C1 = (−1)k−1C/(k − 1)!. Adapting the arguments of Section 3 and
reasoning as in the previous two cases, we obtain the existence of a positive integer
m > k such that Fm is continuous and

Fm(x) = b1(x)
xm−k

(m− k)!
− C1L(x)

xm−k

(m− k)!

m−k∑

j=1

1
j

+ pm−1(x) + o(xm−kL(x)),

x → ∞, where b1 is a locally integrable associate asymptotically homogeneous
function satisfying (4.2) and pm−1 is a polynomial of degree at most m−1. Throw-
ing away the irrelevant terms of the polynomial pm−1 and using Theorem 2.4, we
obtain the following asymptotic expansion as λ →∞ in the space S ′,

Fm(λx) = b1(λ)
(λx)m−k

+

(m− k)!
+ C1λ

m−kL(λ)lm−k(x)H(x)

+
k−1∑

j=0

aj
(λx)m−j−1

+

(m− j − 1)!
+ o(λm−kL(λ)).

Differentiating (m− k)-times this expansion, we have that

(4.4) Fk(λx) = b1(λ)H(x) + C1L(λ)H(x) log x +
k−1∑

j=0

aj
(λx)k−j−1

+

(k − j − 1)!
+ o(L(λ)).

The formulas [5, p. 68],

d

dx
(H(x) log x) = Pf

(
H(x)

x

)
,

d

dx

(
Pf

(
H(x)
xn

))
= −n Pf

(
H(x)
xn+1

)
+

(−1)nδ(n)(x)
n!

imply that

dk−1

dxk−1

(
Pf

(
H(x)

x

))
= (−1)k−1 (k − 1)! Pf

(
H(x)
xk

)
− δ(k−1)(x)

k−1∑

j=1

1
j
.
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Hence, differentiating (4.4) k-times, one has (4.3) with

b(x) = b1(x) +
(−1)kC

(k − 1)!

(k−1∑

j=1

1
j

)
L(x). ¤
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[8] S. Pilipović, Some properties of the quasiasymptotic of Schwartz distributions. I. Quasi-
asymptotic at ±∞, Publ. Inst. Math. (Beograd) 57 (1988), 125–130.
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