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T.D. Narang and Shavetambry Tejpal

Communicated by Stevan Pilipović

Abstract. We prove that an approximatively compact Chebyshev set in an
M-space is a δ-sun and a δ-sun in a complete strong M-space (or externally

convex M-space) is almost convex.

The most outstanding open problem of Approximation Theory is: Whether a
Chebyshev set in a Hilbert space is convex? Many attempts have been made to
solve this problem. Several partial answers are known (see e.g. survey articles by
Vlasov-1973 [10], Narang-1977 [6], Deutsch-1993 [3] and Balaganskii and Vlasov-
1996 [1]) but in full generality, the problem is still unsolved. In order to solve the
problem, Vlasov [9] introduced the concepts of δ-suns and almost convex sets in
Banach spaces and proved that an approximatively compact Chebyshev set in a
Banach space is a δ-sun and each δ-sun in a Banach space is almost convex. We
extend these results to M-spaces [5] which are more general than Banach spaces.

To start with, we recall a few definitions. A subset K of a metric space (X, d)
is said to be a δ-sun [9] if for every x ∈ X �K, there is a sequence 〈xn〉 for which
xn �= x, xn → x and d(xn,K)−d(x,K)

d(xn,x) → 1. A closed set A in a metric space (X, d)
is said to be almost convex [9] if for any closed ball B which does not intersect
A, there exists a closed ball B′ ⊇ B of arbitrary large radius and which does not
intersect A. For a subset K of a metric space (X, d) and x ∈ X, an element
k0 ∈ K is said to be a best approximation to x if d(x, k0) � d(x, k) for all k ∈ K
i.e., d(x, k0) = d(x,K) ≡ infk∈K d(x, k). The set of all such k0 ∈ K is denoted
by PK(x). The set K is said to be proximinal if PK(x) �= ∅ for each x ∈ X and
Chebyshev if PK(x) is exactly singleton for each x ∈ X. The mapping p ≡ PK from
X into subsets of K is called the metric projection. For Chebyshev sets, p is single-
valued. The set K is said to be approximatively compact if for every x ∈ X and
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every sequence 〈kn〉 in K with limn→∞ d(x, kn) = d(x,K) there is a subsequence
〈kni

〉 converging to an element of K.
For a metric space (X, d) and a closed interval I = [0, 1], a mapping W :

X ×X × I → X is said to be a convex structure on X if for all x, y ∈ X, λ ∈ I,

d(u,W (x, y, λ)) � λd(u, x) + (1 − λ)d(u, y)

for all u ∈ X. The metric space (X, d) together with a convex structure is called a
convex metric space [8]. A convex metric space (X, d) is called an M-space [5] if for
every two points x, y in X with d(x, y) = λ, and for every r ∈ [0, λ], there exists a
unique zr ∈ X such that

B[x, r] ∩B[y, λ− r] = {zr},
where B[x, r] = {y ∈ X : d(x, y) � r}.

An M-space (X, d) is called a strong M-space [5] if for every two points x, y in
X with d(x, y) = λ and for every positive real number r �= λ, there exists a unique
zr such that S[x, r]∩S[y, |λ− r|] = {zr} , where S[x, r] = {y ∈ X : d(x, y) = r}. A
metric space (X, d) is called externally convex [5] if for all distinct points x, y such
that d(x, y) = λ, and r > λ there exists a unique z of X such that d(x, y)+d(y, z) =
d(x, z) = r.

Every normed linear space is a strong M-space as well as an externally convex
M-space but not conversely. If (X, d) is a convex metric space then for each two
distinct points x, y ∈ X and for every λ, 0 � λ � 1, there exists at least one point
z ∈ X such that d(x, z) = (1 − λ)d(x, y) and d(z, y) = λd(x, y). For M-spaces
such a z is always unique. For distinct points x, y of strong M-space (X, d) with
d(x, y) = λ and for every r �= λ, there exists a unique point z of X such that
d(x, y) + d(y, z) = d(x, z) = r.

We denote by G[x, y] the line segment joining x and y, i.e., G[x, y] = {z ∈ X :
d(x, z) + d(z, y) = d(x, y)}; G(x, y,−) denotes the largest line segment containing
G[x, y] for which x is an extreme point, i.e., the ray starting from x and passing
through y; G1(x, y,−) denotes the set of all those points on the ray starting from
x and passing through y which do not lie between x and y.

We intend to show that approximatively compact Chebyshev sets in M-spaces
are δ-suns. To develop the proof, we prove some properties of Chebyshev sets.

Lemma 1. Given a Chebyshev set K in an M-space (X, d) and metric projection
x→ p(x), for every x ∈ X �K and xλ ∈ G1(p(x), x,−),

d(xλ,K) � d(x,K) + d(x, xλ)
[
1 − d(p(x), p(xλ))

d(x, p(x))

]
.

Proof. Since xλ ∈ G1(p(x), x,−), x is between p(x) and xλ so we can find
some α, 0 < α < 1, such that

(*) d(p(x), x) = (1 − α)d(p(x), xλ), d(x, xλ) = αd(p(x), xλ)

i.e., x = W (p(x), xλ, α). Consider

d(x, p(x)) � d(x, p(xλ)) = d(W (p(x), xλ, α), p(xλ))

� αd(p(x), p(xλ)) + (1 − α)d(xλ, p(xλ)).
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This implies

d(xλ, p(xλ)) � 1
1 − α

d(x, p(x)) − α

1 − α
d(p(x), p(xλ)).

Therefore

d(xλ,K) = d(xλ, p(xλ))

� 1
1 − α

d(x, p(x)) − α

1 − α
d(p(x), p(xλ))

= d(xλ, p(x)) − d(x, xλ)
d(p(x), x)

d(p(x), p(xλ)) (using (*))

= d(p(x), x) + d(x, xλ) − d(x, xλ)
d(x, p(x))

d(p(x), p(xλ)) as x ∈ [p(x), xλ]

= d(x, p(x)) + d(x, xλ)
[
1 − d(p(x), p(xλ))

d(x, p(x))

]
. �

Lemma 2. Given a Chebyshev set K in an M-space (X, d), if the metric pro-
jection x→ p(x) is continuous on X, then

lim
xλ→ x

d(xλ, p(xλ)) − d(x, p(x))
d(xλ, x)

= 1

for every x ∈ X �K and xλ ∈ G1(p(x), x,−) i.e., K is a δ-sun.

Proof. We have

1 =
d(xλ, x)
d(xλ, x)

=
d(xλ, p(x)) − d(x, p(x))

d(xλ, x)

� d(xλ, p(xλ)) − d(x, p(x))
d(xλ, x)

� 1 − d(p(x), p(xλ))
d(x, p(x))

, by Lemma 1

→ 1 as by the continuity of p, p(xλ) → p(x).

The lemma is proved. �

Theorem 1. An approximatively compact Chebyshev set in an M-space is a
δ-sun.

Proof. Let K be an approximatively compact Chebyshev set in an M-space
(X, d) and p : X → K be the metric projection. Since the metric projection onto
an approximatively compact Chebyshev set is continuous [7, p.390], p is continuous
and so by Lemma 2, K is a δ-sun. �

Remark 1. For Banach spaces, this result was proved by Vlasov [9] (see also
[2, p.44]).

Almost convex sets (which are very close to convex sets) and δ-suns were intro-
duced by Vlasov [9] to solve the problem of convexity of Chebyshev sets. We now
show that in complete strong M-spaces (or externally convex M-spaces), δ-suns are
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almost convex. For this, we shall use the Primitive Ekeland form of the Bishop–
Phelps Theorem (see [4, p.167]) stated below to derive a property for a Chebyshev
set in a complete strong M-space (or externally convex M-space) when the metric
projection is continuous.

Primitive Ekeland Theorem. Let (X, d) be a complete metric space and ψ
be a proper but extended real lower semi-continuous function on X bounded below.
Then given ε > 0 and x1 ∈ X there exists an x0 ∈ X such that ψ(x0)+εd(x0, x1) �
ψ(x1) and ψ(x) > ψ(x0) − εd(x0, x) for all x ∈ X � x0.

Lemma 3. Let (X, d) be a complete strong M-space (or externally convex M-
space), K ⊆ X be a Chebyshev set with continuous metric projection x → p(x).
Given x ∈ X �K, r > 0 and σ > 1, there exists an x0 ∈ X such that

(1) d(x,K) + 1
σd(x, x0) � d(x0,K),

(2) d(y,K) < d(x0,K) + 1
σd(y, x0) for all y �= x0 and d(y, x) � r,

(3) d(x0, x) = r.

Proof. Apply Primitive Ekeland Theorem to the complete metric spaceB[x, r]
and the continuous real mapping ψ on B[x, r] defined by ψ(y) = −d(y,K). For
ε = 1

σ , there exists an x0 ∈ B[x, r] such that ψ(x0) + 1
σd(x0, x) � ψ(x) and

ψ(y) > ψ(x0) − 1
σ
d(x0, y) for all y ∈ B[x, r] � {x0}.

So,

d(x,K) +
1
σ
d(x0, x) � d(x,K),

which proves (1), and

d(y,K) < d(x0,K) +
1
σ
d(x0, y) for all y �= x0 and d(y, x) � r

which proves (2).
Now, we shall prove (3). From (1), d(x,K) � d(x0,K) so x0 /∈ K. Also x0 ∈

B[x, r] implies d(x, x0) � r. Suppose d(x, x0) < r. Take x0λ
∈ G1(p(x0), x0,−),

λ > 0. Then

d(x0λ
, x) � d(x0λ

, x0) + d(x0, x) < d(x0λ
, x0) + r → r as x0λ

→ x0, x0λ
�= x0.

Therefore x0λ
∈ B[x, r] as x0λ

→ x0, x0λ
�= x0 i.e., for λ sufficiently small. So,

from (2) we have,
1
σ
>
d(x0λ

,K) − d(x0,K)
d(x0, x0λ

)
for sufficiently small λ. Since σ > 1,

lim
x0λ

→x

d(x0λ
,K) − d(x0,K)
d(x0, x0λ

)
< 1,

contradicting Lemma 2. Therefore d(x0, x) = r, which proves (3). �

Theorem 2. Each δ-sun K in a complete strong M-space (or externally convex
M-space) (X, d) is almost convex.
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Proof. Let x ∈ X �K and B[x, α] be a ball with positive distance from K.
Then d(x,K) > α. Choose β > d(x,K) > α i.e., β − d(x,K) < β − α. Choose
σ > 1 and r > 0 such that σ(β − d(x,K)) < r < β − α. By Lemma 3, there exists
an x0 ∈ X such that d(x, x0) = r and d(x, x0) � σ(d(x0,K) − d(x,K)).

Now d(x, x0) = r < β − α. Also

σ(β − d(x,K)) < r = d(x, x0) � σ(d(x0,K) − d(x,K))

implies β − d(x,K) < d(x0,K) − d(x,K) i.e., d(x0,K) > β. We claim that
(1) B[x0, β] does not intersect K.
(2) B[x0, β] ⊇ B[x, α].

Suppose B[x0, β] intersects K then there exists y ∈ B[x0, β]∩K i.e., d(y, x0) �
β and so d(x0,K) � β, a contradiction. This proves (1).

Now, suppose y ∈ B[x, α]. Then d(x, y) � α. Consider

d(y, x0) � d(y, x) + d(x, x0) � α+ r < β

i.e., y ∈ B[x0, β]. This proves (2) and hence K is almost convex. �

Combining Lemma 2 and Theorem 2, we get

Theorem 3. If K is a Chebyshev set in a complete strong M-space (or ex-
ternally convex M-space) (X, d) and the metric projection is continuous then K is
almost convex.

Remark 2. For Banach spaces, Theorem 2 is given in [2, p.44] and Theorem 3
is given in [4, p.240].

Combining Theorems 1 and 2, we get:

Theorem 4. An approximatively compact Chebyshev set in a complete strong
M-space (or externally convex M-space) is almost convex.
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