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A THEOREM ON ANTI-ORDERED
FACTOR-SEMIGROUPS

Sinǐsa Crvenković and Daniel A. Romano

Abstract. Let K be an anti-ideal of a semigroup (S, =, �=, ·, θ) with apart-
ness. A construction of the anti-congruence Q(K) and the quasi-antiorder θ,
generated by K, are presented. Besides, a construction of the anti-order rela-
tion Θ on syntactic semigroup S/Q(K), generated by θ, is given in Bishop’s
constructive mathematics.

1. Introduction

1.1. Setting. Setting of our work is Bishop’s constructive mathematics [1,2,4],
mathematics developed with Constructive Logic (or Intuitionistic Logic [11]—logic
without the Law of Excluded Middle P ∨ ¬P . We have to note that ‘the crazy
axiom’ ¬P → (P → Q) is included in Constructive Logic. Precisely, in Construc-
tive Logic the ‘Double Negation Law’ P ↔ ¬¬P does not hold but the following
implication P → ¬¬P holds even in Minimal Logic. In Constructive Logic ‘Weak
Law of Excluded Middle’ ¬P ∨ ¬¬P does not hold, too. It is interesting, that in
Constructive Logic the following deduction principle A ∨ B,A � B holds, but this
is impossible to prove without ‘the crazy axiom’. For elegant examples of non-
constructive proofs see Constructive Mathematics by Douglas Bridges in Stanford
Encyclopedia of Philosophy. The constructive (intuitionist) logic is one of the great
discoveries in mathematical logic—surprisingly, a complete system of constructive
reasoning can be obtained simply by dropping the Law of Excluded Middle from
the list of valid logical principles. Bishop’s constructive mathematics is consistent
with the classical mathematics.
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1.2. Set with apartness. Let (X,=, �=) be a set in the sense of [1], [2], [4] and
[11], where “�=” is a binary relation on X which satisfies the following properties:

¬(x �= x), x �= y → y �= x, x �= z → x �= y ∨ y �= z

called apartness (Heyting). The relation �= must be extensional by the equality, in
the following sense

x �= y ∧ y = z → x �= z.

Let Y be a subset of X and let x ∈ X. By x �� Y we denote (∀y ∈ Y )(y �= x) and by
Y C we denote subset {x ∈ X : x �� Y } – the strong complement of Y in X [4]. The
subset Y of X is strongly extensional [11] in X if and only if y ∈ Y → y �= x∨x ∈ Y .

Example 0. (1) Let ℘(X) be the power-set of set X. If, for subsets A, B of
X, we define A �= B if and only if (∃a ∈ A)¬(a ∈ B) or (∃b ∈ B)¬(b ∈ A), then
the relation �= is a diversity relation on ℘(X) but it is not an apartness.

(2) [6] The relation �= defined on the set QN by

f �= g ↔ (∃k ∈ N)(∃n ∈ N)(m � n→ |f(m) − g(m)| > k−1)

is an apartness on QN . �

Let X be a set with apartness and let α, β be relations on X. The filed product
[8–10] of α and β is the relation β ∗ α defined by

β ∗ α = {(x, z) ∈ X ×X : (∀y ∈ X)((x, y) ∈ α ∨ (y, z) ∈ β)}.
For n � 2, let nα = α ∗ α ∗ · · · ∗ α (n factors). Put 1α = α. By c(α) we denote
the intersection

⋂
n∈N (nα). The relation c(α) is a cotransitive relation on X, by

Theorem 0.4 of [9]. It is called cotransitive internal fulfillment of the relation α.

1.3. Semigroup with apartness. Semigroup with apartness was for the first
time defined and studied by Heyting. After that, several authors have worked on
this important topic as for example Mines et all [4], Troelstra and van Dalen [11],
and the second author [8–10]. Let S = (S,=, �=, ·) be a semigroup with apartness,
where the semigroup operation is strongly extensional in the following sense

(∀a, b, x, y ∈ S)((ay �= by → a �= b) ∧ (xa �= xb→ a �= b)).

A subset T of S is a consistent subset of S if and only if (∀x, y ∈ S)(xy ∈ T → x ∈
T ∧ y ∈ T ). A relation q on X is a coequality relation on X [7–10] if and only if

q ⊆ �=, q−1 = q and q ⊆ q ∗ q.
Let q be a coequality relation on semigroup S. We say that q is anti-congruence
on S if and only if

(∀a, b, x, y ∈ S)((ax, by) ∈ q → (a, b) ∈ q ∨ (x, y) ∈ q).

Note that (xay, xby) ∈ q implies (a, b) ∈ q for any x, y, a, b ∈ S. If q is anti-
congruence on semigroup S, then the strong complement qC of q is a congruence
on the semigroup S compatible with q in the following sense:

(∀x, y, z ∈ X)((x, y) ∈ q ∧ (y, z) ∈ qC → (x, z) ∈ q).
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We can construct the factor-semigroup S/q = {aq : a ∈ S}, where equality, diversity
and the internal operation are defined as above:

aq =1 bq ↔ (a, b) �� q, aq �=1 bq ↔ (a, b) ∈ q, aq · bq =1 (ab)q.

The mapping π(q) : S → S/q is strongly extensional and surjective homomorphism
called natural epimorphism. There is an interesting property about coequality
relation on semigroup S with apartness [8, Theorem 5]: Let q be a coequality
relation on a semigroup S with apartness. Then the relation q+ = {(x, y) ∈ S ×
S : (∃a, b ∈ S1)((axb, ayb) ∈ q)} is an anti-congruence on S and it is a minimal
extension of q.

1.4. Motivation and goals of this article. We present some facts concern-
ing factor-semigroup by anti-congruence generated by an anti-ideal in Bishop’s con-
structive sense. These notions are important in Formal language theory, which is a
part of Theoretical Computer Science. For a more complete treatment of syntactic
semigroups, in Formal Language Theory, the reader should consult Pin’s papers
[5, 6]. Any notion in Bishop’s constructive mathematics has positively defined sym-
metrical pair, since Law of Excluded Middle does not hold in Constructive logic.
Our intention is development of these symmetrical notions and their comparability
with the ‘first notions’ in semigroups ordered by an anti-order relation. As the first,
semigroup is equipped with diversity relation compatible with the equality, and, the
second, the semigroup operation is total, extensional and strongly extensional func-
tion from S×S into S. If T is an anti-ordered semigroup [7], K an order anti-ideal
of T , a construction of anti-congruence Q(K) generated by K and the factor-
semigroup T/Q(K) = {aQ(K) : a ∈ T} are presented. Particulary, it is shown haw
to construct anti-order on T/Q(K) by a quasi-antiorder [10], generated by K, so
thatQ(K) = θ∪θ−1. In the main theorem of this article we give the following result:
Let α : R→ S be a reverse isotone surjective homomorphism of anti-ordered semi-
groups and let W be an anti-ideal in S. Then there exist anti-congruences Q(W )
and Q(α−1(W )) of S and R, respectively, such that α−1(Q(W )) = Q(α−1(W )),
and reverse isotone bijection ψ : S/Q(W ) → R/Q(α−1(W )), which is embedding
such that π(α−1(W )) = ψ ◦ π(W ) ◦ α, where π(α−1(W )) : S → S/Q(α−1(W )) and
π(W ) : R → R/Q(W ) are natural homomorphisms. An application of this result
in Formal Language Theory is given.

1.5. References. For undefined notions and notations of Semigroup Theory
and of Automata Theory see [3] and papers [5] and [6]. For constructive items we
refer to well-known books [1], [2], [4] and [11], and to the second author’s papers
[7–10].

2. Preliminaries

We start this section with the following definitions. Let (S,=, �=, ·) be a semi-
group with apartness. For S we say (following Romano’s definition in [7]) that it
is an anti-ordered semigroup if S is equipped with anti-order relation Θ such that

Θ ⊆ �= (consistency), �= ⊆ Θ ∪ Θ−1 (linearity), Θ ⊆ Θ ∗ Θ (cotransitivity)
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and it is compatible with the semigroup operation:

(∀x, y, u ∈ S)(((ux, uy) ∈ Θ → (x, y) ∈ Θ) ∧ ((xu, yu) ∈ Θ → (x, y) ∈ Θ)).

As in [10], we say that the relation θ is a quasi-antiorder on semigroup S if it is
consistent, cotransitive and compatible with the semigroup operation. It is easy to
verify that if θ is a quasi-antiorder on semigroup S, then the relation q = θ ∪ θ−1

is anti-congruence on S.

Note 1. (i) The implication x � y∧zΘ y → zΘx is equivalent to the condition
¬(x � y ∧ xΘ y). Indeed: Suppose that implication x � y ∧ zΘ y → zΘx holds
and suppose that x � y and xΘ y. Then, by compatibility of relations, we have
xΘx. This is impossible, because the relation Θ is consistent. So, it should be
¬(x � y ∧ xΘ y). On the opposite, let the condition ¬(x � y ∧ xΘ y) holds. If
x � y∧zΘ y, then, by cotransitivity of Θ, we have zΘx∨xΘ y. Thus, we conclude
zΘx, because x � y and xΘ y is impossible. So, the implication x � y ∧ zΘ y →
zΘx is consequence of the condition ¬(x � y ∧ xΘ y).

(ii) Also, if relations � and Θ are compatible, then the implication xΘ y ∧ z �
y → xΘ z holds too. In fact, from xΘ y follows xΘ z or zΘ y. Since z � y and
zΘ y is impossible, we deduce xΘ z.

(iii) Note that the apartness on semigroup S is an antiorder relation on S. �

Note 2. Anti-order relation Θ is a strongly extensional subset of S×S. In fact:
Let (a, b) be an arbitrary element of Θ and (x, y) an arbitrary element of S × S.
Then, from (a, x) ∈ Θ∨ (x, y) ∈ Θ∨ (y, b) ∈ Θ, it follows a �= x∨ (x, y) ∈ Θ∨y �= b.
So, the implication

(a, b) ∈ Θ ∧ (x, y) ∈ S × S → (x, y) �= (a, b) ∨ (x, y) ∈ Θ

holds for every a, b, x, y ∈ S. �

Example 1. Let S={a, b, c, d, e} with multiplication defined by the table

· a b c d e
a b b d d d
b b b d d d
c d d c d c
d d d d d d
e d d c d c

The relation α, defined by

α = {(a, c), (a, d), (a, e), (b, a), (b, c), (b, d), (b, e), (c, a),
(c, b), (c, d), (c, e), (d, a), (d, e), (e, a), (e, b), (e, d)},

is an anti-order relation on the semigroup S and the relation

β = {(a, e), (b, e), (c, a), (c, b), (c, d), (c, e), (d, e), (e, a), (e, b), (e, d)}
is a quasi-antiorder relation on the semigroup S. �
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Example 2. Let A be a strongly extensional consistent subset of a semigroup
(S,=, �=, ·). Then the relation ΘA ⊆ S×S, defined by (a, b) ∈ ΘA ↔ a �= b∧a ∈ A,
is an quasi-antiorder relation on S but it is not an antiorder relation on S.

Indeed: It is clear that ΘA ⊆ �=. Let a, c be arbitrary elements of S such that
aΘA c and let b be an arbitrary element of S, i.e., let a �= c and a ∈ A. From a �= c
it follows a �= b or b �= c. If a �= b, then aΘA b. Suppose that b �= c and a ∈ A.
Then a �= b or b ∈ A. If a ∈ A and a �= b, we have (a, b) ∈ ΘA again. If b ∈ A and
b �= c, then bΘA c. Let xaΘA xb (x ∈ S), i.e., let xa �= xb and xa ∈ A. Thus a �= b
and a ∈ A. So, aΘA b. Similarly, we have axΘA bx→ aΘA b.

Suppose that ¬(a ∈ A) and ¬(b ∈ A) and a �= b. The implication a �= b →
aΘA b ∨ bΘAa does not follow from our assumption. So, the relation ΘA is not an
anti-order relation on S. �

Note 3. (1) If {sk}k∈J is a family of quasi-antiorders on a set (X,=, �=), then⋃
k∈J sk is a quasi-antiorder on X. Indeed: Let {sk}k∈J be a family of quasi-

antiorders on a set (X,=, �=) and let (x, z) be an arbitrary elements of X such that
(x, z) ∈ ⋃

k∈J sk. Then there exists k in J such that (x, z) ∈ sk. Hence, for every
y ∈ X we have (x, y) ∈ sk ∨ (y, z) ∈ sk. So, (x, y) ∈ ⋃

k∈J sk ∨ (y, z)
⋃

k∈J sk. On
the other hand, for every k in J , sk ⊆�=. From the previous we obtain

⋃
k∈J sk.

(2) Let R(⊆ �=) be a relation on a set (X,=, �=). Then for an inhabited family
of quasi-antiorders under R there exists the biggest quasi-antiorder relation under
R. That relation is exactly the relation c(R) =

⋂
n∈N (nR). Note that the proof of

this fact is not trivial.
(3) Let (X,=, �=, α) be an anti-ordered set. Then the family A = {τ : τ is a

quasi-antiorder on X} is a complete lattice.
(4) If {αk}k∈J is a family of anti-orders on a set (X,=, �=), then

⋃
k∈J αk is an

anti-order of X. In fact, let {αk}k∈J be a family of anti-orders on a set (X,=, �=).
Let x and y be arbitrary elements of X such that x �= y. Then

(∀k ∈ J)
(

(x, y) ∈ αk ⊆
⋃
k∈J

αk ∨ (y, x) ∈ αk ⊆
⋃
k∈J

αk

)
.

Thereffore, the relation
⋃

k∈J αk is linear. �

Our first proposition is the following lemma which gives another example of
quasi-antiorder relation on semigroup S generated by a strongly extensional subset
of S. So, a connection between the family of all strongly extensional subsets of S
and the family of all quasy-anatiorders on S is natural.

Lemma 2.0. Let A be a strongly extensional subset of a semigroup (S,=, �=, ·).
Then, the relation ΘA ⊆ S × S, defined by

(a, b) ∈ ΘA ↔ (∃x, y ∈ S1)(xby ∈ A ∧ xay �� A),

is a quasi-antiorder relation on S.

Proof. It is clear that ΘA ⊆ �= and that (uav, ubv) ∈ ΘA implies (a, b) ∈ ΘA.
Let a, c be elements of S such that aΘA c and let b be an arbitrary element of S
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i.e., such that (∃x, y ∈ S1)(xcy ∈ A ∧ xay �� A). Let t be an arbitrary element
of S. Then t �= xby or xby ∈ A by strongly extensionality of A. If xby ∈ A (and
xay �� A), then aΘA b. If ¬(xby ∈ A), then xby �� A. So, bΘA c. �

In what follows, we have the notion of order substructures. We follow the
classical Pin’s definition [5, 6] of order ideal of ordered semigroup. Here we are
dealing with anti-ordered semigroup. An anti-ideal of S is a subset K of S such
that

(∀x, y)(y ∈ K → yΘx ∨ x ∈ K).

Example 3. The subset K(a) = {z ∈ S : zΘ a} is an anti-ideal called a
principal anti-ideal generated by element a. In fact, let z be an arbitrary element
of K(a) and let y be an arbitrary element of S. Then, from zΘ a follows zΘ y or
yΘ a. So, the implication z ∈ K(a) → y ∈ K(a) ∨ zΘ y holds. Therefore, the set
K(a) is an anti-ideal of S.

If K is an anti-ideal and a an arbitrary element of S, then the sets [a : K] =
{x ∈ S : ax ∈ K} and [K : a] = {y ∈ S : ya ∈ K} are anti-deals of S. Indeed: Let
y ∈ [a : K], i.e., let ay ∈ K. Then ayΘ ax or ax ∈ K for an arbitrary element x
of S. Thus yΘx or x ∈ [a : K]. So, the set [a : K] is an order anti-ideal of S. For
[K : a] the proof is analogous. �

Now, suppose that we have a mapping ϕ : S → T between two anti-ordered
semigroups. First, let us recall some standard notions and notations about map-
pings: A mapping ϕ must be strongly extensional, i.e., the following implication
(∀x, x′ ∈ S)(ϕ(x) �=T ϕ(x′) → x �=S x′) holds; ϕ is an embedding if and only if
(∀x, x′ ∈ S)(x �=S x′ → ϕ(x) �=T ϕ(x′)); ϕ is a homomorphism of semigroups if
(∀x, x′ ∈ S)(ϕ(x · x′) = ϕ(x) · ϕ(x′)) holds. Now, we need a new kind of homo-
morphism between anti-ordered semigroups. A homomorphism ϕ : (S,Θ) → (T,Ω)
of anti-ordered semigroups is an isotone homomorphism if and only if for every
x, y ∈ S, xΘ y implies ϕ(x)Ωϕ(y). If ϕ(y)Ωϕ(x) implies xΘ y we say that homo-
morphism ϕ is reverse isotone homomorphism of anti-ordered semigroups.

Lemma 2.1. Let ϕ : (S,=, �=, ·,Θ) → (T,=, �=, ·,Ω) be a reverse isotone homo-
morphism of anti-ordered semigroups. If W is an anti-ideal of T , then ϕ−1(W ) is
an anti-ideal of S.

Proof. Let y ∈ ϕ−1(W ) and let x be an arbitrary element of S. Then ϕ(y) ∈
W . Thus, ϕ(y)Ωϕ(x) or ϕ(x) ∈ W . If ϕ(y)Ωϕ(x), then yΘx because ϕ is a
reverse-isotone homomorphism. If ϕ(x) ∈W , then x ∈ ϕ−1(W ). So, ϕ−1(W ) is an
anti-ideal of S. �

3. Main results

Let (T,=, �=, ·) be an anti-ordered semigroup and let K be an anti-ideal of T .
We define on T a relation Q(K) by setting

uQ(K) v ↔ (∃x, y ∈ T 1)((xuy ∈ K ∧ xvy �� K) ∨ (xvy ∈ K ∧ xuy �� K)).

Theorem 3.1. The relation Q(K) is an anti-congruence on T .
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Proof. If (a, b) ∈ Q(K), then

(∃x, y ∈ S1)((xay ∈ K ∧ xby �� K) ∨ (xby ∈ K ∧ xay �� K)).

If xay ∈ K ∧ xby �� K, we have xay �= xby and a �= b. So, the relation Q(K)
is consistent. It is obvious that the relation Q(K) is symmetric. Let a, c be
elements of S such that (a, c) ∈ Q(K) and let b be an element of S. Suppose that
(∃x, y ∈ S1)((xay ∈ K ∧ xcy �� K). Let u be an element of K. Then, by strongly
extensionality of K, we obtain: uΘxby ∨ xby ∈ K. If u �= xby and xay ∈ K,
then (a, b) ∈ Q(K). If xby ∈ K and xcy �� K, then (b, c) ∈ Q(K). Let a, b, c
be arbitrary elements of S such that (ac, bc) ∈ Q(K). Suppose that (∃x, y ∈ S1)
((xacy ∈ K ∧ xbcy �� K). Then (∃x, cy ∈ S1)(xa(cy) ∈ K ∧ xb(cy) �� K). So,
(a, b) ∈ Q(K). Similarly, we have (ca, cb) ∈ Q(K) → (a, b) ∈ Q(K). Therefore,
the relation Q(K) is an anti-congruence on S i.e., it is coequality relation on S
compatible with the operation “·”. �

Note that we are able to construct the quasi-antiorder θK(⊆ ΘT ) on T (see
Lemma 2.0) in the following way: a θK b↔ (∃u, v ∈ T 1)(ubv ∈ K ∧ uav �� K) such
that Q(K) = θK ∪ (θK)−1. The quasi-antiorder θK on T induces an anti-order ΘK

on T/Q(K) by (aQ(K), bQ(K)) ∈ ΘK ↔ a θK b.

Lemma 3.1. The map π(K) : T → T/Q(K) is a reverse isotone homomorphism
of anti-ordered semigroup (T,=, �=, ·,Θ) onto (T/Q(K),=1, �=1, ·1,ΘK).

Proof. Since Q(K) is an anti-congruence, the mapping π(K) : T → T/Q(K)
is a homomorphism of semigroups.

Suppose that aQ(K)ΘK bQ(K), i.e., suppose that (a, b) ∈ θK . Then there
exist elements u, v ∈ T 1 such that ubv ∈ K and uav �� K. Thus, uavΘubv or
uav ∈ K. Since uav ∈ K, we have aΘ b because the anti-order is compatible
with the semigroup operation. So, the mapping π is anti-order reverse isotone
homomorphism of semigroups. �

The following theorem is the main result of this article:

Theorem 3.2. Let α : R → S be a reverse isotone surjective homomorphism
of anti-ordered semigroups and let W be an anti-ideal in S. Then, there exists an
anti-order reverse isotone isomorphism

ψ : (S/Q(W ),=1, �=1, ·1,ΘW ) → (R/Q(K),=2, �=2, ·2,ΘK)

such that π(K) = ψ ◦ π(W ) ◦ α, where K = α−1(W ).

Proof. (1) K = α−1(W ) is an anti-ideal of R by lemma 2.1.
(2) Define ψ : bQ(W ) �→ aQ(K) where α(a) = b, a ∈ R, b ∈ S. This correspon-

dence is a mapping since:
(i) Let α(a) = b and α(a′) = b′ such that bQ(W ) =1 b

′Q(W ) i.e., such that
(b, b′) �� Q(W ), and let (u, v) be an arbitrary element of Q(K). Then (u, a) ∈ Q(K)
or (a, a′) ∈ Q(K) or (a′, v) ∈ Q(K), and hence u �= a or a′ �= v because (a, a′) ∈
Q(K) is impossible. In fact, if (a, a′) ∈ Q(K), then there exist x and y of R1 such
that xa′y ∈ K ∧ xay �� K or xay ∈ K ∧ xa′y �� K. Since xay �� K = α−1(W )
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implies α(x)bα(y) �� W , we have that the case (a, a′) ∈ Q(K) is impossible. Indeed,
let xay �� α−1(W ) and let w be an arbitrary element of W . Thus, w �= α(x)bα(y) or
xay ∈ α−1(W ). So, the implication xay �� α−1(W ) → α(x)bα(y) �� W has to hold.
Therefore, at least we have (a, a′) �� Q(K), i.e., we have that aQ(K) =2 a

′Q(K).
Hence, ψ is a mapping.

(ii) Let aQ(K), a′Q(K) be elements of R/Q(K) such that aQ(K) ΘKa
′Q(K).

By definition it means that a θK a′. Then (∃x, y ∈ R1)(xay �� K ∧ xa′y ∈ K).
Suppose that α(a) = b, α(a′) = b′, α(x) = u and α(y) = v (and suppose that
(∃x, y ∈ R1)((xa′y ∈ α−1(W ) ∧ xay �� α−1(W ))). Then, there exists element
u = α(x) and v = α(y) ∈ imϕ = S such that α(x)α(a′)α(y) ∈ W . Let t be an
arbitrary element of W . Then, t �= α(xay) or α(x)α(a)α(y) ∈ W . In the second
case we should have xay ∈ α−1(W ) which is impossible. So, α(x)α(a)α(y) �� W .
Therefore, there exist elements u = α(x) and v = α(y) such that ub′v ∈ K and
ubv �� K. Thus, b θW b′, and bQ(W )ΘW b′Q(W ).

Hence, if aQ(K) �=2 a
′Q(K), then bQ(W ) �=1 b

′Q(W ). Finally, the mapping ψ
is strongly extensional.

(3) Let bQ(W ) and b′Q(W ) be arbitrary elements of S/Q(W ) such that bQ(W )
�=1 b

′Q(W ). Then (b, b′) ∈ Q(W ) and (α(a), α(a′)) ∈ Q(W ), where b = α(a) and
b′ = α(a′) for some a, a′ ∈ R. Thus, (a, a′) ∈ α−1(Q(W )). Since α−1(Q(W )) =
Q(α−1(W )), we have (a, a′) ∈ Q(α−1(W )). So, aQ(α−1(W )) =2 a′Q(α−1(W )).
Therefore, the mapping ψ is an embedding.

(4) Let aQ(α−1(W )), a′Q(α−1(W )) be elements of R/Q(α−1(W )) such that
aQ(α−1(W )) =2 a

′Q(α−1(W )), i.e., let (a, a′) �� Q(α−1(W )) = α−1(Q(W )). We
have to prove that (α(a), α(a′)) �� Q(W ). Let (u, v) be an arbitrary element of
Q(W ). Then, (u, α(a)) ∈ Q(W ) or (α(a), α(a′)) ∈ Q(W ) or (α(a′), v) ∈ Q(W ). If
(α(a), α(a′)) ∈ Q(W ), then we have (a, a′) ∈ α−1(Q(W )) = Q(α−1(W )). So, this
case is impossible, because (a, a′) �� Q(α−1(W )). Therefore, it has to be u �= α(a)
or α(a′) �= v. This means that (α(a), α(a′)) �= (u, v) ∈ Q(W ). Hence, we have that
(a)Q(W ) =1 (a′)Q(W ). So, the mapping ψ is an injective mapping.

(5) Let bQ(W ) and b′Q(W ) be arbitrary elements of S/Q(W ). Then there
exist elements a and a′ of R such that ψ : bQ(W ) �→ aQ(K) and ψ : b′Q(W ) �→
a′Q(K). Since α(aa′) = α(a)α(a′) = bb′ we conclude that ψ is a homomorphism
of semigroups. From part 2(ii) of this proof, we infer that ϕ is reverse isotone
homomorphism of anti-ordered semigroups.

(6) The equality (K) = ψ ◦ π(W ) ◦ α immediately follows from definitions of
homomorphisms π(K) : R→ R/Q(K), ψ, π(W ) : S → S/Q(W ) and α. �

Let (S,=, �=, ·,Θ) and (T,=, �=, ·,Ω) be anti-ordered semigroups, and let α :
S → T be an anti-order reverse isotone surjective homomorphism of semigroups.
Following the classical definition, for example as in [5], we say that substructure P
of S is recognized by homomorphism α if there exists a substructure Q of T such that
P = α−1(Q). Note that this condition implies α(P ) = (α ◦ α−1)(Q) = Q because
the homomorphism α is a surjection. By extension, an anti-ideal W of S is said
to be recognized by (T,=, �=, ·,Ω) if there exists a surjective strongly extensional
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reverse isotone homomorphism α of anti-ordered semigroups from (S,=, �=, ·,Θ)
onto (T,=, �=, ·,Ω) that recognizes W .

Corollary 3.1. Let α : R→ S be a surjective reverse isotone homomorphism
of anti-ordered semigroups and let K be an anti-ideal of R. The homomorphism
α recognizes K if and only if there exists reverse isotone homomorphism γ : S →
R/Q(K) such that π(K) = γ ◦ α.

Proof. (1) If α recognizes K of semigroup R, then there exist an anti-ideal W
of S such that K = α−1(W ). By Theorem 3.3, there exists a strongly extensional
reverse isotone homomorphism γ : S → R/Q(K) such that π(K) = γ ◦ α.

(2) Since the homomorphism π : R → R/Q(K) recognizes anti-ideal K, then
there exists anti-ideal V of R/Q(K) such that K = π−1(V ). Suppose that there
exists a strongly extensional reverse isotone homomorphism γ : S → R/Q(K) such
that π = γ ◦α, then W = γ−1(V ) is an anti-ideal of anti-order semigroup S. Hence,
we have

α−1(W ) = α−1(γ−1(V )) = (γ ◦ α)−1(V ) = π−1(V ) = K.

Hence, the homomorphism α recognizes the set K. �

Let (R,=, �=, ·,Θ) be an anti-ordered semigroup and let W1 and W2 be anti-
ideals of R such that W1 ⊆ W2. Then, for quasi-antiorders Θ1 and Θ2, and anti-
congruences Q(W1) and Q(W2) the following hold: (i) Q(W1) ⊆ Q(W2); (ii) θ1 ⊆ θ2
and θ1 ∪ (θ1)−1 = Q(W1) and θ2 ∪ (θ2)−1 = Q(W2). Besides, anti-order Θ2 on
R/Q(W2) is defined by (aQ(W2), bQ(W2)) ∈ Θ2 ↔ (a, b) ∈ θ2. So, the semigroup
R/Q(W1) is anti-ordered semigroup and W1/Q(W2) is anti-ideal of the semigroup
R/Q(W2). The next assertion is another application of the main theorem:

Corollary 3.2. Let π : R → R/Q(W2) be the natural reverse isotone epi-
morphism of anti-ordered semigroups and let W1 be an anti-ideal in R such that
W1 ⊆W2. Then, W1/Q(W2) is an anti-ideal of the semigroup R/Q(W2) and there
exists a reverse isotone isomorphism

(R/Q(W2))/Q(W1/Q(W2)) ∼= R/π−1(Q(W1/Q(W2))).
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