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CONTRAPUNCTUS OF THE CONTINUUM
PROBLEM AND THE MEASURE PROBLEM

Aleksandar Jovanović and Aleksandar Perović

Abstract. In the long history of CH (Continuum Hypothesis) and its exten-
sions into CP (Continuum Problem) that determines cardinalities of all power
sets, solutions of the later are related in a variety of ways with the solution of
the measure problem.

1. Introduction

Without AC, the power set of the first infinite set is not bound by any of the
alephs, so in a way it is extra large. Then, infinitary arithmetics is an open place
from the calculation point of view, with a great amount of incomparable terms. The
Axiom of Choice induces nice organization among infinite sets, where all cardinal
arithmetics calculations have solutions within the most simply and beautifully well
ordered cardinal line of alephs, which can be written as simply as

(∀α ∈ ORD)2ℵα = ℵF (α),

which is referred as The Continuum Problem. This equation, after Cantor diagonal
theorem can be written as

(∀α ∈ ORD)2ℵα = ℵα+f(α),

where f(α) � 1 for all ordinals α. When f = 1 the last equation becomes a
formulation of the Generalized Continuum Hypothesis - GCH. The function f here
we call CP displacement function. The major excitement about solution of CP
maybe is contained in the following list of famous results:

• 1939 Gödel [4, 5, 8]: Con(ZF) implies Con(ZFC + GCH)
• 1963 Cohen [2, 5, 8]: Con(ZF) implies Con(ZFC + ¬GCH)
• 1964 Easton [3, 5, 8]: Con(ZF) implies Con(ZFC + ”on regular ℵα, F (α)

could be arbitrary, respecting monotonicity and cofinality restrictions”
• 1974 Silver [11, 5]: (ZFC) If ℵα is a singular cardinal of uncountable

cofinality, then if GCH holds below ℵα, then it holds on ℵα

• 1991 Shellah, Magidor, Gittik - the solution of the Singular Cardinal Hy-
pothesis [10, 5]: In ZFC, if (∀n ∈ ω)2ℵn = ℵn+1, then 2ℵω < ℵω4 ,
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or rewriting it as CP-displacement function solutions:
• (∀α)f(α) = 1
• (∃α)f(α) > 1
• For each regular ℵα f(α) could be arbitrary, respecting monotonicity and

cofinality restrictions
• For each singular ℵα of uncountable cofinality, if (∀β ∈ α)f(β) = 1, then1

f(α) = 1
• If (∀n ∈ ω)f(n) = 1, then f(ω) < ω4.

The Theorem of Silver had a predecessor – the Theorem of Magidor with the same
formulation but with one hypothesis: existence of nonregular ultrafilter over ω1.
Earlier Silver proved consistency of GCH with the existence of measurable cardinals;
Scott proved that if GCH is true almost everywhere (mod normal measure over a
measurable cardinal κ), then GCH is true at κ as well; Kunen proved that if 2κ > κ+

for measurable κ, then there is a model of ZFC with many measurable cardinals;
The Singular Cardinal Hypothesis – SCH is tightly related to the measure problem:
Jensen proved if SCH fails then 0� exists.

In the extension of the list of beautiful theorems let us mention

Theorem 1 (Prikry). Let κ � 2ℵ0 be a real valued measurable cardinal. Then
2λ = 2ℵ0 for all infinite λ < κ.

Theorem 2 (Solovay). CH is true on singular strong limit cardinals � first
strongly compact cardinal.

Theorem 3 (Bukovsky, Hechler). Let κ be a singular cardinal such that the
continuum function below κ is eventually constant. Then 2κ = 2cfκ.

In particular, constant CP-displacement is finite. More precisely, if there is an
ordinal β such that for each ordinal α 2ℵα = ℵα+β holds, then β ∈ ω.

Theorem 4 (Hajnal). Let ℵα be a singular cardinal of uncountable cofinality
such that for each β < α 2ℵβ � ℵβ+γ holds. Then 2ℵα � ℵα+γ .

Theorem 5 (Galvin, Hajnal). If ℵα is a strong limit singular cardinal with
uncountable cofinality, then 2ℵα < ℵ(|α|cfα)+ .

For the proofs and additional references we refer the reader to [5, 7].

2. Two voice interplay

Usual considerations of continuum problem usually do not go far from Gödel flat
solution for CP-displacement f . That is illustrated with formulations of majority
of listed results. Solutions for f that are further away from the Gödel constant
〈1 | α ∈ ORD〉 did not attract equal-opportunity attention in the history of CP,
probably because ”simpler” solutions are somehow preferred by nonmathematical
criteria and probably because those further-away solutions would involve more hard
technics in the proofs that are already inaccessible to majority of mathematicians.

1Silver result is somewhat stronger: f(α) = 1 if f(β) = 1 almost everywhere (mod stationary
sets) below α.
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Anyway, by the result of Easton all solutions have the same mathematical
right, and our attention here will be devoted to some of those distant solutions
as well. Back to the CP formulation, displacement f : ORD → ORD which is
nondecreasing and satisfies the cofinality condition, by definition of Vα is trivially
fulfilling the rank limitation: for all x ∈ Vα, P (x) does not leak out of Vα+1. Thus,
1 � f(α) � 2ℵα for all ordinals α.

As mentioned above, we are curious how far to the right end can f reach.
With f(0) = 2ℵ0 , we get 2ℵ0 = ℵ2ℵ0 , thus making this cardinal a fixed point of the
enumeration of cardinals. When regular, it becomes weakly inaccessible. If 2ℵα is
weakly inaccessible, we have 2ℵα = ℵ2ℵα = ℵα+2ℵα , then f(α) = 2ℵα .

For the other voice for the contrapunctus this time we will take minimal un-
bounded functions in nonregular (uniform) ultrafilters, i.e. those that would press
the functions bellow them to be bound by some constant. These characterize nor-
mality conditions for nonregular ultrafilters.

An ultrafilter D over infinite cardinal κ is:

• κ-complete, if it is closed under < κ intersections;
• normal, if it is κ-complete and every pressing down function f(α) < α

almost everywhere mod D is equal mod D to a constant function;
• weakly normal, if each function f : κ → κ such that {α∈κ | f(α)<α}∈D

is bounded by some constant in
∏

D〈κ,<〉, i.e., there is β ∈ κ such that
{α ∈ κ | f(α) < β} ∈ D;

• λ-weakly normal, if
∏

D〈λ,<〉 has a minimal unbounded function in λ.

As Magidor has shown in [9], nonregular ultrafilters give rise to ultrapowers with
jumping cardinalities over smallest cardinals, which were hardest to obtain. For an
ultrafilter D over infinite cardinal κ we define it’s cardinal trace by

ct(D) =
{∣∣∣∣

∏
D

λ

∣∣∣∣ | λ < κ

}

and call D jumping if | ct(D)| > 1. For example, if D is an uniform κ-complete
ultrafilter over a measurable cardinal κ, then | ct(D)| = 2κ.

In order to relate the normality conditions of ultrafilters to the CP displacement
we introduce some notion from model theory:

A theory T of a language L with an unary predicate symbol U admits pair
〈κ, λ〉 if it has a model of cardinality κ in which U has cardinality λ. Further, the
pair 〈κ, λ〉 is:

• LLG (left large gap), if T admits 〈κ, λ〉 but does not admit 〈κ+, λ〉;
• RLG (right large gap), if T admits 〈κ, λ〉 but does not admit 〈κ, λ′〉 for

λ′ < λ;
• LG (large gap), if it is both LLG and RLG.

We will show how behavior of the CP-displacement f is related to the existence of
jumping ultrafilters in the next theorem.

Theorem 6. Let f be the displacement function in the continuum problem,
2ℵα = ℵα+f(α). Let T be a theory with 〈ℵξ(κ), κ〉 = 〈ℵσ, κ〉 as LLG. Let ℵ<ℵσ

σ = ℵσ
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and let D be a uniform nonregular ultrafilter over ℵσ with jumps after κ:

ℵη =
∣∣∣∣
∏
D

κ

∣∣∣∣ <

∣∣∣∣
∏
D

ℵσ

∣∣∣∣.
Then η < σ+f(σ) � η+ξ � η+σ, binding CP-jump with the ultrapower cardinality
jump and the diameter of the gap.

Proof. We will first list two lemmas whose proofs are straightforward.

Lemma 1. If T admits pairs 〈κi, λi〉, i ∈ κ and D is an ultrafilter over κ, then
T admits

〈|∏D κi|, |
∏

D λi|
〉
.

Lemma 2. Let 〈Λ(κ), κ〉 be LLG for T1 for all (many) κ and let 〈κ,Γ(κ)〉 be
RLG for T2 for all (many) κ. Then there is a theory T for which 〈Λ(κ),Γ(κ)〉 is
LG for all (many) κ.

Corollary 1. For any ultrafilter D over κ

Γ
(∣∣∣∣

∏
D

κ

∣∣∣∣
)

�
∣∣∣∣
∏
D

Γ(κ)
∣∣∣∣ �

∣∣∣∣
∏
D

Λ(κ)
∣∣∣∣ � Λ

(∣∣∣∣
∏
D

κ

∣∣∣∣
)

.

There are theories T1 and T2 with 〈κ+, κ〉 and 〈2κ, κ〉 as LLG respectively for all
κ and this iterates to 〈ℵn(κ), κ〉 and 〈�n(κ), κ〉 for all κ, giving (from the corollary):∣∣∣∣

∏
D

ℵn(κ)
∣∣∣∣ � ℵn

(∣∣∣∣
∏
D

κ

∣∣∣∣
)

and
∣∣∣∣
∏
D

�n(κ)
∣∣∣∣ � �n

(∣∣∣∣
∏
D

κ

∣∣∣∣
)

.

We continue with the proof of Theorem 6. First let us observe that T admits〈|∏D ℵσ|, |
∏

D κ|〉. Let ℵη = |∏D κ| and let ℵ<ℵσ
σ = ℵσ. Then

ℵη <

∣∣∣∣
∏
D

ℵσ

∣∣∣∣ = 2ℵσ = ℵσ+f(σ) =
∣∣∣∣
∏
D

ℵξ(κ)
∣∣∣∣ � ℵξ

(∣∣∣∣
∏
D

κ

∣∣∣∣
)

= ℵη+ξ.

Hence we get ordinal inequalities η < σ + f(σ) � η + ξ � η + σ. �
For the CP displacement f we can say that it is:

• well bounded at σ, if f(σ) < σ;
• bounded at σ, if f(σ) is constrained by some expression not involving σ

as exponent (something providing f(σ) < 2ℵσ );
• unbounded at σ, if f(σ) = 2ℵσ .

Here are some examples with above notation:
(1) Let D be an ultrafilter over ℵσ, with ℵ<ℵσ

σ = ℵσ and let D nicely separate
κ and ℵσ so that |∏D κ| � ℵσ. Then f(σ) < σ. Conversely, f(σ) < σ
reduces the possibility of ultrapower cardinality jump below ℵσ.

(2) The mentioned example gives (∀ξ < ω)(∀κ)
(〈ℵξ(κ), κ〉 is LLG

)
. So, let

ℵξ(κ)<ℵξ(κ) = ℵξ(κ). If there is an uniform ultrafilter over ℵξ(κ) jumping
after κ, then f(σ) is a successor ordinal and it is (well) bounded.

(3) More specifically, let D be a jumping ultrafilter over ℵ17 and ℵ<ℵ17
17 = ℵ17.

(a) If |∏D ω| � ℵ17, then 2ℵ17 � ℵ34.
(b) If 2ℵ17 = ℵω+1 then there is no jumping ultrafilter over ℵ17.
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(4) Let 2ℵ17 = ℵω1+1 and let ℵℵ16
17 = ℵ17. Then if there is a jumping ultra-

filter over ℵ17, there would have to be |∏D ω| = ℵω1 a singular cardinal
(problem listed in [1]). Is it possible?

Problems: (1) Could λ<λ = λ be omitted from the above assumptions?
(2) Are there examples of LLG’s 〈Γ(κ), κ〉 with Γ(κ)�ℵω(κ) for sufficiently many κ?

Normal ultrafilters. Now we will briefly discuss a result for measurable car-
dinals from [6], quoting some preliminaries first. The corresponding proofs can be
found in [1] and [6], respectively.

Theorem 7. If κ is a measurable cardinal with normal ultrafilter D, then
〈Vκ+1,∈〉 ∼=

∏
D〈Vα+1,∈〉.

As a consequence we have that Sinac ∩ κ ∈ D (Sinac – strongly inaccessible
cardinals) and that |∏D �α+1| = 2κ.

Lemma 3. Let D be an ultrafilter over κ. Let A = 〈A,<A〉 =
∏

D〈κ,<〉 and
let f : κ → κ with f(α) 
= 0 for α ∈ κ. Then

∣∣ ∏
D f(α)

∣∣ =
∣∣{gA

d ∈ A | gA
D <A fA

D}∣∣.
Theorem 8. Let D be a normal ultrafilter over κ and f the CP-displacement.

Then:

(1) f(κ) � ot
(∏

D〈f(α),∈〉), specially
∣∣f(κ)| � |∏D f(α)

∣∣;
(2) if f(α) <D α, then f(α) =D n for some n < ω.

Proof. (1) Clearly, f � κ : κ → κ. Define Gf = {gD ∈ A | g <D f � κ} and

H =
{
hD ∈ A | {α ∈ κ | h(α) ∈ [ωα, ωα+f(α)) ∩ Card} ∈ D

}
.

Thus, for hD ∈ H there is some gD ∈ Gf such that

(1) {α ∈ κ | f(α) = ωα+g(α)} ∈ D.

Define an embedding n̄ : H → Gf by n̄(hD) = gD iff (1). Consequently, |H| � |Gf |.
For a cardinal λ such that κ � λ < 2κ, there is an fλ : κ → κ which is the λ-th
element in A. Then

∣∣ ∏
D fλ(α)

∣∣ = |Gfλ | = λ. For the function g with domain κ,
define the function |g| by |g| =

〈|g(α)| : α ∈ κ
〉
, we have

∣∣ ∏
D |fλ(α)|∣∣ = λ, which

means that |fλ| is the λ-th element, i.e. |fλ| =D fλ and

X =
{
α ∈ κ | fλ(α) ∈ Card

} ∈ D.

Consequently, {α ∈ κ | fλ(α) � α} ∈ D.
Since Sinac ∩ κ ∈ D, we have that either

{
α ∈ κ | fλ(α) � ωα+f(α)

} ∈ D or{
α ∈ κ | fλ(α) < ωα+f(α)

} ∈ D. In the first case we would have
{
α ∈ κ ∩ Sinac | fλ(α) � ωα+f(α)=�α+1

} ∈ D,

therefore 2κ �
∣∣ ∏

D fλ(α)
∣∣, contrary to the assumption for λ.

Thus {
α ∈ κ | fλ(α) ∈ [ωα, ωα + f(α)) ∩ Card

} ∈ D.
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It follows that there is some hD ∈ H such that fλ =D h, or equivalently fλ ∈ H.
Since λ 
= λ′ implies fλ 
= fλ′

, we have
∣∣[κ, 2κ) ∩ Card

∣∣ =
∣∣(κ, 2κ] ∩ Card

∣∣ = |f(κ)| � |H| � |Gf | =
∣∣∣∣
∏
D

f(α)
∣∣∣∣.

(2) This follows from normality and Theorem 3. �

Corollary 2. If CP-displacement is bounded f(α) < α almost everywhere
below κ, then the same is true at κ: 2κ � ℵn(κ), for some n < ω. Thus, for
measurable κ, f(κ) = const < ω or f(κ) � κ, i.e., f(κ) is unbounded.

Specially, if CH is true almost everywhere below κ, then it is true at κ as well.
This was proved earlier by Scott.

Note that the above proof also proves that 2κ � ℵκ+ot(
∏

D〈f(α),<〉). In the above
proof notice that:

• Sinac ∩ κ ∈ D;
• ct(D) = Card ∩ (2κ)+;
• ct(D) ∩ κ = rng(| id |d);
• | id | =D id and id is the minimal unbounded function.

|∏D λ| for λ < κ is smoothly increasing, covering all cardinals � 2κ. That is,∏
D λ, λ ∈ κ jumps at every cardinal, but these jumps are smallest possible. On

the other hand, when D is weakly normal is where the chance of cardinality jumps
occurs, but it is harder to provide the jumping. The key feature in both are the
minimal unbounded functions.

Let g : ORD → ORD be nondecreasing, respecting cofinality condition like
CP-displacement and let g(α) � 2ℵα , for all ordinals α. For the CP-displacement
f we say that it is bounded by g on κ iff f(α) � g(α) for all α � κ. We say that it
is bounded at κ iff f(κ) < g(κ). CP-displacement f is bounded on κ (at κ) if it is
bounded on κ (at κ) by some g.

Now we are ready to formulate some problems.
(1) Can Theorem 6 sort of dependence of f(κ) on f on smaller values gener-

alize involving some extra conditions to some large cardinal smaller than
measurable?

(2) How large can ct(D) be for cardinals smaller than measurable?
(3) In the theorem of Silver is it possible that for some singular cardinal

ℵα of uncountable cofinality there is a nondecreasing ordinal function
g satisfying cofinality restriction for the continuum function such that
f(β) < g(β) AE, and f is unbounded at α?

3. CH and complexity of sets

The purpose of this section is to give a kind of incremental approach to the
negation of CH in a way similar to the beginnings of the continuum problem, when
mathematicians tried to “prove” CH in steps—to prove that CH holds for certain
types of sets, where each new type is broader then the older one.
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The starting point is the following well known reformulation of the negation of
CH:

A1 For each function f : R → [R]�ω there are real numbers x and y such that
x /∈ f(y) and y /∈ f(x).

The intuition behind the A1 is that if we randomly chose x and y independent from
each other, then the probability of x /∈ f(y) and y /∈ f(x) is 1, since both f(x) and
f(y) are countable sets.

The fact that A1 is equivalent to ¬CH can be easily shown by the contraposition
argument. Here we will prove slightly generalized statement.

Theorem 9. Let κ and λ be infinite cardinals such that κ > λ. Then κ > λ+

iff for each function f : κ → [κ]�λ there are ordinals α, β ∈ κ such that α /∈ f(β)
and β /∈ f(α).

Proof. . A contraposition argument. If κ = λ+, then the successor function
α �→ α+1 is the witness. Conversely, let f : κ → [κ]�λ be such that for all α, β ∈ κ
we have that α ∈ f(β) or β ∈ f(α). Since κ > λ, we also have λ+ ⊆ κ.

Now we claim that the set X =
⋃

α∈λ+ f(α) is equal to κ and thus κ = λ+.
Otherwise, if β ∈ κ�X, then λ+ ⊆ f(β), contradicting the fact that |f(β)| � λ. �

In particular, if κ = 2ℵ0 and λ = ℵ0, then immediate consequence of Theorem
6 is the equivalence between ¬CH and A1. Of course, in the formulation of A1 we
could replace R by an arbitrary set of cardinality 2ℵ0 , and the resulted statement
would be equivalent to A1.

A similar argument to the one described in the proof of theorem 1 yields the
following

Lemma 4. Let κ and λ be infinite cardinals, κ > λ and let f : κ → [κ]<λ. Then
there are α, β ∈ κ such that α /∈ f(β) and β /∈ f(α).

Now we can state the general question:
For which type of functions f : R → [R]�ω we can directly prove (in ZFC

formalism) that there are reals x and y such that x /∈ f(y) and y /∈ f(x)?
Since CH is independent from ZFC, we cannot produce the ZFC-proof for all

functions, so the incremental approach naturally arise. Before we proceed, we
should have another, more operational reformulation of A1.

For the given subset A of the set [0, 1]2
R

let AT = {〈y, x〉 | 〈x, y〉 ∈ A} and let
Ax = {y | 〈x, y〉 ∈ a}, x ∈ [0, 1]R.

A2 Let A be a subset of [0, 1]2
R

such that for all x ∈ [0, 1]R the set Ax is at
most countable. Then

A ∪ AT � [0, 1]2R.

Lemma 5. The following are equivalent: ¬CH, A1, A2.

Proof. The equivalence between ¬CH and A1 is already proven, and the
equivalence between A1 and A2 one can prove straightforwardly. �
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Theorem 10. Let A be a Lebesgue measurable subset of [0, 1]2
R

such that for
each x ∈ [0, 1]R the set Ax is at most countable. Then A ∪ AT � [0, 1]2

R
.

Proof. Let A be a Lebesgue mesurable. Then by Fubini’s theorem for the
Lebesgue integral

m(A) = m(AT ) =
∫∫

[0,1]2
R

χ(A) dm =
∫ 1

0

(∫ 1

0

χ(A)(x, y) dy

)
dx =

∫ 1

0

0 · dx = 0,

where χ(A) is the characteristic function of the set A. Since m([0, 1]2
R
) = 1, we

have that
A ∪ AT � [0, 1]2R. �
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