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FORCING WITH PROPOSITIONAL
LINDENBAUM ALGEBRAS

Aleksandar Perović

Abstract. We prove equivalence between the forcing with propositional Lin-
denbaum algebras and the Cohen forcing with finite partial functions.

1. Introduction

Let P be an infinite set of propositional letters and let For P be the correspond-
ing set of propositional formulas. It is easy to see that the relation ∼ on For P,
defined by

A ∼ B iff A ⇔ B is tautology,

is a Boolean congruence. The Lindenbaum algebra of P, denoted by B(P), is defined
as follows:

• The universe of B(P) is the set For P/∼;
• [A] � [B] iff A ⇒ B is tautology.

As it is usual in mathematics, we will slightly abuse notation and identify B(P) with
its universe. One can easily show that B(P)�{[A∧¬A]} is a nonatomic separative
ordering, hence forcing with B(P) adds new sets in generic extensions. In fact, we
will show that forcing with propositional Lindenbaum algebras is exactly the Cohen
forcing with finite partial functions.

The rest of the paper is organized as follows: in Section 2 we list the facts
needed for the main result; in Section 3 we prove the main theorem; we conclude
in Section 4.

2. Dense embeddings

Our notation is standard and closely follows [4]. For the definition and basic
properties of forcing we refer the reader to [1, 2, 4]. Here we will state some facts
about dense embeddings, which are the main tool for the unification of different
notions of forcing. As before, we will slightly abuse notation and identify posets
with their universes.
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Definition 2.1. Suppose that P and Q are arbitrary posets and i : P → Q.
We say that i is a dense embedding if:

(1) for all p, p′ ∈ P, p � p′ implies i(p) � i(p′);
(2) for all p, p′ ∈ P, p and p′ are incompatible in P iff i(p) and i(p′) are

incompatible in Q;
(3) i[P] is dense in Q, i.e., if for each q ∈ Q there exists p ∈ P such that

i(p) � q.
If i : P → Q is a dense embedding, then we define i∗ : V P → V Q as follows:

i∗(σ) =
{〈

i∗(τ, i(p))
〉 | 〈τ, p〉 ∈ σ

}
.

The next fact gives us a connection between the complete embeddings and
forcing. For the proof we refer the reader to [4].

Fact 2.1. Suppose that M be a countable transitive model of ZFC, i,P,Q ∈
M , and

M |= “i : P → Q is a dense embedding”.

If G ⊆ P, let
ĩ(G) =

{
q ∈ Q | (∃p ∈ G)(i(p) � q)

}
.

Then:
(1) If H ⊆ Q is Q-generic over M , then i−1(H) is P-generic over M and

H = ĩ(i−1(H)).
(2) If G ⊆ P is P-generic over M , then ĩ(G) is Q-generic over M and G =

i−1(̃i(G)).
(3) If G = i−1(H) (or, equivalently, if H = ĩ(G)), then M [G] = M [H].

Note that the notions of complete and dense embeddings are absolute for tranz-
itive models of ZFC.

For the main result we will also need the Cohen notion of forcing. Let κ be an
infinite cardinal. The Cohen forcing, Fn(κ, 2), is the set of finite partial functions
from κ to 2, ordered by the reversed inclusion.

3. The main theorem

As we suggested earlier, we want to prove the equivalence between the Co-
hen forcing with finite functions and the forcing with propositional Lindenbaum
algebras.

Theorem 3.1. Let P be an infinite set of propositional letters. Then, the
forcing with B(P) is equivalent with the Cohen forcing with Fn(κ, 2), where κ = |P|.

Proof. According to (3) of 2.1, it is sufficient to prove that Fn(κ, 2) densely
embeds into B(P). Here by B(P) we actually mean B(P) � {[A ∧ ¬A]}. Let

P = {pξ | ξ < κ}.
We define the function i : Fn(κ, 2) → B(P) by i(p) =

[∧
ξ∈dom(p) p

p(ξ)
ξ

]
, where

p0 = ¬p and p1 = p. To conclude the proof, we need to verify that i satisfies (1),
(2) and (3) of Definition 2.1.
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(1): Let p, q ∈ Fn(κ, 2) and let p ⊇ q. Then, dom(q) = {ξ1, . . . , ξm}, dom(p) =
{ξ1, . . . , ξm, η1, . . . , ηn}, ξk �= ηj , and p(ξk) = q(ξk). By the definition of i,

i(p) =
[ m∧

j=1

p
q(ξj)
ξj

∧
n∧

k=1

pp(ηk)
ηk

]
, i(q) =

[ m∧
j=1

p
q(ξj)
ξj

]
,

and since the formula
m∧

j=1

p
q(ξj)
ξj

∧
n∧

k=1

pp(ηk)
ηk

⇒
m∧

j=1

p
q(ξj)
ξj

is clearly a tautology, we have that i(p) � i(q). Hence, (1) holds.
(2): Suppose that p, q ∈ Fn(κ, 2) are incompatible. Then, there is ξ ∈ dom(p)∩

dom(q) such that p(ξ) = 1−q(ξ). In particular, i(p) �B(P)

[
p

p(ξ)
ξ

]
, i(q) �B(P)

[
p

q(ξ)
ξ

]
,

and
[
p

p(ξ)
ξ

]
and

[
p

q(ξ)
ξ

]
are incompatible in B(P), since the formula ¬(

p
p(ξ)
ξ ∧ p

q(ξ)
ξ

)
is

a tautology. Thus, i(p) and i(q) are incompatible as well. The converse implication
of (2) can be proved similarly.

(3): Pick an arbitrary [A] ∈ B(P). By the DNF theorem,

[A] =
[ m∨

j=1

n∧
k=1

p
ajk

ξjk

]
,

where ajk ∈ 2. If we define condition p ∈ Fn(κ, 2) by dom(p) = {ξ11, . . . , ξ1n} and
p(ξ1k) = a1k, then it is easy to see that i(p) � [A], which proves (3). �

4. Conclusion

First, we notice that the embedding i defined in the proof of Theorem 3.1 is
quite natural: pξ stands for “ξ maps to 1”, while ¬pξ stands for “ξ maps to 0”. In
this way, finite conjunctions of literals nicely represent finite partial functions.

Second, it is well known that, up to isomorphism, every Boolean algebra is
a Lindenbaum–Tarski propositional algebra B(T ) (see [3]). Recall that B(T ) is
defined by

A ∼ B iff T � A ⇔ B,

where T is certain propositional theory. In this way, every notion of forcing may be
seen as a B(T ) forcing. Still, it would be interesting to see what kind of propositional
theory T naturally corresponds to particular notion of forcing P. Here “natural”
should be understood as a kind of correspondence that exists between Fn(κ, 2)
and B(P). We notice that such correspondence is not given by the proof of the
characterization of Boolean algebras via Lindenbaum–Tarski propositional algebras.
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