
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
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SOME QUESTIONS CONCERNING
MINIMAL STRUCTURES

Predrag Tanović

Abstract. An infinite first-order structure is minimal if its each definable
subset is either finite or co-finite. We formulate three questions concerning
order properties of minimal structures which are motivated by Pillay’s Con-
jecture (stating that a countable first-order structure must have infinitely many
countable, pairwise non-isomorphic elementary extensions).

In this article a connection between articles [7] and [8] is explained in order to
motivate some questions concerning minimal, first-order structures which I could
not answer. On the way, a minor gap which appeared in [8] will be fixed; thanks
to Enrique Casanovas for pointing it out to me.

The original motivation for this work comes from Pillay’s work on countable
elementary extensions of first-order structures. If M0 = (M0, . . . ) is a countable
first-order structure and M0 ≺ M1, M0 ≺ M2 then we say that M1 and M2 are
isomorphic over M0 if there is an isomorphism between them fixing M0 pointwise.

Pillay’s Conjecture. Any countable first-order structure M0 has infinitely
many countable elementary extensions which are pairwise non-isomorphic over M0.

There are a few results partially confirming Pillay’s Conjecture. The initial
result of Pillay’s is in [3] where he proved that there are at least four nonisomorphic
countable elementary extensions of M0. There he also reduces the general case
to the case when M0 is minimal and has small theory (|S(M0)| = ℵ0); recall
that an infinite first-order structure is minimal if its each definable (possibly with
parameters) subset is either finite or co-finite. By a well known result of Baldwin
and Lachlan, see [1], any countable strongly minimal structure has infinitely many
countable pairwise non-isomorphic elementary extensions, so the conjecture is true
for strongly minimal structures (a minimal structure is strongly minimal if the
minimality is preserved in all elementarily equivalent structures). Belegradek in
[2] found a pattern for constructing minimal, but not strongly minimal structures;
other examples of such structures are (ω,<) and (ω+ω∗, <) (where ω∗ is reversely
ordered ω).
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Recall that M0 has the order property if for some n � 1 there is an infinite (but
not necessarily definable) {āi | i ∈ ω} ⊂ Mn

0 which can be ordered by a formula,
i.e., for some φ(x̄, ȳ) and all i, j ∈ ω we have M0 � φ(āi, āj) iff i < j (here we allow
φ to have parameters from M0). We will say that M0 = (M0, . . . ) is ordered if
there is a binary relation < on M0, which is definable (possibly with parameters
from M0), irreflexive, transitive and has an infinite chain. M0 has the strict order
property if M

n
0 is ordered for some n ∈ ω; Th(M0) has the strict order property if

there is an elementary extension of M0 having the strict order property.
In [4] Pillay proved that the conjecture is true when M0 = (M0, . . . ) does not

have the order property, and in [7] the conjecture is verified for the case when
Th(M0) does not have the strict order property. It is clear that the later result
partially overlaps Pillay’s result, we don’t know if it completely does. More pre-
cisely, it is well known that there are first-order structures (like simple, unstable
ones) having the order property but whose elementary diagram does not have the
strict order property. Still we don’t know if there is such a minimal structure:

Question 1. Is there a minimal structure with small theory which has the
order property but whose elementary diagram does not have the strict order prop-
erty?

In [5] Pillay and Kim found an example of a minimal structure with small
theory whose theory is simple and unstable (and thus does not have the strict
order property), but which does not have the order property.

Altogether, the conjecture is up to now reduced to the case when M0 is minimal
with small theory, has the order property and Th(M0) has the strict order property.
Two questions come up naturally. The first: whether in such situation M0 must
be ordered? This seems unlikely to be true, i.e., my guess is that the answer to
the following question will be affirmative (although I don’t know of a particular
example):

Question 2. Is there a minimal structure with small theory M0 such that
M0 has the order property, Th(M0) has the strict order property but M0 is not
ordered?

The second question is whether the conjecture is true for minimal, ordered
structures. This is what we started answering in [8] and here we only state the
complete answer; we omit the proof since in the meantime a more general result is
found [9].

Theorem 1. A countable, minimal, ordered structure has 2ℵ0 non-isomorphic
countable elementary extensions.

The theorem generalizes Shelah’s result, see [6], who proved it for structures of
the form (ω,<, . . . ) and (ω + ω∗, <, . . . ) (the minimality of these structures is not
assumed, but it is easy to reduce the general case to the case of minimal structures
by passing to a definable subset of Cantor–Bendixson rank 1). The reason for
having many countable models in our case is the same as in Shelah’s: an arbitrary
countable linear order can be ’coded’ by an elementary extension of the ground
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structure. However, the major technical obstacle in our case turns out to be the
absence of Skolem functions.

The proof of Theorem 1 heavily relies on the classification of minimal, ordered
structures from [8] which we recall below in more detail; it is also needed to motivate
Question 3 at the end. The two basic examples of minimal, ordered structures are
(ω,<) and (ω + ω∗, <) (where ω∗ is reversely ordered ω). Theorem 2 below states
that any other minimal ordered structure is, in a way, similar to one of them.

We recall some notation. Let M0 = (M0, . . . ) be a minimal ordered structure
and let p(x) be the set of all formulas in a free variable x (possibly with parameters
from M0), defining a co-finite subset of M0. By minimality, p(x) is a complete
1-type with parameters from M0; moreover, it is the only type in S1(M0) which is
not already realized in M0 by an element of M0. We write simply p instead of p(x).
If M0 ≺ M = (M, . . . ) then by p(M) we denote the set of realizations of p in M
(so that M = M0 ∪ p(M)).

Definition. For < a definable strict-ordering relation on M0 define:

L<(M0) = {m ∈M0 | (m < x) ∈ p}
U<(M0) = {m ∈M0 | (x < m) ∈ p}
I<(M0) = {m ∈M0 | (x⊥m) ∈ p}.

(Here x⊥y denotes x �= y ∧ ¬(x < y) ∧ ¬(y < x).)

Note that any element of M0 belongs to exactly one of L<(M0), U<(M0) or
I<(M0):

M0 = L<(M0) ∪ U<(M0) ∪ I<(M0),
Also:

M = p(M) ∪ L<(M0) ∪ U<(M0) ∪ I<(M0).
The unions above are disjoint, L<(M0) < p(M) < U<(M0) and I<(M0)⊥p(M),
(here by A < B we mean a < b for all a ∈ A and b ∈ B), in which sense we
consider p(M) (in M = (M,< . . . ) 	 M0) as the ‘middle’ part of M ; similarly,
‘L’ in L<(M0) = {x ∈ M |x < p(M)} indicates that the ‘lower’ part of M0 (and
also of M) is in question, U the ‘upper’ and I the ‘incompatible’ part of M0. The
main technical result in [8] is that I<(M0) is finite whenever < has an infinite chain
(or just arbitrarily large finite chains). It induces a closer description of minimal,
ordered structures:

Theorem 2. If M0 = (M0, . . . ) is a minimal ordered structure, and < is a
definable strict ordering on M0 with an infinite (increasing) chain then (M0, <)
falls into one of the following two types:

Type(ω) M0 = L<(M0) ∪ a finite set;

Type(ω + ω∗) M0 = L<(M0) ∪ U<(M0) ∪ a finite set

(here both L<(M0) and U<(M0) are infinite).

If (M0, <) is of Type(ω), then (L<(M0), <) has no maximal elements, is di-
rected upwards and has no increasing chains of order type ω+1; it somehow reminds
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us of (ω,<). Similarly, if (M0, <) is of Type(ω + ω∗), then (L<(M0), <) has no
maximal elements, is directed upwards and has no increasing chains of order type
ω+ 1, while (U<(M0), <) has no minimal elements, is directed downwards and has
no decreasing chains of order type 1+ω∗; altogether, (M0, <) reminds of (ω+ω∗, <).

The next natural question to be considered is whether Type(−) of a mini-
mal, ordered structure depends on a particular choice of the ordering relation; i.e.,
whether a structure can be of Type(ω) with respect to one ordering relation and of
Type(ω+ω∗) with respect some other. It turned out that the answer is negative; it
follows from the next theorem, which establishes a model-theoretic characterization
of minimal, ordered structures of Type(ω).

Recall the notion of semi-isolation: let N = (N, . . . ) be a first-order structure,
let A ⊆ N and a, b ∈ N , then tp(b/A) is semi-isolated over a (or a semi-isolates
tp(b/A)) if there is a formula φ(x, y) (with parameters from A possible) such that
N � φ(a, b) and whenever N � φ(a, c) then c � tp(b/A). If A = ∅ then we simply
say that b is semi-isolated over a (or that a semi-isolates b). In the context of the
following theorem, we may assume that all the parameters from the are incorpo-
rated into the language, so that semi-isolation becomes a binary relation on p(N).
It is reflexive and transitive: for transitivity, if a semi-isolates b is witnessed by
φ(x, y), and b semi-isolates c is witnessed by ψ(y, z), it is straightforward to check
that (∃y)(φ(x, y) ∧ ψ(y, z)) witnesses that a semi-isolates c. Further, recall that
q ∈ S1(N) is definable if for each formula φ(x, ȳ) there is a formula ψ(ȳ) (with
parameters from N possibly) such that:

for all n̄ ∈ Nk: φ(x, n̄) ∈ q iff N � ψ(n̄).

Theorem 3. Let M = (M, . . . ) be a minimal structure and let p ∈ S1(M) be
the non-algebraic type. Then the following conditions are equivalent:

(1) There exists (a definable) < such that (M,<) is of Type(ω).
(2) There exists M1 	 M such that semi-isolation is not symmetric on p(M1).

If we in addition assume that M is ordered, then (1) and (2) are also equivalent to:

(3) p is definable.
(4) M is ordered of Type(ω) with respect to any < having an infinite (increasing)

chain.

Proof. The equivalence of (1) and (2) is proved in Theorem 2.1 in [8]. To
prove the rest, we will assume that M is a minimal, ordered structure.

(4) → (1) is trivial.

(1) → (3). Suppose (M,<) is of Type(ω) and we will prove that p is definable.
Let M1 	 M and a ∈ p(M1). Since (M,<) is of Type(ω) we may assume L<(M) =
M and thus M < a. Then a < x � p(x) easily follows.

Let φ(x, ȳ) be a formula. We claim that for all m̄ ∈M :

φ(x, m̄) ∈ p iff M � (∀y)(∃x>y)φ(x, m̄),

which, clearly, implies the definability of p.
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For one direction, φ(x, m̄) ∈ p implies M1 � φ(b, m̄) for all b ∈ p(M1). Now,
M < p(M1) implies M1 � (∀y)(∃x > y)φ(x, m̄) and M � (∀y)(∃x > y)φ(x, m̄)
follows.

For the other direction suppose M,M1 � (∀y)(∃x>y)φ(x, m̄). Then, in partic-
ular, we have M1 � (∃x>a)φ(x, m̄). Since x > a � p(x) we conclude φ(x, m̄) ∈ p.

(3) → (4). Suppose p is definable and let � be any definable strict ordering on
M . Note that, by definability of p, both L�(M) = {m ∈ M | (m � x) ∈ p} and
U�(M) = {m ∈M | (x�m) ∈ p} are definable subsets of M . They are disjoint so,
by minimality of M, at least one of them must be finite. This implies that (M,�)
can not be of Type(ω + ω∗) and the desired conclusion follows by Theorem 2. �

From Theorems 2 and 3 we immediately derive:

Corollary. Type of ordering of (M0, <) in a minimal, ordered structure M0

does not depend on the particular choice of <.

In [8] I stated that the corollary follows from Theorem 2.1 there, which includes
only conditions (1) and (2) from Theorem 3. This was not quite true, and is now
fixed by adding (3) and (4).

As we noted before, Theorem 2 establishes a (weak) similarity of a minimal
ordered structure with a basic one. The similarity of any structure that I found by
now was much stronger, so it is natural to ask:

Question 3. Must every minimal, ordered structure interpret either (ω,<) or
(ω + ω∗, <)?

References

[1] J. T. Baldwin, A.H. Lachlan, On strongly minimal sets, J. Symb. Log. 36(1971), 79–96.
[2] O.V. Belegradek, On minimal structures, J. Symb. Log. 63(1998), 421–426.
[3] A. Pillay, Number of countable models, J. Symb. Log. 43(1978), 494–496.
[4] A. Pillay, Dimension theory and homogeneity for elementary extensions of a model, J. Symb.

Log. 47(1982), 147–160.
[5] A. Pillay, Minimal types in simple theories, preprint, 2006
[6] S. Shelah, End extensions and numbers of countable models, J. Symb. Log. 43(1978), 550–562.
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