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NORMAL FORM THEOREM
FOR SYSTEMS OF SEQUENTS

Mirjana Borisavljević

Abstract. In a system of sequents for intuitionistic predicate logic a theorem,
which corresponds to Prawitz’s Normal Form Theorem for natural deduction,
are proved. In sequent derivations a special kind of cuts, maximum cuts, are
defined. Maximum cuts from sequent derivations are connected with maximum
segments from natural deduction derivations, i.e., sequent derivations without
maximum cuts correspond to normal derivations in natural deduction. By
that connection the theorem for the system of sequents (which correspond to
Normal Form Theorem for natural deduction) will have the following form:
for each sequent derivation whose end sequent is Γ � A there is a sequent
derivation without maximum cuts whose end sequent is Γ � A.

1. Introduction

In [5] Gentzen introduced a natural deduction system for intuitionistic predi-
cate logic, the system NJ, and a system of sequents for intuitionistic predicate logic,
the system LJ. There are several papers [1, 3, 5, 7, 8, 9, 10, 13] in which natural
deduction systems and systems of sequents for some fragments of intuitionistic logic
are compared. The most important connection between these systems is the con-
nection between normal derivations, i.e. derivations without maximum segments
(from the systems of natural deduction) and cut-free derivations, i.e. derivations
without cuts (from the systems of sequents). By that connection the following
picture can be made: “normal derivations and cut-free derivations are the same”.
However, the precise picture is the following (see for example Theorems 4 and 5 in
[3, Section 4]):

(*)
The image of a cut-free derivation is a normal derivation, but if a normal
derivation is the image of a sequent derivation, then that sequent derivation
has some cuts which can be eliminated.

So, derivations whose images are normal derivations are not only cut-free deriva-
tions. These derivations may contain some cuts which are cuts of the special kind.
There is the following problem: the definition of cuts of that kind. In [2] and
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[4] Zucker’s systems for intuitionistic predicate logic from [13], the system of se-
quents S and the natural deduction system N , were considered. In [2] the notion of
maximum cuts was introduced, and the property that images of sequent derivations
without maximum cuts are normal derivations in natural deduction was proved (see
Theorem in [2]). Moreover, in [4] the property that the sequent images of normal
derivations are derivations without maximum cuts, was proved [4, Theorem 3]. (In
this paper that property will be presented in Theorem in Section 5 below.) Thus,
we have the following:

(**)
The natural deduction image of a sequent derivation without maximum cuts
is a normal derivation, and the sequent image of a normal derivation is a
derivation without maximum cuts.

In [10] and [11] Prawitz formulated two kinds of theorems about normal derivations
from natural deduction: the theorem of the first kind is Normal Form Theorem
from [11] (i.e., Theorem 1 from [10, p.50]); and the theorem of the second kind
is Normalization Theorem from [11]. The theorem of the first kind presents the
following property:

(NF) If Π is a derivation of A from the set of assumptions Γ,
then there is a normal derivation of A from the set of assumptions Γ.

By the theorem of the second kind, a derivation Π of A from the set of assumptions
Γ can be reduced to a normal derivation of A from the set of assumptions Γ (by
reductions which were defined in [11]).

By using the connection (**) above we will prove the following property for
sequent derivations:

(McfF) If there is a sequent derivation whose end sequent is Γ � A, then there
is a derivation without maximum cuts whose end sequent is Γ � A.

That property for sequent derivations without maximum cuts corresponds to
the property (NF) for normal derivations from natural deduction.

We will consider the system of sequents S and natural deduction system N for
intuitionistic predicate logic which were introduced by Zucker in [13]. Maximum
cuts for derivations from the system S, which were introduced in [2], will be defined.
The connection between derivations of the systems S and N will be made by two
maps: Zucker’s map ϕ from [13] and the map φ. In the system N we will present
the property (NF) mentioned above as Normal Form Theorem for the system N . By
using Normal Form Theorem for the system N and the second part od the property
(**) above we will prove the property (McfF) for derivations of the system S as
M-Cut-Free Form Theorem for the system S. That theorem corresponds to Normal
Form Theorem for the system N .

In Section 2 Zucker’s systems S and N will be defined. Two maps, Zucker’s
map ϕ and the map φ, which connect derivations of the system S and derivations
of the system N , will be presented in Section 3. In the first part of Section 4
normal derivations of the system Nwill be defined, and Normal Form Theorem for
the system N will be presented. In the second part of Section 4 maximum cuts in
derivations of the system S will be defined, and M-Cut-Free Form Theorem for the
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system S will be formulated. Finally, M-Cut-Free Form Theorem for the system S
will be proved in Section 5.

2. The system of sequents S
and the natural deduction system N

In this section we will define the system of sequents S and the natural deduction
system N for intuitionistic predicate logic, which were introduced by Zucker in [13].
The systems S and N are very similar to Gentzen’s systems from [5], the systems
LJ and NJ, respectively.

The language will be the language of the first order predicate calculus, i.e., it
will have the logical connectives ∧, ∨ and ⊃, quantifiers ∀ and ∃, and a propositional
constant ⊥ (for absurdity). Bound variables will be denoted by x, y, z, . . . , free
variables by a, b, c, . . . , and individual terms by r, s, t, . . . . Letters P,Q,R, . . . will
denote atomic formulae and A,B,C, . . . will denote formulae.

2.1. The system S. The system S is a system of sequents for intuitionistic
predicate logic which is introduced in [13]. A sequent of the system S has the form
Γ → A, where Γ is a finite set of indexed formulae and A is one unindexed formula.
A finite non-empty sequence of natural numbers will be called symbol, and will be
denoted by σ, τ ,. . . A finite non-empty set of symbols will be called index, and will
be denoted by α, β,. . .α will denote the cardinality of an index α. There are two
operations on indices:

(i) the union of two indices α and β, α ∪ β, is again an index and it is simply
a set-theoretical union;

(ii) the product of α and β is α × β =df {σ ∗ τ : σ ∈ α, τ ∈ β}, where ∗ is the
concatenation of sequences.

An indexed formula will be denoted by Aα, and a set of indexed formulae
will be denoted by Γα. (However, the indices of sets of formulae will usually be
omitted.) For a set of indexed formulae Γ we will make the set Γ×α in the following
way Γ×α = {Cγ×α : Cγ ∈ Γ}.

Postulates for the system S are:
Initial sequents (i.e., axioms):

– logical initial sequents (i.e., i-axioms): Ai → A.
– ⊥-initial sequents (i.e., ⊥-axioms): ⊥i→ P ,

where P is any atomic formula different from ⊥.
Inference rules

structural rules:

(contraction)
Aα, Aβ , Γ → C

Aα∪β , Γ → C
(cut)

Γ → A Aα, ∆ → C

Γ×α, ∆ → C

operational rules (i.e., logical rules):

(⊃L)
Γ → A Bβ , ∆ → C

Γ×β , A ⊃ Bβ , ∆ → C
(⊃R)

(Aα), Γ → B

Γ → A ⊃ B



40 BORISAVLJEVIĆ

(∧L1)
Aα, Γ → C

A ∧ Bα, Γ → C
(∧L2)

Bα, Γ → C

A ∧ Bα, Γ → C
(∧R)

Γ → A ∆ → B

Γ, ∆ → A ∧ B

(∨L)
(Aα), Γ → C (Bβ), ∆ → C

A ∨ Bi, Γ, ∆ → C
(∨R1)

Γ → A

Γ → A ∨ B
(∨R2)

Γ → B

Γ → A ∨ B

(∀L)
Ftα, Γ → C

∀xFxα, Γ → C
(∀R)

Γ → Fa

Γ → ∀xFx

(∃L)
(Faα), Γ → C

∃xFxi, Γ → C
(∃R)

Γ → Ft

Γ → ∃xFx

The indices i (i.e. Zucker’s unary indices, see 2.2.1 in [13]) in the initial sequents
and the rules ∨L and ∃L are called initial indices, and they have to satisfy the
restrictions on indices: In any derivation, all initial indices have to be distinct.

In the rules ∀R and ∃L the variable a is called the proper variable of these rules,
and, as usual, has to satisfy the restrictions on variables: -in ∀R: a /∈ Γ ∪ {∀xFx};
-in ∃L: a /∈ Γ ∪ {∃xFx,C}.

The notation (Cγ),Θ → D, which is used in rules ⊃R, ∨L and ∃L is interpreted
as Cγ ,Θ → D, if γ �= ∅ and Θ → D, if γ = ∅ (see 2.2.8(b) in [13] for details).

The new formula explicitly shown in the lower sequent of an operational rule
is the principal formula, and its subformulae from the upper sequents are the side
formulae of that rule. The contracted formula Aα∪β will be the principal formula,
and Aα and Aβ are the side formulae of the contraction. The formulae A and Aα

from the upper sequents of the cut are the cut formulae. In any rule formulae which
are not side, principal or cut formulae are passive formulae of that rule.

D, E ,F ,D′,D1. . . . will denote derivations in the system S. Moreover

D
Γ → A

and

D
Γ′ → A′

Γ → A
r

will denote a derivation D with the end sequent Γ → A, and a derivation F with
the last rule r and the end sequent Γ → A, respectively. In our paper all formulae
making up sequents in a derivation D of the system S will be called d-formulae of
the derivation D.

A derivation D of the system S has the proper variable property (PVP) if every
occurrence in D of a proper variable of an inference ∀R or ∃L is above that inference.

Remark 1. The proper variable property is a well-known property of deriva-
tions of sequent systems from [5]. Moreover, each derivation can be effectively
transformed into one with PVP (see [5, III, 3.10] for details). So, we assume that
our derivations in S have PVP.

2.2. The system N . The system N is a natural deduction system for intu-
itionistic predicate logic, which is introduced in [13]. In the system N , like in the
system S, we also use symbols and indices, but they are not part of the formal
system N . They are only used as a meta-level in a derivation of N to denote the
following: each occurrence of an assumption formula is associated with a distinct
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symbol, and each assumption class, i.e., not-empty set of occurrences of the same
formula, is associated with an index. For example, Aσ will denote an assumption
occurrence of a formula A; and Aα will denote an assumption class of formulae A.

Π, Π, Π1, Π′,. . . will denote derivations of the system N . Γ, ∆,. . . will denote
finite sets of assumption classes in derivations of the system N . Finally

Γ, (Aα), (Aβ)

Π
C

will denote a derivation Π, i.e., the derivation of C from Γ ∪ {Aα, Aβ}. Moreover,
the set of all assumption classes of Π is Γ∪{Aα, Aβ}, if α �= ∅ and β �= ∅; or Γ∪{Aβ},
if α = ∅. (For details see [13, Part 2.3.2].) The formulae from Γ∪{Aα, Aβ} are top
formulae of the derivation Π, and C is the end formula of the derivation Π.

In derivations of the system N we will have the following operations with
assumption classes (for details see [13, 2.3.4, 2.3.5 and 2.3.6]):

Contraction. Two assumption classes of the same formula are replaced by their

union. From the derivation Π:
Γ, Aα, Aβ

Π
C

by a contraction of Aα and Aβ we obtain

the derivation Π′:
Γ, Aα∪β

Π
C

. But, our notation of a contraction of Aα and Aβ will be

different from that in [13]. The assumption classes of the same formulae which are
contracted will have stars as supindex instead of Zucker’s arrows. So the derivation

Π′ has the form
Γ, A∗

α, A∗
β

Π
C

.

Substitution. From
∆
Π1
A

and
Γ, Aα

Π2
C

we define a derivation Γ,

∆×α

Π1

(Aα).
Π2
C

Discharging an assumption class. (See the explanation below the logical infer-
ence rules.)

Postulates in the system N :
Trivial derivation of A from A itself, A or Ai, where i is any unary index.

Structural rule, contraction: If
Γ, Aα, Aβ

Π
C

is a derivation, then so is
Γ, A∗

α, A∗
β

Π
C

.

Logical inference rules
Introduction rules (I-rules): Elimination rules (E-rules):

[Aα]
Π
B

A ⊃ B
(⊃I)

A ⊃ B A

B
(⊃E)

A B
A ∧ B

(∧I)
A ∧ B

A
(∧E1)

A ∧ B
B

(∧E2)

A
A ∨ B

(∨I1)
B

A ∨ B
(∨I2)

Π1
A ∨ B

[Aα]
Π2
C

[Bβ ]

Π3
C

C
(∨E)
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Fa
∀xFx

(∀I)
∀xFx

Ft
(∀E)

Ft
∃xFx

(∃I)

Π1

∃xFx

[Faα]
Π2
C

C
(∃E)

⊥-rule:
⊥
P

(⊥)

In each of the rules ⊃I, ∨E and ∃E in the brackets [ ] there is the assumption class
which is discharged by that rule if its index is not ∅, and if it is ∅, then nothing is
discharged by that rule. However, there may be other assumption classes of the
same formula (like the one discharged), and these are not discharged by that rule.

In the rules ∀I and ∃E a is, as usual, the proper variable of these rules. Proper
variables have to satisfy the well-known restrictions on variables, which are similar
to the restrictions on variables in the system S [13, 2.3.8(b)].

In the system N we define minor and major premisses of elimination rules
whose definitions are similar to the definitions of these notions from Prawitz’s
natural deduction [10, p. 22]. In each elimination rule the emphasized formula
with connective or quantifier will be called the major premisses of that rule. The
rules ∨E and ∃E have minor premisses, the formulae C, which are the end formulae
of Π2, Π3, and Π2, respectively. Similarly, in the rule ⊃E the formula A is the minor
premiss of that rule.

In the system N (by using the notions above) we can define the proper variable
property (PVP) of a derivation Π, [13, 2.5.1(c)] or [10, p.28], which is very similar
to PVP in the system S.

Remark 2. In the system N each derivation can be transformed into one with
PVP [10, pp.28–29], so we assume that our derivations in N have PVP.

3. Connections between derivations

In this section we will present the definitions of two maps, maps ϕ and φ,
which connect the set of all derivations from the system S, Der(S), and the set of
all derivations from the system N , Der(N ).

In the definitions below the last rules of the derivations D and Π will be denoted
by rD and rΠ, respectively. The lengths of the derivations D and Π, lD and lΠ, will
be defined in the usual way, as the number of all inference rules in these derivations.

3.1. The map ϕ from derivations of S to derivations of N . The map ϕ
sends derivations from the set of all derivations of the system S, Der(S), into the
set of all derivations of the system N , Der(N ):

ϕ : Der(S)−→ Der(N )

The map ϕ has the property that the image of a derivation D with the end
sequent Γ → A is the derivation ϕD of the formula A from the set of assumption
classes Γ:
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ϕ

( D
Γ → A

)
=

Γ
ϕD
A

The map ϕ is defined by an induction on lD. There are several cases which
depend on the kind of rD (for details see [13, 2.4]).

rD D ϕD

∅ Ai → A Ai

⊥ ⊥i → P

⊥i

P

cut

D′

Γ → A

D′′

Aα, ∆ → C

Γ×α, ∆ → C
∆,

Γ×α

ϕD′
(Aα)

ϕD′′
C

contraction

D′

Aα, Aβ , Γ → C

Aα∪β , Γ → C

A∗
α, A∗

β , Γ

ϕD′
C

⊃ R

D′

(Aα), Γ → B

Γ → A ⊃ B

Γ, [Aα]

ϕD′
B

A ⊃ B

⊃ L

D′

Γ → A

D′′

Bβ , ∆ → C

Γ×β , A ⊃ Bβ , ∆ → C

A ⊃ Bβ

Γ×β

ϕD′
A

(Bβ), ∆

ϕD′′
C

∧ R

D′

Γ → A

D′′

∆ → B

Γ, ∆ → A ∧ B

Γ
ϕD′
A

∆
ϕD′′
B

A ∧ B

∧ L1

D′

Aα, Γ → C

A ∧ Bα, Γ → C

A ∧ Bα

(Aα), Γ

ϕD′
C

∧L2 The case when rD is ∧L2 is similar to the case when rD is ∧L1.

∨R1

D′

Γ → A

Γ → A ∨ B

Γ
ϕD′
A

A ∨ B

∨R2 The case when rD is ∨R2 is similar to the case when rD is ∨R1.
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∨L

D′

(Aα), Γ → C

D′′

(Bβ), ∆ → C

A ∨ Bi, Γ, ∆ → C A ∨ Bi

[Aα], Γ

ϕD′
C

[Bβ ], ∆

ϕD′′
C

C

∀R

D′

Γ → Fa

Γ → ∀xFx

Γ
ϕD′
Fa

∀xFx

∀L

D′

Ftα, Γ → C

∀xFxα, Γ → C

∀xFxα

(Ftα),Γ

ϕD′
C

∃R

D′

Γ → Ft

Γ → ∃xFx

Γ
ϕD′
Ft

∃xFx

∃L

D′

(Faα), Γ → C

∃xFxi, Γ → C ∃xFxi

[Faα], Γ

ϕD′
C

C

3.2. The map φ from derivations of N to derivations of S. The map φ
sends derivations from the set of all derivations of the system N , Der(N ), into the
set of all derivations of the system S, Der(S):

φ : Der(N ) → Der(S)

The map φ has the following property: the image of a derivation Π of the formula
A with the set of assumption classes Γ from the system N is the sequent derivation
φΠ with the end sequent Γ → A:

φ(
Γ
Π
A

) =
φΠ

Γ → A

The map φ is defined by an induction on lΠ. There are several cases which depend
on the kind of rΠ.

rΠ Π φΠ

∅ Ai Ai → A

⊥
⊥i

P ⊥i → P

substitution ∆,

Γ×α

Π′
(Aα)

Π′′
C

φΠ′

Γ → A

φΠ′′

Aα, ∆ → C

Γ×α, ∆ → C

contraction
A∗

α, A∗
β , Γ

Π′
C

φΠ′

Aα, Aβ , Γ → C

Aα∪β , Γ → C
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⊃I

Γ, [Aα]

Π′
B

A ⊃ B

φΠ′

(Aα), Γ → B

Γ → A ⊃ B

⊃E

∆
Π′′

A ⊃ B

Γ
Π′
A

B

φΠ′′

∆ → A ⊃ B

φΠ′

Γ → A

Ai → A Bj → B

Aij , A ⊃ Bj → B

Γ×ij , A ⊃ Bj → B
cut

Γ×ij , ∆×j → B
cut

∧I

Γ
Π′
A

∆
Π′′
B

A ∧ B

φΠ′

Γ → A

φΠ′′

∆ → B

Γ, ∆ → A ∧ B

∧E1

Γ
Π′

A ∧ B
A

φΠ′

Γ → A ∧ B

Ai → A

A ∧ Bi → A

Γ×i → A
cut

∧E2 The case when rΠ is ∧E2 is similar to the case when rΠ is ∧E1.

∨I1

Γ
Π′
A

A ∨ B

φΠ′

Γ → A

Γ → A ∨ B

∨I2 The case when rΠ is ∨I2 is similar to the case when rΠ is ∨I1.

∨E

Λ
Π′

A ∨ B

[Aα], Γ

Π′′
C

[Bβ ], ∆

Π′′′
C

C

φΠ′

Λ → A ∨ B

φΠ′′

(Aα), Γ → C

φΠ′′′

(Bβ), ∆ → C

A ∨ Bi, Γ, ∆ → C

Λ×i, Γ, ∆ → C
cut

∀I

Γ
Π′
Fa

∀xFx

φΠ′

Γ → Fa

Γ → ∀xFx

∀E

Γ
Π′

∀xFx
Ft

φΠ′

Γ → ∀xFx

Fti → Ft

∀xFxi → Ft

Γ×i → Ft
cut

∃I

Γ
Π′
Ft

∃xFx

φΠ′

Γ → Ft

Γ → ∃xFx

∃E

∆
Π′

∃xFx

[Faα], Γ

Π′′
C

C

φΠ′

∆ → ∃xFx

φΠ′′

(Faα), Γ → C

∃xFxi, Γ → C

∆×i, Γ → C
cut
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4. Maximum segments and maximum cuts

In the first part of this section we will define the characteristic notions of
natural deduction: a thread, a segment and a maximum segment in derivations of
the system N . Moreover, we will define normal derivations of the system N , and
we will formulate the Normal Form Theorem for the system N .

In the second part of this section we will repeat the definition of maximum
cuts in derivations of the system S from [2], and we will show several characteristic
examples of derivations from the system S. Next, in the system S we will formulate
M-cut-free Form Theorem, which correspond to Normal Form Theorem for the
system N .

4.1. Maximum segments. In this section we first define the notion of a
thread in a derivation Π from the system N . (It is in fact Prawitz’s notion from
[10, p. 25]). A sequence A1,A2,. . . ,An of consecutive formula occurrences in a
derivation Π is a thread if (1) A1 is a top formula; (2) Ai stands immediately above
Ai+1 in Π for each i < n; and (3) An is the end formula in the derivation Π. Next,
we repeat Prawitz’s definition of a segment in a derivation Π [10, p. 49]: a segment
in a derivation Π is a sequence A1, A2, . . . , An of consecutive formula occurrences
in a thread of that derivation Π such that (1) A1 is not the consequence of a rule
∨E or a rule ∃E; (2) Ai, for each i < n, is a minor premiss of a rule ∨E or a rule ∃E;
(3) An is not the minor premiss of a rule ∨E or a rule ∃E. (Note that all formulae
in a segment are of the same form.) Finally, a maximum segment is a segment that
begins with a consequence of an introduction rule and ends with a major premiss
of an elimination rule.

Example 1. We consider the derivation Π1:

Λ
Π′

A ∨ B

[Aα], Γ1

Π′′
C ∧ D

[Bβ ], Γ2

Π′′′
C ∧ D

C ∧ D
∨E

C,
∧E1

∆
Π
H

where in the subderivation Π′′ there is an introduction rule whose consequence is
a formula C ∧D. Then the segment which begins with that formula and ends with
the major premiss of the rule ∧E1 is a maximum segment of the derivation Π1.

The notion of maximum formula is a special case of the notion of maximum
segment, i.e., a maximum formula is a maximum segment which consists of one
formula. Namely, if a formula is the consequence of an introduction rule and
also the major premiss of an elimination rule, then that formula will be called a
maximum formula.

Example 2. We consider the derivation Π2:

Γ
Π′
C

∆
Π′′
D

C ∧ D
∧I

C
∧E1
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The formula C ∧ D is the consequence of ∧I, and also the major premiss of ∧E1,
i.e. it is a maximum formula of the derivation Π2.

A derivation Π which contains no maximum segments will be called a normal
derivation in the system N .

Remark 3. Our definition of a normal derivation is the same as Prawitz’s
definition of a normal derivation from [11]. In [11] Prawitz also defined a full
normal derivation as a normal derivation without redundant applications of ∨E
and ∃E. However, in [10] his full normal derivations from [11] were called normal
derivations.

Now in the system N as a natural deduction system we present Normal Form
Theorem:

Theorem (Normal Form Theorem). If
Γ
Π
A

is a derivation in the system N ,

then in the system N there is a normal derivation
Γ

Πnf

A
.

Proof. The proof is similar to the proof of Theorem 1 from [10, pp. 50–51]. �

4.2. Maximum cuts. In this section first we give an example of a maximum
cut. In the derivation E3 from Example 3 below the cut c3 is a maximum cut. Its
left cut formula A∨B “is connected” with the rule ∨R1 (i.e., “the introduction of
∨”), and its right cut formula A∨B{n,k} “is connected” with the rule ∨L (i.e., “the
elimination of ∨”).

Example 3. The derivation E3:

Aq→A

A∧Cq→A

Ai→A

Ai→A∨B
∨R1

A∨Bl→A∨B
Ail→A∨B

c1
A∨Bm→A∨B

Ailm→A∨B
c2

Aj→A

Aj→A∨B

Bp→B

Bp→A∨B

A∨Bn→A∨B
∨L

A∨Bk→A∨B
A∨Bn, A∨Bk→(A∨B)∧(A∨B)

A∨B{n,k}→(A∨B)∧(A∨B)

A{ilmn,ilmk}→(A∨B)∧(A∨B)
c3

A∧C{qilmn,qilmk}→(A∨B)∧(A∨B)
c4

To define maximum cuts of a derivation D we need to introduce some notions
by which a precise connection between d-formulae in a derivation can be made.
More precisely, some of the notions below will be well-known notions from systems
of sequents (see Remark 5 below).

First we consider a formula A. One of its subformulae, a subformula C, will be
called a d-subformula C of A, when the form of C and the place of its appearance
in the formula A will be important. For example, the formula A ≡ (C ⊃D) ∧ C
has two different d-subformulae C. We note that the relation ”. . . is a d-subformula
of . . . ” is reflexive and transitive. A d-subformula of a formula A will be called
a proper d-subformula when it is not the formula A itself. We also note that in a
derivation, two d-formulae of the same form have the same d-subformulae which
constitute them. For example, the d-formulae from an i-axiom Ai → A, or the left
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and the right cut formula of a cut have the same d-subformulae. In a d-formula A
we can choose the main d-subformula of the d-formula A.

(In the definition of a d-branch below we will use the following denotation: the
indices of d-formulae will denote their place in a sequence of d-formulae where these
formulae can or cannot be indexed formulae.)

Let D be a derivation, and A be a d-formula from D. A d-branch of the d-
formula A in the derivation D will be a sequence of d-formulae F1, F2, . . . , Fn,
n � 1, where F1 is that d-formula A, and for each i, i � 1 if Fi is

(i) either a passive formula in the lower sequent of a rule, or the principal
formula of a contraction, then Fi+1 is the corresponding passive formula from one
of the upper sequents of that rule or one of the side formulae from the upper sequent
of that contraction, respectively;

(ii) a principal formula in the lower sequent of an operational rule, then Fi+1 is
one of the side formulae (if they exist) from the upper sequents of the rule (which
need not be on the same side of → as Fi);

(iii) a d-formula from an axiom, or the principal formula of a rule which does
not have any side formula, then i = n.

bA : A ≡ F1 . . . Fn will denote a d-branch of a d-formula A in a derivation D.
Moreover, b, b′, b1, . . . will denote d-branches in a derivation.

Example 4. We consider the derivation E4:

Ak → A

A ∧ Ck → A
∧L1

Ai → A Bj → B

Aij ,A ⊃ Bj → B
⊃L

A ∧ Ckij ,A ⊃ Bj → B
cut

(i) we have two d-branches of the emphasized d-formula A⊃Bj from the sequent
A∧Ckij , A⊃Bj → B, which consist of emphasized d-formulae in the derivation E4:
b1 : A⊃Bj , A⊃Bj , A and b2 : A⊃Bj , A⊃Bj , Bj ;

(ii) the d-formula A∧Ckij has one d-branch: A∧Ckij , A∧Ck, Ak.

Remark 4. The notion of a d-branch is very similar to the notion of the path
in a natural deduction derivation [10, p. 52].

In a d-branch b : A ≡ F1 . . . Fn of a d-formula A we consider a d-formula Fi,
1� i�n with its d-subformula C. The d-subformula C of Fi has the corresponding
d-subformulae C in F1, F2, . . . , Fi−1 when 1 < i, and the d-subformula C of Fi will
be called the successor of its corresponding d-subformulae from F1, F2, . . . , Fi−1.

In the d-branch b1 from Example 4 above, the d-subformula A of the d-formula
A from Ai → A is the successor of its corresponding d-subformulae from the part
A⊃Bj , A⊃Bj of b1 i.e., that d-formula A is the successor of the d-subformula A
of the d-formula A ⊃ Bj from the sequent Aij , A ⊃ Bj → B and the d-subformula
A of the d-formula A ⊃ Bj from the sequent A ∧ Ckij , A ⊃ Bj → B. On the other
hand, that d-formula is not a successor of the d-subformula B of the d-formula
A ⊃ Bj from the sequent A ∧ Ckij , A ⊃ Bj → B. That d-subformula B has the
successor only in the second d-formula of b1, the d-formula A ⊃ Bj from the sequent
Aij , A ⊃ Bj → B.
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The part A ≡ F1 . . . Fk of a d-branch b : A ≡ F1 . . . Fn, 1 � k � n, whose
all d-formulae have the same form (equal to A) and the next d-formula from b (if
it exists) is different from A, will be called a branch of the d-formula A in the
derivation D.

In Example 3 the d-branch of the d-formula Ailm, the d-branch b : Ailm, Ail, Ai,
Ai, is its branch, too. In Example 4 the part A⊃Bj , A⊃Bj of both d-branches b1

and b2 is the branch of the d-formula A⊃Bj from A∧Ckij , A⊃Bj → B.

Remark 5. All the branches of a d-formula in a derivation form Gentzen’s
cluster of that d-formula in the derivation (see [6, p. 267]).

If the last d-formula of a branch of a d-formula A is a principal formula of an
operational rule, then that branch will be called a proper branch of the d-formula A.

In Example 4 the branch A ⊃ Bj , A ⊃ Bj of the d-formula A ⊃ Bj from the
sequent A ∧ Ckij , A⊃Bj → B is its proper branch.

In a derivation D the d-branch of a d-formula A which is not a part of any other
d-branch from the derivation D will be called a long d-branch of that d-formula A.

Remark 6. If in a derivation D the d-branch b : A ≡ F1 . . . Fn is a long d-
branch of the d-formula A, then the d-formula A is either a cut formula or a formula
from the end sequent of the derivation D.

In Example 4 the d-formulae from the end sequent A∧Ckij , A ⊃ Bj → B
have the long d-branches: bA∧Ckij

: A∧Ckij , A∧Ck, Ak; b1 : A ⊃ Bj , A ⊃ Bj , A;
b2 : A⊃Bj , A⊃Bj , Bj and bB : B,B,B. Moreover, the left and the right cut for-
mula of the cut have the long d-branches: bl

A : A,A and br
Aij

: Aij , Ai, respectively.

In Example 3 the right cut formula of the cut c3 has the following branches:
br1: A ∨ B{n,k} (the right cut formula of the cut c3 itself), A ∨ Bn (from

A ∨ Bn, A ∨ Bk → (A∨B) ∧ (A∨B)), A∨Bn (from A∨Bn → A∨B); and
br2: A ∨ B{n,k} (the right cut formula of the cut c3 itself), A ∨ Bk (from

A ∨ Bn, A ∨ Bk → (A∨B) ∧ (A∨B)), A∨Bk (from A∨Bk → A∨B);
On the other hand, the left cut formula of the cut c3 has the following branch:
bl: A∨B (the left cut formula of the cut c3 itself), A∨B (from A∨Bm → A∨B).
The branch br1 connects the right cut formula of the cut c3 with the rule ∨L,

but the branch bl does not connect the left cut formula of the cut c3 with the
rule ∨R1. To make that connection we need to define the notion of the o-tree of a
d-formula.

In Example 3 the sequences of the bold emphasized formulae are the o-trees
of the left and right cut formula of the cut c3. The o-tree trl : t1t2t3t4t5 of
A∨B consists of the following parts: t1 is bl; t2 is the reversed long d-branch of
the right cut formula A∨Bm of the cut c2, which is that d-formula itself; t3 is
the d-branch of the left cut formula A∨B of the cut c2: A∨B (that d-formula
itself), A∨B (from A∨Bl → A∨B); t4 is the reversed long d-branch of the d-
formula A∨Bl from A∨Bl → A∨B which consists of that d-formula itself; and
t5 is the left cut formula A ∨ B of the cut c1. On the other hand, the right
cut formula of the cut c3 has two o-trees: trr1 and trr2. trr1 is the branch br1,
and tr2 is tr1t

r
2, where tr1 is the branch br2 and tr2 is the reversed long d-branch
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of the d-formula (A∨B) ∧ (A∨B) from the end sequent of the derivation D3:
A∨B, (A∨B) ∧ (A∨B), (A∨B) ∧ (A∨B), (A∨B) ∧ (A∨B), (A∨B) ∧ (A∨B).

Roughly speaking, one o-tree of a d-formula C in a derivation will consist of
long d-branches and reversed long d-branches of some d-formulae, alternately. The
first part of an o-tree of a d-formula C will be a branch of C. The other parts
of that o-tree (if they exist) will be the long d-branches of cut formulae and the
reversed long d-branches of cut formulae, alternately. An o-tree can end with: the
principal formula of an operational rule, a cut formula, a d-formula from an axiom,
or a d-formula from the end sequent of the derivation. By the form of one o-tree of
a d-formula C o-tree, more precisely, by the last d-formula of its o-tree, we will be
able to conclude whether the d-formula C is introduced, i.e., whether a d-formula of
the same form, which is connected with that d-formula C, is the principal formula
of an operational rule.

Now we define the notion of an o-tree of a d-formula. First, for a d-branch
b : A ≡ F1 . . . Fn of a d-formula A and one of its d-subformulae, the d-subformula
C, we need the following notions.

The sequence of d-formulae b−1 is the sequence Fn . . . F1.
(1) If the d-formula Fn contains the successor of the d-subformula C, then the

d-subformula C is a part of the d-branch b.
(2) If in the d-branch b there is a d-formula Fj which is the principal formula

of an operational rule and the successor of d-subformula C in Fj is that d-formula
Fj itself, then the d-branch b is a part of the d-subformula C.

(3) If in the d-branch b there is a d-formula Fj which has the successor of the
d-subformula C and either

(i) Fj is the principal formula of ∧L1, ∧L2, ∨R1 or ∨R2, j < n and the d-
formula Fj+1 does not have the successor of the d-subformula C; or

(ii) Fj is the principal formula of ∨L, ⊃R or ∃L, and n = j,
then the d-subformula C is a t-part of the d-branch b.
(4) If in the d-branch b there is a d-formula Fj , j < n, which has the successor

of the d-subformula C, the d-formula Fj is the principal formula of one of the
operational rules ∧R, ∨L, ⊃R, ⊃L and the d-formula Fj+1 does not have the
successor of the d-subformula C, then the d-subformula C and the d-branch b are
not connected.

Remark 7. Let b : A ≡ F1 . . . Fn be a d-branch of a d-formula A. All possible
connections between the d-branch b and a d-subformula C of the d-formula A are
presented in (1), (2), (3) and (4) above.

Let A be a d-formula from a derivation D. An o-tree of the d-formula A in
the derivation D will be a sequence t1t2 . . . tn (n � 1), where t1 is a branch of the
d-formula A in the derivation D, the main d-subformula of the last d-formula of t1
is that d-formula itself, and ti ( i > 1) are some long d-branches and reversed long
d-branches from D which are connected in the following way.

− If the last d-formula of t1 is a principal formula of an operational rule, then
n = 1.
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− If the last d-formula of t1 belongs to an axiom, then n>1 and for each k, k�1:
If the last d-formula of t2k−1 is

(i) one d-formula of an i-axiom and Cm is other d-formula of that axiom,
then the main d-subformula of Cm is the main d-subformula of the last
d-formula of t2k−1, the sequence t2k is b−1, where b : C1 . . . Cm is a long
d-branch which ends in Cm, and the main d-subformula of C1 is its d-
subformula whose successor in Cm is the main d-subformula of Cm;

(ii) a d-formula from a ⊥-axiom, then t2k is the other d-formula from that
⊥-axiom and n is 2k.

If the last d-formula of t2k is

(i) a d-formula from the end sequent of the derivation D, then n is 2k;
(ii) the d-formula C1, which is a cut formula of a cut whose other cut formula

is C (C1 and C have the same form), then the main d-subformula of C is
the main d-subformula of C1 and t2k+1 can be made in the following way:
(a) if there is a d-branch of C which is a part of the main d-subformula

of C, then t2k+1 is only the d-formula C and n = 2k + 1;
(b) if there is a d-branch of C which ends in an axiom and whose part

is the main d-subformula of C, then t2k+1 is that d-branch of C and
the main d-subformula of the last d-formula of t2k+1 is the successor
of the main d-subformula of C;

(c) if there is a d-branch of C whose t-part is the main d-subformula of C,
then t2k has to be changed, i.e., t2k becomes only its first d-formula
and n = 2k (t2k+1 does not exist).

Remark 8. If a d-formula A has an o-tree tr : t1 . . . tn in a derivation D, where
n is an odd number, it means that in the derivation D there is a rule which ”makes”
a d-formula of the same form as A (i.e., a d-formula of the same form as A is the
principal formula of that rule) and that principal formula is connected with the
d-formula A by several cuts whose cut formulae belong to tr.

In a derivation D an o-tree tr : t1 . . . tn of a d-formula A is solid if n is an even
number, otherwise the o-tree tr is a no-solid o-tree.

In Example 3 for the o-trees trr1, trr2 and trl we have the following. The
o-tree trr1 is a no-solid o-tree of the right cut formula of the cut c3, the d-formula
A∨B{n,k}; the o-tree trr2 is a solid o-tree of that d-formula A∨B{n,k}; and the
o-tree trl is a no-solid o-tree of the left cut formula of the cut c3.

By the following notion we want to make complete information about connec-
tions of a d-formula A with principal formulae which have the same form as that
d-formula A.

All possible o-trees of a d-formula A in a derivation form the origin of the
d-formula A in the derivation. A d-formula A has the safe origin in a derivation
if all its o-trees are solid; otherwise that d-formula A does not have the safe origin
in that derivation.
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Now we can define the notion of a maximum cut of a derivation. Let
D1

Γ → A

D2

Aα, ∆ → D

Γ×α, ∆ → D

be a subderivation of a derivation D. That cut, the last rule of that subderivation,
will be called a maximum cut of the derivation D if neither of its cut formulae have
safe origins in the derivation D. Otherwise, that cut will be called a no-maximum
cut of the derivation D.

In Example 3 the cuts c1, c2 and c3 are maximum cuts and the cut c4 is a
no-maximum cut of the derivation E3.

Finally, we present the following theorem for the system S:

Theorem (M-Cut-Free Form Theorem). If
D

Γ → A
is a derivation in the sys-

tem S, then in the system S there is a derivation without maximum cuts
Dnf

Γ → A
.

5. The proof of M-Cut-Free Form Theorem

In this section we will prove M-Cut-Free Form Theorem as a consequence of
Normal Form Theorem for the system N from Section 4.1. In the proof will be
used the second part of the property (**) from the Introduction:

Theorem. If a derivation Π is a normal derivation in the system N , then φΠ
is a derivation without maximum cuts in the system S.

Proof. The theorem is a consequence of the following properties, which hold
for the systems S and N : (i) for each derivation Π from the system N the derivation
ϕφΠ is Π; and (ii) if ϕD is a normal derivation in the system N , then D is a
derivation without maximum cuts in the system S. �

Proof of M-Cut-Free Form Theorem for the system S. Let
D

Γ → A

be a derivation in the system S. By the map ϕ, the ϕ-image of the deriva-

tion D,
Γ

ϕD
A

, is a derivation in the system N . By Normal Form Theorem for the

system N from Section 4.1, in the system N there is a normal derivation
Γ

Πnf

A
.

Finally, by the definition of the map φ and Theorem above, the derivation
φΠnf

Γ → A

is a derivation without maximum cuts in the system S. �
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