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SUMS OF LIKE POWERS AND SOME DENSE SETS

Žarko Mijajlović, Miloš Milošević
and Aleksandar Perović

Abstract. We introduce the notion of the P -sequences and apply their prop-
erties in studying representability of real numbers. Another application of
P -sequences we find in generating the Prouhet–Tarry–Escott pairs.

1. Introduction

First we define the notion of P -sequence and establish their basic properties
which will be used in later sections. In the next section we use the properties of
P -sequences in the study of representability of real numbers by sequences of reals.
Recall that a real number r is representable by a sequence 〈an | n ∈ N〉 if there is
S ⊆ N such that r =

∑
n∈S an.

The following result on representability of real numbers is due to Kakeya [9]:
Suppose that A = 〈an | n ∈ N〉 is a decreasing sequence of positive reals which
converges to 0 and that s =

∑
an, 0 < s � +∞. Then the following assertions are

equivalent:
• Each r ∈ (0, s] is representable by means of A;
• an �

∑∞
k=n+1 ak, for each n.

Though we do not use Kakeya’s theorem in our proofs, some particular cases of
our examples are its consequences. However, the most interesting cases cannot be
obtained by it.

Finally, using the P -sequences, we obtain new methods of generating sums of
like powers i.e., the Prouhet–Tarry–Escott pairs. For more information about the
Prouhet–Tarry–Escott problem see [1, 2, 4, 5, 6, 8].

2. P -sequences

We use symbols Z, N, N
+, R and R

+ to represent the sets of integers, nonnega-
tive integers, positive integers, real numbers and positive real numbers, respectively.
In addition, we also adopt the convention that 00 = 1.

The notion of a P -sequence is recursively defined as follows:
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• 〈1,−1〉 is a P -sequence;
• If 〈a0, . . . , ak〉 is a P -sequence and a0 = −ak, then 〈a0, . . . , ak, ak, . . . , a0〉 is also

a P -sequence;
• If 〈a0, . . . , ak〉 is a P -sequence and a0 = ak, then 〈a0, . . . , ak−1, 0,−ak−1, . . . ,−a0〉

is also a P -sequence;
• Each P -sequence can be obtained only by finite use of the above clauses.
We denote the n-th P -sequence by Pn (assuming that they are ordered by their
increasing lengths). For instance,

P1 = 〈1,−1〉, P2 = 〈1,−1,−1, 1〉, P3 = 〈1,−1,−1, 0, 1, 1,−1〉 etc.

For an arbitrary positive integer n, the n-th P -sequence Pn = 〈a0, . . . , ak〉 and any
integer s � 0 let us define a polynomial function Fn,s(x) over R by

Fn,s(x) =
k∑

i=0

ai(i + x)s.

Lemma 1. Fn,s ≡ 0 for s = 0, . . . , n − 1.

Proof. Since

Fn,s(x) = ((n − 1) · · · (n − 1 − s))−1F
(n−1−s)
n,n−1 (x), 0 � s < n − 1,

where F
(n−1−s)
n,n−1 is the (n − 1 − s)-th derivative of Fn,n−1, it is sufficient to prove

that

(1) Fn,n−1 ≡ 0.

We prove the lemma by induction on n. Trivially (1) is true for n = 1, so let us
assume that for some n � 1 the equality (1) holds. We have the following two
cases:

n = 2m. Assuming that P2m = 〈a0, . . . , ak〉, we have that

P2m+1 = 〈a0, . . . , ak−1, 0,−ak−1, . . . ,−a0〉

F2m+1,2m(x) =
k−1∑
i=0

ai(i + x)2m −
k−1∑
i=0

ai(2k − i + x)2m

=
k∑

i=0

ai(i + x)2m −
k∑

i=0

ai(i − 2k − x)2m

= F2m,2m(x) − F2m,2m(−2k − x).

Then
F ′

2m+1,2m(x) = 2mF2m,2m−1(x)︸ ︷︷ ︸
=0

+2mF2m,2m−1(−2k − x)︸ ︷︷ ︸
=0

= 0,

so F2m+1,2m is a constant function. Since F2m+1,2m(−k) = 0, we conclude that
F2m+1,2m ≡ 0.

n = 2m+1. Similarly to the previous case one can easily check that F2m+2,2m+1

is a constant function. Since F2m+2,2m+1(−(2k + 1)/2) = 0, we conclude that
F2m+2,2m+1 ≡ 0 as well. �



SUMS OF LIKE POWERS AND SOME DENSE SETS 47

Theorem 1. For s � n the degree of Fn,s is equal to s − n.

Proof. Clearly, it is sufficient to prove that

Fn,n ≡ const. �= 0.(2)

Observe that an immediate consequence of Lemma 1 is the fact that each Fn,n is a
constant function.

The proof goes by induction on n. F1,1 ≡ −1, so let us assume that for some
n � 1 the relation (2) holds.

n = 2m. Assuming that P2m = 〈a0, . . . , ak〉, we have

P2m+1 = 〈a0, . . . , ak−1, 0,−ak−1, . . . ,−a0〉

F2m+1,2m+1(x) =
k−1∑
i=0

ai(i + x)2m+1 −
k−1∑
i=0

ai(2k − i + x)2m+1

= F2m,2m+1(x) + F2m,2m+1(−2k − x).

F2m+1,2m+1 is a constant function, so

F2m+1,2m+1(x) = F2m+1,2m+1(−k) = 2F2m,2m+1(−k).

Since ai = ak−i, we have F2m,2m+1(−k) = −F2m,2m+1(0). By the induction hy-
pothesis F2m,2m+1 is a linear function thus 1–1, hence F2m,2m+1(−k) �= 0.

n = 2m + 1. Similarly to the previous case one can easily deduce that

F2m+2,2m+2(x) = 2F2m+1,2m+2(−(2k + 1)/2)

F2m+1,2m+2(−(2k + 1)/2) = −F2m+1,2m+2(1/2),

which combined with the induction hypothesis implies that

F2m+1,2m+2(−(2k + 1)/2) �= 0. �

Corollary 1. Let Pn = 〈a0, . . . , ak〉 be a P -sequence. Then:

(1)
k∑

i=1

aii
s = 0, s = 0, . . . , n − 1; (2) sgn

k∑
i=1

aii
n = (−1)n.

Proof. (1) is an immediate consequence of Lemma 1, while (2) can be ob-
tained by induction, using the fact that ai = ak−i for even n, and ai = −ak−i for
odd n. �

3. Dense-expandable sequences

Through this section E will denote some denumerable sequence of positive
real numbers, E(n) its n-th member,

∑
E

def=
∑∞

n=0 E(n), lim E
def= limn→∞ E(n),

r + sE
def= 〈r + sE(n) | n ∈ N〉 and µE is a measure on N defined by

µE(S) =
∑
n∈S

E(n), S ⊆ N.

We say that measure µE is continuous if for each r ∈ [0,∞] there is S ⊆ N such
that µE(S) = r.
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Sequence E is dense-expandable if the set X(E) def=
{∑

n∈S εnE(n) | S ranges
over finite subsets of N and εn ranges over {−1, 1}} is dense in R.

If
∑

E is convergent, then X(E) is bounded in R, so it cannot be dense. On
the other hand, if µE is continuous, then E is obviously dense-expandable.

Theorem 2. Suppose that E is a sequence of positive real numbers such that
lim E = 0 and

∑
E = ∞. Then µE is continuous.

Proof. For the fixed positive real number c let C be the family of all subsets
S of N such that µE(S) � c. Note that C �= ∅ since lim E = 0. 〈C,⊆〉 is clearly a
poset, so it has a maximal chain, say M . It is easy to see that

⋃
M ∈ C. Suppose

that µE(
⋃

M) = b < c. Since µE(N) = ∞, N �
⋃

M is infinite. Now lim E = 0
implies that there is an index n ∈ N�

⋃
M such that b+E(n) < c. But this implies

that µE

(⋃
M

)
< µE

({n}∪⋃
M

)
< c, which contradicts the maximality of M . �

A converse implication need not be true. Namely, the sequence

E = 〈1, 2, 2−1, 22, 2−2, 23, 2−3, . . .〉
clearly generates a continuous measure µE , but it is not convergent. However, its
limes inferior lim E is equal to 0. Note also that from limE = 0 and

∑
E = ∞

does not follow necessarily the continuity of µE .

Theorem 3. Let ϕ(n) be the Euler function. Then A = {ϕ(n)/n | n ∈ N} is
dense in the real interval [0, 1].

Proof. First, we remind the reader that ϕ(n)/n = (1 − 1/p1) · · · (1 − 1/pk),
where p1, . . . , pk are all prime factors of n. Now, let an = − log(1 − 1/pn), where
〈pn | n ∈ N〉 is the sequence of elements of the set of all primes P . Then it is easy
to see that an satisfies conditions of the previous theorem so for any r ∈ R+ there
is S ⊆ N such that

∑
n∈S − log(1 − 1/pn) = r, i.e.,

∏
n∈S(1 − 1/pn) = e−r. As r

runs over R+, e−r takes all values in [0, 1], so for any t ∈ [0, 1], there is S ⊆ P such
that

∏
p∈S(1 − 1/p) = t. Thus limn∈S ϕ(n)/n = t, hence A is dense in [0,1]. �

The next result is useful in studying of dense-expandability.

Theorem 4. Suppose that E is a sequence of positive real numbers such that
lim E = 0 and

∑
E = ∞. Then for any nonnegative real number r the sequence

r + E is dense-expandable.

Proof. For fixed r � 0 we want to prove that X(r + E) = R. Since x ∈
X(r + E) iff −x ∈ X(r + E), it is sufficient to prove that for any c � 0 and an
arbitrary small ε > 0 open interval (c − ε, c + ε) and X(r + E) meet each other.

The assumed properties of E provide the existence of positive integers n and
m > n such that:

(1) E(i) < ε/2, for all i � n; (2)
m∑

i=n

E(i) � c <
m+1∑
i=n

E(i) < c + ε.
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Let q =
∑m+1

i=n E(i)− c, l = m−n + 2 and let δ = q/2l. Since lim E = 0, there
is an integer k > m such that E(i) < δ for all i � k. Then:

c + ε >

m+1∑
i=n

(r + E(i)) −
k+l−1∑

i=k

(r + E(i))

=
m+1∑
i=n

E(i) −
k+l−1∑

i=k

E(i) �
m+1∑
i=n

E(i) − q

2
> c.

Finally,
m+1∑
i=n

(r + E(i)) −
k+l−1∑

i=k

(r + E(i)) ∈ X(r + E),

so X(r + E) is dense in R. �

An immediate consequence of Theorem 4 is the fact that the property of be-
ing dense-expandable is not invariant to asymptotic equivalence. For instance,
sequences E1 = 〈1 | n ∈ N〉 and E2 = 〈1 + 1

n+1 | n ∈ N〉 are asymptotically
equivalent, but X(E1) = Z and X(E2) = R.

In general, a cofinite subsequence of a dense-expandable sequence E need not
be dense expandable. As we have mentioned earlier, the sequence

E = 〈1, 2, 2−1, 22, 2−2, 23, 2−3, . . .〉
is dense-expandable, but its cofinite subsequence E1 = 〈E(n + 2) | n ∈ N〉 is not
since X(E1) ∩ (1, 2) = ∅.

The basic strategy in proving that a certain sequence E is dense-expandable
is in choosing countably many pairwise disjoint finite subsets Sn of N and appro-
priate εn,is such that the sequence

〈 ∑
i∈Sn

εn,iE(i) | n ∈ N
〉

satisfies conditions
of theorem 4. As an illustration we will prove that sequence E = 〈ln n | n > 0〉 is
dense-expandable. First, note that the sequence 〈ln(1 + 1

2n ) | n > 0〉 satisfies the
conditions of Theorem 4, so it is dense-expandable. The sets Sn = {2n, 2n + 1},
n > 0 are pairwise disjoint and ln(1+1/2n) = ln(2n+1)−ln 2n, so X

(〈ln(1+1/2n) |
n > 0〉) ⊆ X(E). Hence E is dense-expandable.

Theorem 5. The sequence 〈nδ | n ∈ N
+〉 is dense-expandable if and only if

δ = −1 or δ > −1 and δ /∈ Z.

Proof. If δ < −1, then
∑∞

n=1 nδ converges, so X
(〈nδ | n ∈ N

+〉) is bounded in
R. By Theorem 4 sequence 〈nδ | n ∈ N

+〉 is dense-expandable for each δ ∈ [−1, 0).
If δ is a positive integer, then X

(〈nδ | n ∈ N
+〉) ⊆ Z. It remains to prove that

〈nδ | n ∈ N
+〉 is dense-expandable for any δ ∈ R

+
� Z.

Fix δ ∈ R
+

� Z. Then there is a unique positive integer m such that m − 1 <

δ < m. Let E(n) def=
∑k

i=0 ai(n − i)δ, n > k, where Pm = 〈a0, . . . , ak〉 is the m-th
P -sequence. Then:
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E(n) =
k∑

i=0

ai(n − i)δ = nδ
k∑

i=0

ai

(
1 − i

n

)δ

= nδ
k∑

i=0

ai

( ∞∑
j=0

(−1)j

(
δ

j

)
ijn−j

)
= nδ

∞∑
j=0

(−1)jn−j

(
δ

j

)( k∑
i=0

aii
j

)

= nδ
∞∑

j=m

(−1)jn−j

(
δ

j

)( k∑
i=0

aii
j

)
(Corollary 1)

= (−1)mnδ−m

(
δ

m

) k∑
i=0

aii
m + o(nδ−m).

Since
(

δ
m

)
> 0 and sgn

∑k
i=0 aii

m = (−1)m, sequence 〈E(n) | n > k〉 is ultimately
positive. Now −1 < δ − m < 0 implies that 〈E(n) | n > k〉 is dense-expandable
(Theorem 4). The same is obviously true for the sequence E = 〈E(kn) | n > k〉.

Finally, sets Sn = {kn − i | i ∈ {0, . . . , k}}, n > k are pairwise disjoint and
each E(kn) is equal to

∑
j∈Sn

εn,jj
δ, where εn,j are the corresponding coordinates

of Pm. Thus the sequence 〈nδ | n > 0〉 is dense-expandable. �

Theorem 6. Let 〈pn | n ∈ N〉 be the sequence of all prime numbers and let
E = 〈pδ

n | n ∈ N〉. Then:
(1) The Riemann hypothesis implies that E is dense-expandable for any 0 <

δ < 1/2;
(2) Hypothesis lim

n→∞(√pn+1 − √
pn) = 0 implies that E is dense-expandable

for any 0 < δ � 1/2.

Proof. In order to prove (1), assume the Riemann hypothesis. Then, the
following relation holds for the consecutive primes:

pn+1 − pn � √
pn log pn(3)

Suppose that 0 < δ < 1/2. Then

pδ
n+1 − pδ

n = pδ
n+1

[
1 −

(
1 − pn+1 − pn

pn+1

)δ
]

= pδ
n+1

[
1 −

(
1 −

(
δ

1

)
pn+1 − pn

pn+1
+ O

(pn+1 − pn

pn+1

))]

= δ
pn+1 − pn

p1−δ
n+1

+ O
(pn+1 − pn

p1−δ
n+1

)
�

√
pn log pn

p1−δ
n+1

+ o(1) → 0

as n → ∞ (see [3]). Taking un = pδ
n+1 − pδ

n, n ∈ N+, we see that for 0 < δ < 1/2,∑
k�n

uk = pδ
n+1 − 2δ → ∞, as n → ∞,

un > 0 and limn un = 0. Thus, by Theorem 4 E is dense-expandable.
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In order to prove (2), let us assume that limn→∞
(√

pn+1 − √
pn

)
= 0. If

f(δ) = xδ − yδ, 0 < δ and y < x, then f ′(δ) = xδ ln(x) − yδ ln(y) > 0, so f(δ) is
increasing for δ > 0. Hence, if 0 < δ � 1/2, then 0 � pδ

n+1−pδ
n � √

pn+1−√
pn → 0,

as n → ∞, so by an argument as in (1), the assertion follows. �

4. Sums of like powers

Finite disjoint subsets U and V of Z will be called a Prouhet-Tarry-Escott pair
for the given integer n > 1 if they have the same cardinality and

(4)
∑
u∈U

us =
∑
v∈V

vs, s = 0, . . . , n − 1, and
∑
u∈U

un �=
∑
v∈V

vn.

The sums satisfying the left-hand conjunct of (4) are also known as sums of like
powers.

If 〈U1, V1〉, . . . , 〈Um, Vm〉 are Prouhet-Tarry-Escott pairs for the given integer
n and if sets U1, . . . , Um, V1, . . . , Vm are pairwise disjoint, then clearly sets U =⋃m

i=1 Ui and V =
⋃m

i=1 Vi form another Prouhet-Tary-Escott pair for n.
Now let us describe how one can use the P -sequences in order to generate the

Prouhet-Tarry-Escott pairs:
1. Let n � 2 be an arbitrary integer and let Pn = 〈a0, . . . , ak〉 be the n-th

P -sequence. By lemma 1 we have that
k∑

i=0

ai(pi + l)s = 0, s = 0, . . . , n − 1, l ∈ Z, p ∈ Z � {0}
(
observe that

∑
i = 0kai(pi + l)s = psFn,s(l/p)

)
. Since each P -sequence has the

same number of 1s and −1s, we have that sets Up,l and Vp,l defined by

Up,l = {pi + l | 0 � i � k ∧ ai = −1} and Vp,l = {pi + l | 0 � i � k ∧ ai = 1}
form a Prouhet-Tarry-Escott pair for the given integer n � 2. Note that

k∑
i=0

ai(pi + l)n �= 0,

since
∑k

i=0 ai(pi + l)n = pnFn,n(1/p) (see Theorem 1).
2. Let Pn = 〈a0, . . . , ak〉 be the n-th P -sequence (n � 2). We define the

sequence Qn = 〈b0, . . . , bk+2〉 as follows:

bi =

⎧⎪⎨
⎪⎩

ai, i ∈ {0, 1}
ai + ai−2, 1 < i < k − 1
ai−2, i ∈ {k + 1, k + 2}.

For example, we obtain Q3 from P3 = 〈1,−1,−1, 0, 1, 1,−1〉 in the following man-
ner:

P3 1 −1 −1 0 1 1 −1
1 −1 −1 0 1 1 −1

Q3 1 −1 0 −1 0 1 0 1 −1
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By induction one can show that each bi ∈ {−1, 0, 1} and that each Qn has the same
number of 1s and −1s. Now for any non-negative integer s < n we have that

k∑
i=0

bi(i + 1)s =
k∑

i=0

ai(i + 1)s +
k∑

i=0

ai(i + 3)s = 0

k∑
i=0

bi(i + 1)n =
k∑

i=0

ai(i + 1)n +
k∑

i=0

ai(i + 3)n

= Fn,n(1) + Fn,n(3) = 2Fn,n(1) �= 0,

so U = {i+1 | bi = 1} and V = {i+1 | bi = −1} represents a Prouhet–Tarry–Escott
pair.

3. For the n-th P -sequence Pn = 〈a0, . . . , ak〉 let

Xn = {i ∈ N
+ | i � k ∧ ai = −1} and Yn = {i ∈ N

+ | i � k ∧ ai = 1}.
Clearly, Xn and Yn are disjoint and |Xn| = |Yn| + 1. Furthermore, using the
definition of the notion of a P -sequence one can easily check that X2n+1 ⊂ X2n+2

and Y2n+1 ⊂ Y2n+2, and the sets U = X2n+2 � X2n+1 and V = Y2n+2 � Y2n+1 are
disjoint and have the same cardinality. Bearing in mind the corollary 1, we see that
for each nonnegative integer s � 2n holds∑

i∈U

is =
∑

i∈X2n+2

is −
∑

i∈X2n+1

is =
∑

i∈Y2n+2

is −
∑

i∈Y2n+1

is =
∑
i∈V

is.

For instance, if n = 4, then X4 = {1, 2, 6, 7, 11, 12}, Y4 = {4, 5, 8, 9, 13}, U =
{7, 11, 12}, V = {8, 9, 13} and

7s + 11s + 12s = 8s + 9s + 13s, s = 1, 2.
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