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VARIANTS OF KARAMATA’S
ITERATION THEOREM

Eugene Seneta

Abstract. Karamata’s Iteration Theorem is used to refine the asymptotic
behavior of iterates of a function, under a more restrictive assumption than
Karamata’s, but still involving regular variation. A second result gives a nec-
essary and sufficient integral condition for convergence of a series of iterates.
Historical background to the idea of regularly varying sequence precedes a
short concluding section on attribution of a probabilistic result.

1. Introduction

An International Conference on Karamata’s Regular Variation was held in
Dubrovnik–Kupari, Yugoslavia, June 1–10, 1989. The paper written for that con-
ference by the present author and published with other papers presented there,
appeared in the Publications de l’Institut Mathématique as [23]

I had met Tatjana (Tania) Ostrogorski (20.02.1950 –25.08.2005) in person only
once. It was at that Kupari Conference, and I remember walks and pleasant con-
versations amidst small groups , which included her close friend and colleague Boba
Janković, on the esplanade at Kupari. My sporadic contact by email continued over
the years, and I had occasion to review for Mathematical Reviews several of her
papers. Serious contact was reestablished with the proposal to publish an issue of
the Publications dedicated to Karamata and edited by Tania. My contribution to
that was [24].

In all I have had 3 publications before the present one in the Publications. The
first was [21]. All 3 have been based on fundamental results due to Karamata,
and the last two at least were handled editorially by Tania. In all 3 there is a sub-
theme of results going back to Cauchy. I thought it appropriate for this occasion
to continue in the same vein.
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The present paper is a sequel to [23]. That paper showed how Karamata’s
Iteration Theorem can be used to express necessary and sufficient conditions for a
sequence of functional iterates to be a regularly varying sequence of negative index.

In fact, the author’s initial interest in regular variation arose out of iteration
theory and functional equations, and was in sequential criteria for regular variation
and in regularly varying sequences [18], [19], [20], [3], [9], [4], [22]. This seems to
have given some impetus to continuing work on regular varying sequences, including
[11], [12], [27], [16], [8].

Our main result is the following:

Theorem 1.1. Suppose 0 < f(x) < x, 0 < x � x0, x0 > 0, and that f(x) is
continuous on 0 < x � x0. Further suppose that:

(1.1) f(x) = x− ax1+β + b(x)x1+β+δL(x)

where a > 0, β > δ > 0, L(x) is slowly varying in the neighborhood of 0, and
b(x) → b �= 0 as x→ 0+. If xn+1 = f(xn), n = 0, 1, 2, · · · then

(1.2) xn = (nβa)−1/β
{

1 +
b(βa)−δ/β−1

(1 − δ/β)
n−δ/βL(n−1/β)(1 + o(1))

}
Karamata’s Iteration Theorem [15], [23] replaces (1.1) by

(1.3) f(x) = x− a(x)xkL(x)

where k > 1, L(x) is slowly varying as x → 0+, and a(x) → a > 0, and concludes
that as n→ ∞
(1.4) xn = a∗n−k∗L∗(n−1)(1 + o(1))

where k∗ = 1/(k−1), a∗ = (k∗/a)k∗
and L∗(x) is slowly varying at 0, xk∗

denoting
the inverse function of xk−1L(x) since within a neighborhood of zero xk−1L(x) can
be taken as continuous and strictly monotone increasing without loss of generality.

In our Theorem 1.1 we in effect take

a(x) = a, k = 1 + β, L(x) = 1 − (b(x)/a)xδL(x),

and from Karamata’s theorem can conclude, since k∗ = 1/β, a∗ = (1/(aβ))1/β that

(1.5) xn = (nβa)−1/β(1 + o(1)), n→ ∞.

Slightly later than Karamata’s paper Szekeres [26, pp. 223–224], treated the case
where b(x)xδL(x) in (1.1) is replaced by the weaker o(1), x → 0+, to obtain the
conclusion (1.5).

Stević [25, Theorem 1(c)], has made a detailed study of the case of (1.1) where
L(x) = 1 + o(1) and obtained (1.2) in this case.

We shall need (1.5) in our sequel.
Note that our preliminary assumptions on f imply that xn → 0+, n→ ∞.
Notice that a conjugate function L∗ does not appear in the refined rate of

convergence result (1.2), in contrast to (1.4).
The result (1.2) was announced in somewhat garbled form in the present au-

thor’s proposed commentary on [15] for the book Selected Papers of J. Karamata
which has yet to appear. Inasmuch as the proof of Theorem 1.1 uses Karamata’s
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Iteration Theorem, and several fundamental results of the theory of regularly vary-
ing functions [22], [1], the author hopes that it may serve as a suitable tribute to
the memory of Tania Ostrogorski, whose research creativity and editorial activity
was intimately associated with her countryman Karamata’s creation of the theory
of regular variation.

We shall also need the following auxiliary result.

Lemma 1.1. Suppose φ(y) is a positive continuous non-increasing function on
m � y <∞, m > 0 and suppose

(1.6)
∫ ∞

m

φ(y) dy = ∞.

Then for integer n, as n→ ∞

(1.7)
n∑

k=m

φ(k) ∼
∫ n

y=m

φ(y) dy.

Proof. Write

An =
n∑

k=m

φ(k), In =
∫ n

m

φ(y) dy.

Then, in the manner of establishing Cauchy’s Integral Test, φ(m) � An−In � φ(n)
so

(1.8) 1 +
φ(m)
In

� An

In
� 1 +

φ(n)
In

.

Now, by the Mean Value Theorem and the non-increasing nature of φ

In = (n−m)φ(ξn) � (n−m)φ(n), m < ξn < n,

so that
φ(n)
In

� 1
n−m

−→ 0, n→ ∞.

Hence from (1.6) and (1.8), (1.7) follows. �

2. Proof of Theorem 1.1 and consequences

Proof. First notice that since b(x) → b �= 0, x→ 0+, from the Representation
Theorem for slowly varying functions, we can assume without loss of generality that
for any γ > 0, xγL(x) is strictly decreasing as x → 0+ in the neighborhood of 0
[22, pp. 21–23]. Thus putting φ(y) = y−δ/βL(y−1/β), there is an m such that for
y � m, φ is strictly decreasing as y increases. Further, since 0 < δ < β, it follows
that the conditions of Lemma 1.1 are satisfied, and so

n−1∑
k=m

k−δ/βL(k−1/β) ∼
∫ n−1

y=m

y−δ/βL(y−1/β) dy
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as n → ∞. Applying a theorem due to Karamata [14] (see [22, Exercise 2.1, p.
86]), since y−δ/βL(y−1/β) is regularly varying at infinity, with index ρ = −δ/β, as
w → ∞ ∫ w

y=m

y−δ/βL(y−1/β) dy ∼ w1−δ/βL(w−1/β)
(1 − δ/β)

.

Hence, by the Uniform Convergence Theorem, as n→ ∞:

(2.1)
n−1∑
k=1

k−δ/βL(k−1/β) ∼ n1−δ/βL(n−1/β)/(1 − δ/β).

We shall need this shortly.
Now define the sequence {ρn} recursively by x−β

n = ρ1 + ρ2 + · · · + ρn, n � 1,
and the sequence {an} recursively by

(2.2) an = a− b(xn)xδ
nL(xn).

Notice that since xn → 0+ as n → ∞, it follows that b(xn) → b, and since
xδL(x) → 0, x→ 0+, an → a, n→ ∞. Thus

ρ1 = x−β
1

ρn+1 = x−β
n+1 − x−β

n , n � 1.(2.3)

Then since from (1.1)

(2.4) xn+1 = xn(1 − anx
β
n)

and xn → 0 as n→ ∞:

an =
xn − xn+1

x1+β
n

=
ρn+1x

β
n+1(xn − xn+1)

xn(xβ
n − xβ

n+1)

=
ρn+1(1 − anx

β
n)β(anx

β
n)

(1 − (1 − anx
β
n)β)

=
ρn+1(1 − βanx

β
n +O(x2β

n ))

β(1 +O(xβ
n))

.

Therefore from (1.1)

ρn+1 = β(a− b(xn)xδ
nL(xn))(1 +O(xβ

n))

= βa− β{b(xn) − b+ b}xδ
nL(xn)(1 +O(xβ

n)) +O(xβ
n)

= βa− βb(1 + o(1))xδ
nL(xn)(1 +O(xβ

n)) +O(xβ
n)

since b(xn) − b→ 0. Now, using (1.5)

ρn+1 = βa− βb{(nβa)−1/β(1 + o(1))}δL((nβa)−1/β(1 + o(1))) +O(n−1)

= βa− βb{(nβa)−δ/β(1 + o(1))}L(n−1/β)(1 + o(1)) +O(n−1)

by the Uniform Convergence Theorem of regularly varying functions. Thus

(2.5) βa− ρn+1 = βb(nβa)−δ/βL(n−1/β)(1 + o(1))

as n→ ∞, since 0 < δ/β < 1.
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Now assume that b > 0 (the argument will be similar for b < 0). Then using
(2.5), for given small ε > 0, for n � m ( = m(ε)), where m is also sufficiently large
to ensure the monotonicity of φ(y), y � m, as defined at the beginning of the proof:

(2.6) βb(nβa)−δ/βL(n−1/β)(1 − ε) � βa− ρn+1 � βb(nβa)−δ/βL(n−1/β)(1 + ε).

Using (2.3)

(2.7)
n−1∑
k=m

(βa− ρk+1) = (n−m)βa−
n−1∑
k=m

ρk+1 = (n−m)βa− x−β
n + x−β

m .

Write

(2.8) ψ(m,n) = βb(βa)−δ/β
n−1∑
k=m

k−δ/βL(k−1/β).

Then from (2.6)–(2.8)

(2.9) ψ(m,n)(1 − ε) � (n−m)βa− x−β
n + x−β

m � ψ(m,n)(1 + ε).

Now using (2.1) and dividing through (2.9) by ψ(m,n), as n→ ∞:

1 − ε � lim inf
nβa− x−β

n

βb(βa)−δ/βn1−δ/βL(n−1/β)/(1 − δ/β)

� lim sup
nβa− x−β

n

βb(βa)−δ/βn1−δ/βL(n−1/β)/(1 − δ/β)
� 1 + ε.

Since ε is arbitrary

(2.10) x−β
n = nβa− βb(βa)−δ/β

1 − δ/β
n1−δ/βL(n−1/β)(1 + o(1)).

It follows that

xn = (nβa)−1/β
{

1 − βb(βa)−δ/β

(βa)(1 − δ/β)
n−δ/βL(n−1/β)(1 + o(1))

}−1/β

= (nβa)−1/β
{

1 +
b(βa)−δ/β−1

(1 − δ/β)
n−δ/βL(n−1/β)(1 + o(1))

}
.

which is (1.2). �

The conclusion of Theorem 1.1 and the methodology of its proof above make
possible a rate of convergence sharpening of the result:

(2.11) nβ
(
1 − xn+1

xn

)
= 1 + o(1) as n→ ∞.

The result (2.11) follows directly from Karamata’s Iteration Theorem, and {xn} is
a normalized regularly varying sequence [23, Section 2]. Further:
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Theorem 2.1. Under the conditions of Theorem 1.1,

(2.12) nβ
(
1 − xn+1

xn

)
= 1 +Kn−δ/βL(n−1/β)(1 + o(1)) as n→ ∞,

where K is a constant which is positive multiple of b.

Proof. From (2.4)

(2.13) x−β
n

(
1 − xn+1

xn

)
= an = a+ (an − a)

from which, using (2.2) on the right hand side:

= a− (b(xn) − b)xδ
nL(xn) − bxδ

nL(xn)

= a− bxδ
nL(xn) + o(xδ

nL(xn)).

From (2.13) and (1.2) then:

(2.14) naβ
(
1 − xn+1

xn

)
=

a− bxδ
nL(xn) + o(xδ

nL(xn))
1 − cβn−δ/βL(n−1/β)(1 + o(1))

using the Uniform Convergence Theorem, where c = b(βa)−δ/β−1/(1 − δ/β). Now
put

(2.15) Dn = 1 − (b/a)xδ
nL(xn) + o(xδ

nL(xn)),

so that

(2.16) nβ
(
1 − xn+1

xn

)
= Dn

{
1 + cβn−δ/βL(n−1/β)(1 + o(1))

}
.

Using (1.2), and the Uniform Convergence Theorem:

(2.17) xδ
nL(xn) = (naβ)−δ/βL(n−1/β)(1 + o(1)),

whence from (2.15) and (2.17)

(2.18) Dn = 1 − (b/a)(naβ)−δ/βL(n−1/β)(1 + o(1)).

Consequently, from (2.16) and (2.18)

nβ
(
1 − xn+1

xn

)
= 1 +Kn−δ/βL(n−1/β)(1 + o(1))

where
K = cβ − (βa)−δ/β b

a
=
b

a
(βa)−δ/β

((
1 − δ

β

)−1

− 1
)

= δc. �

3. Series of iterates

We notice that under the conditions of Karamata’s Iteration Theorem, using
the conclusion (1.4), that

∑
xn converges if 1 < k < 2, and diverges if k > 2. By

modifying the conditions we can obtain a necessary and sufficient condition for this
convergence.

It may be of interest to note that under the conditions of Theorem 3.1 below,
while still xn ↓ 0, n→ ∞, we have, in contrast to (2.11), only

ψ(xn)(1 − xn+1/xn) ↓ 0.



KARAMATA’S ITERATION THEOREM. 247

Theorem 3.1. Suppose 0 < f(x) < x, 0 < x � x0, x0 > 0, and that f(x) is
continuous on 0 < x � x0. Further suppose that f(x)/x ↑ 1 as x ↓ 0, and that f(x)
is concave on 0 < x � x0. Finally, suppose ψ(x) is a positive monotone continuous
function on 0 < x � x0 such that ψ(x) ↓ as x ↓. If xn+1 = f(xn), n = 0, 1, 2, . . . ,
then

(3.1)
∫ x0

0

w

ψ(w)(w − f(w))
dw <∞

is necessary and sufficient for

(3.2)
∑

n

xn

ψ(xn)
<∞.

Proof. Write

H(x) =
1

ψ(x)(1 − f(x)/x)
, 0 < x < x0.

Then H(x) is positive, continuous and decreasing with increasing x on 0 < x < x0,
and H(x) ↑ ∞, x ↓ 0. Now write

I =
∫ x0

0

H(w) dw.

Hence in the manner of Cauchy’s Integral Test bounds,
∞∑

n=0

(xn − xn+1)H(xn) � I �
∞∑

n=0

(xn − xn+1)H(xn+1) =
∞∑

n=1

(xn−1 − xn)H(xn)

so that

(3.3)
∞∑

n=1

xn − xn+1

xn−1 − xn
(xn−1 − xn)H(xn) � I �

∞∑
n=1

(xn−1 − xn)H(xn).

Now

(3.4)
f(xn−1) − f(xn)

xn−1 − xn
� f(xn) − f(xn+1)

xn − xn+1
, n � 1,

using the concavity assumption about f(x). Hence from (3.4)and (3.5):

x1 − x2

x0 − x1

∞∑
n=1

(xn−1 − xn)H(xn) � I �
∞∑

n=1

(xn−1 − xn)H(xn),

so that I and
∑∞

n=1(xn−1 − xn)H(xn) are finite or infinite together; and hence
from (3.3) and (3.4) I and

∑∞
n=0(xn − xn+1)H(xn) are finite or infinite together.

But using the form of H(x):
∞∑

n=0

(xn − xn+1)H(xn) =
∞∑

n=0

xn

ψ(xn)

which completes the proof. �
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The choice of ψ(x) = 1 in (3.1) and (3.2) gives a necessary and sufficient integral
condition for the convergence of

∑
xn.

Notice that one of the assumptions of the theorem could be relaxed by merely
assuming that f(x)/x ↑ as x ↓, with almost no modification of the proof. In this
situation, under the other assumptions of the theorem, limx→0+ f(x)/x = c, for
some constant c, 0 < c � 1. If c < 1 and ψ(x) = 1 then the integral (3.1) always
converges. But it is then obvious that xn decreases to 0 as n → ∞ at a geometric
rate cn.

Theorem 3.1 is relevant even if its assumptions are extended to include Kara-
mata’s assumption (1.3), since in the case k∗ = 1 (equivalently k = 2) the series∑
xn, with xn given by (1.4), may converge or diverge, depending on the nature

of the function L.
Thus ∑ 1

n(log n)h

diverges for 0 � h � 1 but converges for h > 1. Results like this were originally
obtained from progressively generalizing the ratio test for convergence of series by
using Cauchy’s Integral Test. We pass onto this historical topic now.

4. Normalized regularly varying sequences

A sequence of positive-terms {α(n)}, n � 1, satisfying

(4.1) n
(
1 − {α(n− 1)/α(n)}) → ρ, ρ finite

is called a normalized regularly varying sequence [9], [23], because of the structural
analogy with a property of normalized regularly varying functions.

Now, (4.1) is a manifestation of Raabe’s ratio test for convergence of a positive
series formed from the sequence {α(n)}, if the (primary) ratio test for convergence
gives the result unity (i.e., if α(n− 1)/α(n) → 1). Then if (4.1) holds with ρ > −1,∑∞

n=0 α(n) = ∞, while if ρ < −1,
∑∞

n=0 α(n) < ∞. If ρ = −1 in (4.1), in which
case no decision on convergence on the basis of Raabe’s test is possible, one may
proceed to what is called Bertrand’s test, but should be called De Morgan’s test:
if the limit of

(4.2) (log n)
{
n

(
α(n− 1)
α(n)

− 1
)
− 1

}
exists as n→ ∞, and is > 1, the series converges; if < 1 the series diverges; and if
= 1 the case is again indeterminate and one may go onto a more refined ratio test
still. Indeed, these tests can be taken as the first three of an infinite sequence of
tests, and this theme has previously been developed somewhat differently by Pakes
[16].

Let {un}, n � 0 be a sequence of positive terms; and define D−1(n) = un/un+1;
and for r = 0, 1, 2, . . . , and n sufficiently large:

(4.3) Dr(n) = (logr n)(Dr−1(n) − 1)

defining log0 n = n and logr n as the r-th functional iterate of log n. Existence of
the limit of D−1(n) allows the application of the ratio test if the limit is �= 1. If
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the limit is 1, suppose the limit of Dr(n) as n → ∞ exists for −1 � r � r0, and is
unity for −1 � r � r0−1, and �= 1 at r = r0. Then the series

∑
un converges if the

limit at r = r0 is > 1 and diverges if < 1. This general rule is due to De Morgan [7,
p. 326], to whom Buniakovsky [5, p. 393], ascribes it in his Notice [Primechanie]
III and states it according to form (4.3) on his pp. 404–405. This Primechanie is
on a favorite topic of his, the convergence of series, and takes up pp. 391–410. It
has little to do with the main theme of the book, intended as the first monograph
in Russian on probability theory.

In his careful expository synthesis of then-recent methodology on tests of con-
vergence of series, with focus on De Morgan’s result, Buniakovsky begins with
a comparison lemma of Duhamel, which subsequently permits him to compare
un/un+1 with νn/νn+1 of a “simpler” series

∑
νn, and thereby to deduce conver-

gence or divergence of
∑
un on the basis of that of

∑
νn. He also derives Cauchy’s

Integral Test for an eventually monotone decreasing sequence, which permits him
to deduce the result that

(4.4)
∑

n

{(( h−1∏
r=0

logr n

)
(logh n)k

)−1
}

converges for k > 1 and diverges for k � 1, for each h � 0, interpreting
∏−1

r=0 as 1.
(We are using modern notation.)

Buniakovsky’s is a careful, leisurely, textbook exposition, focussed squarely on
sequences {un}, in the form

(4.5)
( r0∏

r=0

logr n

)(
1 − un

un+1

)
→ (1 + δ)

and so can be regarded as not only a forerunner of the theory of regularly varying
sequences (the case r0 = 0), but also of very slowly varying sequences on a loga-
rithmic scale (for a fixed r0 � 1). De Morgan’s [7] derivation is very compressed,
inviting by its nature a careful subsequent exposition and De Morgan gives no ci-
tations, not even the names of earlier authors. Cauchy’s Integral Test plays a key
role. De Morgan’s theme is not primarily sequences but orders of growth of func-
tions, and there is a remarkable resemblance to the later theory of regularly varying
functions, and indeed to very slowly varying functions. We confine ourselves to
indicating here that his Section 206 [7, p. 324] begins with:

“The critical value of n in φx : xn, or the limit of xφ′x : φx, being a, . . . .”

5. Attribution and extension

The author first takes this opportunity to make some comments on his paper
[24], written for the issue of Publications dedicated to Karamata, especially its Sec-
tion 4: Regular Variation as Necessary and Sufficient. In the first place Bingham’s
paper [2] partly on closely related topics, written for the Kupari Conference and
therefore appearing in the same issue as [23], should have been cited in [24]. Sec-
ondly, that the necessary and sufficient condition for a distribution F to be in the



250 SENETA

domain of attraction of a normal (Gaussian) Law, written as (12) in [24], amounts
to

U(x) =
∫
|y|�x

y2dF (x)

being slowly varying at infinity in Karamata’s sense (while pointed out by Feller in
his 1966 monograph) was already contained in Sakovich’s paper [17]. Indeed, this
was within the more general context of domains of attraction of stable laws. Thus
there was explicit citation, already in 1956, and also use of, within this probabilistic
context, of Karamata’s paper [13]. Sakovich thanks Gnedenko for his help with the
publication of the note. Gnedenko’s use in precisely the same context of regular
variation conditions, but not explicit mention of Karamata, dates back at least to
1939 [10].

Secondly the author takes this opportunity to remark that in his first collabo-
rative paper with Ranko Bojanić [3] the additional condition

(5.1)
L(xLα(x))
L(x)

→ 1 as x→ 0+

where α = 1/β was used to give an explicit form to conclusion (1.4) of Karamata’s
Iteration Theorem. Remarkably, such a condition (with α = −1 in (5.1)) occurs
as necessary and sufficient for a version of the probabilistic Weak Law of Large
Numbers, in a forthcoming paper of Csörgö and Simons [6], where it is called the
Bojanić–Seneta condition.

Acknowledgements. My thanks are due to Nick Bingham for bringing Sako-
vich’s paper to my attention, to Oleg Klesov for sending me a copy of Gnedenko’s
paper [10], and to a referee for careful reading and useful suggestions.
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