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Abstract. Functional differential equations with deviating arguments are
studied for the first time in the framework of Karamata regularly varying func-
tions. A sharp condition is established for the existence of slowly varying solu-
tions for a class of second order linear equations of the form x′′ = q(t)x(g(t)),
both in the retarded and in the advanced case.

1. Introduction and results.

The theory of regular variation, which was initiated by Karamata in 1930,
has provided a major tool for various branches of mathematical analysis including
Abelian and Tauberian theorems, analytic number theory and complex analysis,
and it is equally important for probability theory.

We recall that a measurable function f : [0,∞) → (0,∞) is said to be regularly
varying of index ρ ∈ R if it satisfies

lim
t→∞

f(λt)
f(t)

= λρ for any λ > 0.

The totality of regularly varying functions of index ρ is denoted by RV(ρ). The
symbol SV is used to denote RV(0) and a member of SV = RV(0) is referred to as
a slowly varying function. If f(t) ∈ RV(ρ), then f(t) = tρL(t) for some L(t) ∈ SV,
and so the class of slowly varying functions is of fundamental importance in regular
variation. In the later part of the paper, among many basic properties of slowly
varying functions, we emphasize the representation theorem which asserts that
L(t) ∈ SV if and only if it is expressible in the form

f(t) = c(t) exp
{∫ t

a

ε(s)
s

ds

}
, t � a,
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for some a > 0 and some measurable functions c(t) and ε(t) such that

lim
t→∞ c(t) = c0 ∈ (0,∞) and lim

t→∞ ε(t) = 0.

For the most comprehensive exposition of regular variation and its applications,
the reader is referred to the book of Bingham, Goldie and Teugels [2].

The history of the study how Karamata’s theory intersects with the theory
of differential equations began in 1947 by the seminal paper of Avakumović on
the Thomas–Fermi equation, [1]. Linear equations were first studied by Omey in
1981, [13]. Systematic investigations in this direction started with a paper of Marić
and Tomić [11] published in 1976. A complete survey of the results on differential
equations, both linear and nonlinear, developed by means of regular variation is
given in the monograph of Marić [10]. It is shown therein that the class of Karamata
regularly varying functions is a well-suited framework for the asymptotic analysis of
nonoscillatory solutions of second order linear and nonlinear differential equations.
As an example for that statement we give the following theorem due to Marić
and Tomić [12] (see also [10, Thm. 1.1]), which provides a sharp criterion for the
existence of a slowly varying solution to the second order linear differential equation

(A) x′′ = q(t)x, q(t) > 0,

where q is continuous and integrable on some positive half-axis (a,∞).

Theorem 1.1. Equation (A) possesses a slowly varying solution x(t) if and
only if

(1.1) lim
t→∞ t

∫ ∞

t

q(s) ds = 0.

It is decreasing and can be represented in the form

(1.2) x(t) = x(t0) exp
{∫ t

t0

v(s) − Q(s)
s

ds

}
, t � t0,

for some t0 > a, where

(1.3) Q(t) = t

∫ ∞

t

q(s) ds

and v(t) is a solution of the integral equation

(1.4) v(t) = t

∫ ∞

t

(
v(s) − Q(s)

s

)2

ds, t � t0.

Since by (1.1), Q(t) → 0, as t → ∞, one can choose t1 > t0 so large that

(1.5) 8Q(t) � θ < 1, for t � t1.

Further study of equation (A) and its generalizations in the spirit of Theorem
1.1 has been carried out by Howard and Marić [5] and Jaroš and Kusano [6], [7].

A question naturally arises concerning the possibility of investigating the as-
ymptotic behavior of functional differential equations with deviating arguments in
the framework of Karamata functions. To the best of the authors’ knowledge, noth-
ing is known about this subject except for a paper of Grimm and Hall [3], in which
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the slowly varying character of positive decreasing solutions of some differential
equations with advanced argument was discussed.

The present work was motivated by this observation and attempts to establish
the existence of a slowly varying solution (an SV-solution for short) for equations
of the type

(B) x′′(t) = q(t)x(g(t)), q(t) > 0,

which is a companion functional differential equation to equation (A). Here again,
q is continuous and integrable on some positive half-axis [t0,∞).

Our result pertinent to the retarded case is the following

Theorem 1.2. Suppose that g : [0,∞) → R+ is a continuous increasing func-
tion such that g(t) → ∞, as t → ∞, satisfying g(t) < t, for t � t0 where t0 is such
that g(t) � t0 > 1, for t � t1 and

(1.6)
∫ t

g(t)

Q(s)
s

ds � 1/e, t � t1.

Then equation (B) possesses a slowly varying solution if and only if condition (1.1)
is satisfied.

Obviously, this solution is nonoscillatory since SV-functions are positive by
definition.

The result pertinent to the advanced case is the following

Theorem 1.3. Suppose that g : [0,∞) → R+ is a continuous increasing func-
tion such that g(t) → ∞, as t → ∞, satisfying g(t) > t, for t � t1, and

(1.7)
∫ g(t)

t

Q(s)
s

ds � 1/e, t � t1.

Then equation (B) possesses a slowly varying solution if and only if condition (1.1)
is satisfied.

To establish the existence of an SV-solution for (B) we proceed as follows.
First, we form an infinite family of differential equations of the form (A) each of
which possesses an SV-solution, and then, with the help of the Schauder–Tychonoff
fixed-point theorem, look for the equation in the family whose SV-solution exactly
gives birth to the desired solution of equation (B). To make this procedure feasible
we need precise information about the structure of the SV-solutions of differential
equations of the form (A) without functional argument. The proof of Theorem 1.1
will be given in Section 2 for completeness, and those of Theorems 1.2 and 1.3 will
be presented in Section 3.

To conclude the introduction it should be mentioned that oscillation theory
of functional differential equations including equation (B) has been the subject of
intensive investigations for the past three decades and that there is a vast literature
devoted to the study of the oscillatory and nonoscillatory behavior of a variety of
such equations from diverse angles and viewpoints. See for example the books of
Györi and Ladas [4], Koplatadze and Chanturia [8] and Ladde, Lakshmikantham
and Zhang [9].
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Remark 1.1. For the linear equation (A), there exist results of a similar nature
also when the limit in (1.1) is positive, [10, Thms. 1.2 and 1.11]. It seems plausible
that such results hold for equation (B) under suitable assumptions on g(t). This,
however will be a subject of our future investigations.

2. Preliminaries

The proof of Theorem 1.1 given here is elementary and follows [10]. A different
one is given by Jaroš and Kusano in [6]. It makes use of a fixed-point method and
is applicable also for the case when q(t) is of unrestricted sign.

The “only if” part. Let x(t) be an SV (hence positive) solution of equation
(A). Since it is convex due to q(t) > 0, it is monotone and in addition, because of
[10, Prop. 9c], one has

(2.1) lim
t→∞

tx′(t)
x(t)

= 0.

Write equation (A) in the form

(x′(t)/x(t))′ + (x′(t)/x(t))2 = q(t),

integrate over (t,∞), use (2.1) and multiply throughout by t to obtain

tx′(t)/x(t) + t

∫ ∞

t

(sx′/x)2s−2ds = t

∫ ∞

t

q(s) ds.

Due to (2.1) the left-hand side integral, and so the one on the right-hand side,
converge. Moreover, both sides tend to zero as t → ∞.

Observe that here the convergence of the integral of q(s) is a consequence, not
a hypothesis.

The “if” part. It is known that equation (A) has a positive decreasing solution
on (a,∞), [10, Lemma 1.1]; denote it again by x(t). Then integrate on both sides
of (A) over (t,∞). Since x(t) is decreasing and convex, it is such that x′(t) → 0,
t → ∞. This leads to

−x′(t) =
∫ ∞

t

q(s)x(s) ds,

and so

0 < − tx′(t)
x(t)

� t

∫ ∞

t

q(s) ds.

The right-hand side tends to zero as t → ∞ by hypothesis, whence (2.1) follows
and consequently, x(t) is SV, [10, Prop. 10].

Observe that x′(t) → c > 0, as t → ∞ cannot hold. For, this would imply
x(t) ∼ cx contradicting the fact that x(t) decreases.

Also, an SV-solution x(t) cannot increase. For otherwise, due to the convexity,
one would have eventually x′(t) � k, for some k > 0, or by integrating, x(t) � kt+ l
which is impossible for an SV function [10, Prop. 4.ii].

To obtain the representation (1.2) put

(2.2)
x′(t)
x(t)

=
v(t) − Q(t)

t
.
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An integration over (t0, t) gives (1.2). Here v(t) is indeed a solution of (1.4); as is
well known the right-hand side of (2.2) satisfies the Riccati equation(

v(t) − Q(t)
t

)′
+

(
v(t) − Q(t)

t

)2

= q(t)

or, due to (1.3), (
v(t)
t

)′
+

(
v(t) − Q(t)

t

)2

= 0

which by integrating over (t,∞), since v(t)
t → 0 due to (2.2), gives (1.4).

Observe that in view of (1.4), v(t) is positive for t � t1. Also since x′(t) < 0,
x(t) being decreasing, one obtains from (2.2), v(t) � Q(t), t � t1; i.e.

(2.3) 0 < v(t) � Q(t), t � t1.

3. Proofs

Our purpose here is to give proofs of Theorems 1.2 and 1.3 based on Theorem
1.1.

Proof of Theorem 1.2. Indeed, the “only if” part is a direct consequence
of the later theorem. For, suppose that there exists an SV-solution x(t) of equation
(B) on [t0,∞); then one writes it as

(3.1) x′′(t) = qx(t)x(t), t � t0,

where qx(t) = q(t)x(g(t))/x(t). It follows, by Theorem 1.1, that t
∫ ∞

t
qx(s) ds → 0

as t → ∞. This implies (1.1) since x(g(t))/x(t) � 1 by the decreasing nature of
x(t).

The proof of the “if” part. Suppose that (1.1) holds. Let us define Ξ to be the
set of positive, continuous nonincreasing functions ξ(t) on [t0,∞) such that

(3.2) ξ(t) = 1, for t0 � t � t1

and

(3.3)
ξ(g(t))
ξ(t)

� e for t � t1,

t1 being defined by (1.5). We remark that Ξ is a nonvoid set since it contains e.g.,
nonincreasing functions ξλ(t), λ ∈ (0, e], given by

ξλ(t) = 1, t0 � t � t1, ξλ(t) = exp
{
−λ

∫ t

t1

Q(s)
s

ds

}
, t � t1.

To show that (3.3) also holds, notice that due to the properties of g(t), there might
exist an interval t1 � t � t2, where g(t) � t1 and g(t) � t1 for t � t2. But then,
due to (3.2), inequality (3.3) holds for t1 � t � t2 and for t � t2, by (1.6), one has

ξλ(g(t))
ξλ(t)

� exp

{
e

∫ t

g(t)

Q(s)
s

ds

}
� e.

Hence (3.3) holds for all t � t1.
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The set Ξ is a closed convex subset of the locally convex space C[t0,∞) of
continuous functions on [t0,∞) equipped with the metric topology of uniform con-
vergence on compact subintervals of [t0,∞).

The set Ξ is clearly convex in C[t0,∞). It is also closed; for let {ξn} be a
sequence in Ξ converging to η as n → ∞ (i.e., ξn(t) converging uniformly to η(t) as
n → ∞) on compact subinterval of [t0,∞). It is clear that η(t) is continuous and
to prove its positivity on [t0,∞) one argues as follows: suppose on the contrary,
that there exists a T > t1 such that η(t) > 0 for t0 � t < T and η(t) = 0 for
t � T . By (3.3) one has ξn(g(T )) � eξn(T ), and letting n → ∞, there follows
0 < η(g(T )) � eη(T ) = 0 which is impossible. This also implies (3.3) for η(t).

For each ξ ∈ Ξ consider the second order ordinary differential equation

(3.4) x′′ = qξ(t)x,

where qξ(t) is given by

(3.5) qξ(t) = q(t)
ξ(g(t))
ξ(t)

.

Define

(3.6) Qξ(t) = t

∫ ∞

t

qξ(s) ds.

Since, due to (3.3) and (1.1), Qξ(t) � eQ(t) and so Qξ(t) → 0, t → ∞ for all ξ ∈ Ξ,
Theorem 1.1 ensures that equation (3.4) possesses for every ξ ∈ Ξ, an SV-solution
xξ(t) expressed in the form

(3.7) xξ(t) = exp
{∫ t

t1

vξ(s) − Qξ(s)
s

ds

}
, t � t1,

where vξ(t) solves the integral equation

(3.8) vξ(t) = t

∫ ∞

t

(
vξ(s) − Qξ(s)

s

)2

ds, t � t1.

We denote by Φ a mapping which associates with each ξ ∈ Ξ the function Φξ
defined by

Φξ(t) = 1 for t0 � t � t1, Φξ(t) = xξ(t) for t � t1.

We will look for a fixed point of Φ with the help of the Schauder–Tychonoff
fixed-point theorem. For that we need to prove that Φ is a self-map on Ξ, the
relative compactness of the set Φ(Ξ) in C[t0,∞) and the continuity of the mapping
Φ.

For any ξ ∈ Ξ, the function Φξ(t) is obviously positive and nonincreasing for
t � t0.

Furthermore, due to the definition of Φ, arguing as before, we conclude that to
prove the property (3.3) one needs only to consider the case g(t) � t1 which leads
to

Φξ(g(t))
Φξ(t)

� exp

{∫ t

g(t)

Qξ(s) − vξ(s)
s

ds

}
� exp

{
e

∫ t

g(t)

Q(s)
s

ds

}
� e.
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It follows that Φξ ∈ Ξ, implying that Φ is a self-map on Ξ.
Since Φ(Ξ) ⊂ Ξ, Φ(Ξ) is locally uniformly bounded on [t0,∞), and since ξ ∈ Ξ

implies

0 � d

dt
Φξ(t) =

d

dt
xξ(t) = xξ(t)

vξ(t) − Qξ(t)
t

� −eQ(t)
t

, t � t1,

Φ(Ξ) is locally equicontinuous on [t0,∞). This guarantees via the Arzela–Ascoli
lemma that Φ(Ξ) is relatively compact in C[t0,∞).

Let {ξn} be a sequence of functions in Ξ converging to η ∈ Ξ in C[t0,∞). The
continuity of Φ is guaranteed if it is shown that the sequence {Φξn} converges to Φη
in C[t0,∞), or equivalently that {Φξn(t)} converges to Φη(t) uniformly on compact
subintervals of [t0,∞). Using (3.7) and the mean value theorem, bearing in mind
that the integrand is negative, we have for t � t1

|Φξn(t) − Φη(t)| = |xξn
(t) − xη(t)|

=
∣∣∣∣exp

{∫ t

t1

vξn
(s) − Qξn

(s)
s

ds

}
− exp

{∫ t

t1

vη(s) − Qη(s)
s

ds

}∣∣∣∣
�

∫ t

t1

|Qξn
(s) − Qη(s)| + |vξn

(s) − vη(s)|
s

ds,(3.9)

where Qξn
(t) and Qη(t) are defined by (3.6) and vξn

(t) and vη(t) are the solutions of
the integral equation (3.8) with ξ replaced by ξn and η, respectively. Consequently,
to verify the continuity of Φ in the topology of C[t0,∞) it suffices to prove that
the integrand of the last integral in (3.9) converges to 0 uniformly on any compact
subinterval of [t1,∞). Since

(3.10)
|Qξn

(t) − Qη(t)|
t

�
∞∫
t

q(s)
∣∣∣∣ξn(g(s))

ξn(s)
− η(g(s))

η(s)

∣∣∣∣ ds,

an application of the Lebesgue dominated convergence theorem ensures the uniform
convergence |Qξn

(t) − Qη(t)|/t → 0 on [t1,∞) as n → ∞. To estimate |vξn
(t) −

vη(t)|/t we proceed as follows. Using (3.8) we have

|vξn
(t) − vη(t)| = t

∣∣∣∣
∫ ∞

t

(vξn
(s) − Qξn

(s))2 − (vη(s) − Qη(s))2

s2
ds

∣∣∣∣
� t

∫ ∞

t

1
s2

[(|vξn
(s)| + |vη(s)| + |Qξn

(s)| + |Qη(s)|)
× (|vξn

(s) − vη(s)| + |Qξn
(s) − Qη(s)|)] ds

for t � t1, from which, noting that by (1.5),

|vξn
(t)| + |vη(t)| + |Qξn

(t)| + |Qη(t)| � 8Q(t) � θ < 1, t � t1,

we obtain

(3.11) |vξn
(t) − vη(t)| � θt

∫ ∞

t

|vξn
(s) − vη(s)| + |Qξn

(s) − Qη(s)|
s2

ds, t � t1.
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For brevity we put

(3.12) zn(t) =
∫ ∞

t

|vξn
(s) − vη(s)|

s2
ds.

Then, (3.11) can be rewritten as

tz′n(t) + θzn(t) � −θ

∫ ∞

t

|Qξn
(s) − Qη(s)|

s2
ds, t � t1,

or equivalently

(3.13) (tθzn(t))′ � −θ

t1−θ

∫ ∞

t

|Qξn
(s) − Qη(s)|

s2
ds, t � t1.

Noting that tθzn(t) → 0 as t → ∞ and integrating (3.13) from t to ∞, we obtain

(3.14) tθzn(t) �
∫ ∞

t

|Qξn
(s) − Qη(s)|

s2−θ
ds, t � t1.

Using (3.14) in (3.11), we conclude that

(3.15)

|vξn
(t) − vη(t)|

t
� 1

tθ

∫ ∞

t

|Qξn
(s) − Qη(s)|

s2−θ
ds

+ θ

∫ ∞

t

|Qξn
(s) − Qη(s)|

s2
ds, t � t1.

Since the right-hand side of (3.15) converges uniformly on [t1,∞) as n → ∞, so
does the function |vξn

(t) − vη(t)|/t. This, because of (3.9) and (3.10), establishes
the continuity of the mapping Φ.

Thus all the hypotheses of the Schauder–Tychonoff fixed-point theorem are ful-
filled, and so there exists an element ξ0 ∈ Ξ such that ξ0 = Φξ0. From the definition
of Φ it follows that ξ0(t) satisfies the differential equation ξ′′0 (t) = qξ(t)ξ0(t), for
t � t1, which because of (3.5) implies that ξ′′0 (t) = q(t)ξ0(g(t)) for t � t1, that is,
ξ0(t) is a solution of the functional differential equation (B) on [t1,∞). That ξ0(t)
is a slowly varying function follows from the fact that ξ0(t) coincides with xξ0(t)
for t � t1 which is an SV-solution of equation (3.4). This completes the proof of
the “if” part of Theorem 1.2. �

Proof of Theorem 1.3. The “only if” part: As before, by supposing that
equation (B) written in the form (3.1) has an SV-solution on [t0,∞) one concludes
that t

∫ ∞
t

qx(s) ds → 0 as t → ∞. Here qx(t) = q(t)x(g(t))/x(t). Due to the
representation (1.2) and condition (1.7) one has x(g(t))/x(t) � 1/e for t � t1 and
condition (1.1) follows.

The proof of the “if” part. This time we define the set Ξ as the set of positive,
continuous, nonincreasing functions ξ(t) on [t1,∞) such that

ξ(t)
ξ(g(t))

� e for t � t1.

The same reasoning as before shows that the set Ξ is a nonvoid convex and closed
subset of the locally convex space C[t0,∞).
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Again, for each ξ ∈ Ξ, we consider equation (3.4) and use notations (3.5) and
(3.6).

The mapping Φ is now defined as

Φξ(t) = xξ(t) for t � t1,

where xξ(t) is a slowly varying solution of (3.4) whose existence is guaranteed by
Theorem 1.1 bearing in mind that ξ(g(t))/ξ(t) � 1. It has the representation given
by (3.7) and (3.8).

To show that mapping Φ fulfils the conditions of the Schauder–Tychonoff the-
orem one proceeds exactly as in the proof of Theorem B. This leads to the desired
result. �

Remark 3.1. Observe that slowly varying solutions of equation (B) cannot
increase. This is obtained exactly as for the linear case (A). Moreover, all positive
decreasing solutions of equation (B) in the case g(t) � t, provided that these exist,
are slowly varying. Indeed if x(t) is such a solution, then

−x′(t) =
∫ ∞

t

q(s)x(g(s)) ds

and so

−x′(t) � x(t)
∫ ∞

t

q(s) ds

since g(t) � t and x(s) is decreasing. Hence, due to (1.1), one has −tx′(t)/x(t) → 0,
as t → ∞ so that x(t) is slowly varying (compare: Grimm and Hall [3]).

4. Examples and concluding remarks

We present some examples illustrating Theorems 1.2 and 1.3.

Example 4.1. Consider the equation

(4.1) x′′(t) = q1(t)x(λt), t � e,

where q1(t) is defined by

q1(t) =
1

2t2
√

log t

(
1 +

1
2
√

log t
+

1
2 log t

)
exp

(√
log t + log λ −

√
log t

)
.

The condition (1.1) is satisfied for this equation since∫ ∞

t

q1(s) ds ∼ 1
2t
√

log t
as t → ∞,

where the symbol ∼ is used to denote the asymptotic equivalence

f(t) ∼ g(t) as t → ∞ ⇔ lim
t→∞

f(t)
g(t)

= 1.

Equation (4.1) is retarded for 0 < λ < 1 and advanced for λ > 1.
Notice also that here g(t) = λt, satisfies the condition

(4.2a) lim sup
t→∞

t

g(t)
=

1
λ

for 0 < λ < 1,
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which implies (1.6) and

(4.2b) lim sup
t→∞

g(t)
t

= λ for λ > 1,

which implies (1.7).
Therefore, equation (4.1) possesses a slowly varying solution by Theorem 1.2

or 1.3. It is easy to check that x(t) = exp
( −√

log t
)

is one such solution.
An analogous reasoning holds for the case when in the considered equation

(4.1) x(λt) is replaced by x(t + α). It is then retarded or advanced according
as α < 0 or α > 0. Here the exponential factor in q1(t) should be replaced by
exp((log(t + α)1/2) − exp(log t)1/2 and repeat the argument.

An example of {q(t), g(t)} satisfying (1.1) and (1.6) is given below.

Example 4.2. Consider the retarded equation

(4.3) x′′(t) = q2(t)x(tθ), t � 1,

where 0 < θ < 1 and q2(t) is defined by

q2(t) =
1

2t2
√

log t

(
1 +

1
2
√

log t
+

1
2 log t

)
exp

{
−

(
1 −

√
θ
) √

log t
}

.

Since ∫ ∞

t

q2(s) ds = o

(
1

t(log t)m

)
as t → ∞, for any m ∈ N,

one can easily see that (1.1) and (1.6) are satisfied for the this equation, so that
there exists an SV-solution of (4.3). In fact, (4.3) has such a solution x(t) =
exp

( −√
log t

)
.

Remark 4.1. For the differential equation (A) it is known from Marić and
Tomić [12] that the condition (1.1) is also a necessary and sufficient condition for
the existence of a regularly varying solution of index 1; see also Marić [10] and
Jaroš and Kusano [6]. From this fact we conjecture that (1.1) would provide a
sharp condition for a class of retarded equations of the form (B) to have positive
solutions belonging to the class of regularly varying solutions of index 1. We give
below an example which might support the conjecture, but we are still far from its
verification.

Example 4.3. Consider the equation

(4.4) x′′(t) = q3(t)x(t/e), t � e,

where

q3(t) =
1

2t2
√

log t

(
1 +

1
2
√

log t
− 1

2 log t

)
exp

(√
log t −

√
log t − 1

)
.

Since q3(t) satisfies (1.1) and (4.2a), the equation (4.4) possesses an SV-solution
x0(t) by Theorem 1.2. A simple calculation shows that this equation has also the
solution x1(t) = t exp

(√
log t

)
which is a regularly varying function of index 1.
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Example 4.4. Consider the equation

(4.5) x′′(t) = exp
( − (1 − γ)t

)
x(γt), 0 < γ < 1,

with q(t) = exp
( − (1 − γ)t

)
and g(t) = γt satisfying (1.1) and (4.2a). Theorem

1.2 ensures the existence of an SV-solution x0(t) for (4.5). One sees that (4.5) has
another solution x1(t) = exp(−t). Note that exp(−t) is not a regularly varying
function but is a rapidly varying one of index −∞.

Acknowledgment. The authors are indebted to the reviewer for several valu-
able comments.
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[4] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford Science
Publications, Clarendon Press, Oxford, 1991.
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[6] J. Jaroš and T. Kusano, Remarks on the existence of regularly varying solutions for second
order linear differential equations, Publ. Inst. Math. (Beograd) 72(86) (2002), 113–118.
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[12] V. Marić and M. Tomić, A classification of solutions of second order linear differential
equations by means of regularly varying functions, Publ. Inst. Math. (Beograd), 48(62)
(1990), 199–207.

[13] E. Omey, Regular variation and its applications to second order linear differential equations,
Bull. Soc. Math. Belg. 32 (1981), 207–229.

Department of Applied Mathematics (Received 30 03 2006)
Faculty of Science (Revised 16 10 2006)
Fukuoka University
Fukuoka, 841-0180, Japan
tkusano@cis.fukuoka-u.ac.jp

Serbian Academy of Sciences and Arts
Kneza Mihaila 35
11000 Beograd, Serbia
vojam@uns.ns.ac.yu


