AN ARITHMETICAL THEOREM CONCERNING LINEAR DIFFERENTIAL — DIFFERENCE EQUATIONS

J. POPKEN

By combining analytic methods with ideas from the theory of numbers one is often led to theorems of mixed arithmetical and analytical character. I give here a new result of this type.

Theorem ^1). Let all constants $A_{\mu\nu}$, ω_{ν} in the linear differential difference equation

$$\sum_{\mu=0}^{m} \sum_{\nu=0}^{n} A_{\mu\nu} y^{(\mu)} (z + \omega_{\nu}) = 0$$
 (1)

be algebraic, the $A_{\mu\nu}$ not vanishing simultaneously and ω_0 , ω_1 , ..., ω_n being different. Let the n+1 equations

$$\sum_{\mu=0}^{m} A_{\mu\nu} t^{\mu} = 0 \qquad (\nu = 0, 1, \dots, n)$$
 (2)

have at most t=0 as a common root.

Then there exists no integral transcendental function of exponential type

$$y(z) = \sum_{h=0}^{\infty} c_h \frac{z^h}{h!}, \quad c_h = 0 (q^h),$$
 (3)

with algebraic coefficients c_0, c_1, c_2, \ldots , satisfying the equation (1). Here q denotes an arbitrary positive number.

As a simple example take $y(z) = e^{\alpha z} - \sum_{h=0}^{\infty} \alpha^h \frac{z^h}{h!}$; this function satisfies the difference equation

$$e^{\alpha} y(z) - y(z+1) = 0$$
.

¹⁾ This theorem was communicated without proof on September 1, 1950, at the International Congress of Mathematicians held in Cambridge (Mass.).

It follows from our theorem, that α and e^{α} cannot be algebraic simultaneously, except in the trivial case $\alpha = 0$.

The condition in this theorem, that the n+1 equations (2) must have no common root except perhaps t=0, is necessary. For let all other conditions of the theorem be fulfilled and let $\alpha \neq 0$ be a common root of the equations (2). Now all numbers $A_{\mu\nu}$ are algebraic and do not vanish simultaneously; hence α is algebraic also. If we take

$$y(z) = e^{\alpha z} = \sum_{h=0}^{\infty} \alpha^h \frac{z^h}{h!},$$

then

$$\sum_{\mu=0}^{m} \sum_{\nu=0}^{n} A^{\mu\nu} y^{(\mu)} (z + \omega_{\nu}) \equiv \sum_{\nu=0}^{n} \left(\sum_{\mu=0}^{m} A_{\mu\nu} \alpha^{\mu} \right) e^{\alpha(2 + \omega_{\nu})} \equiv 0.$$

Hence in this case there certainly exists an integral transcendental function of the form (3) with algebraic coefficients c_0, c_1, c_2, \ldots , satisfying the linear differential — difference equation (1).

To prove the theorem we need the following known results:

a) The Lindemann-Weierstrass theorem²⁾: Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ denote different algebraic numbers, let $\beta_1, \beta_2, \ldots, \beta_n$ denote arbitrary algebraic numbers. If

$$\beta_1 e^{\alpha_1} + \beta_2 e^{\alpha_2} + \cdots + \beta_n e^{\alpha_n} = 0$$

then necessarily

$$\beta_1 = \beta_2 = \cdots = \beta_n = 0.$$

b) The analogous but elementary theorem: Let $\rho_1, \rho_2, \ldots, \rho_n$ denote different numbers, let $P_1(z), P_2(z), \ldots, P_n(z)$ denote arbitrary polynomials. If

$$P_1(z)e^{Q_1z} + P_2(z)e^{Q_2z} + \cdots + P_n(z)e^{Q_nz} \equiv 0$$

then necessarily

$$P_1(z) \equiv P_2(z) \equiv \cdots \equiv P_n(z) \equiv 0.$$

Lindemann, F., Ueber die Zahl π, Math. Ann. 20, 213-225 (1882). Lindemann, F., Über die Ludolph'sche Zahl. S. B. preuss. Akad. Wiss. 1882, 679-682.

Weierstrass, K., Zu Lindemann's Abhandlung "Über die Ludolph'sche Zahl". Math. Werke II, 341—362.

c) A theorem essentially due to Schürer3): Let the integral function

$$y(z) = \sum_{h=0}^{\infty} c_h \frac{z^h}{h!}, \quad \lim_{h \to \infty} \sup_{\infty} \sqrt[h]{|c_h|} \leq q,$$

satisfy a linear differential equation of infinite order

$$a_0 y(z) + a_1 y'(z) + a_2 y''(z) + \cdots = 0$$
,

with constant coefficients not vanishing simultaneously, and such that the characteristic function

$$A(t) = a_0 + a_1 t + a_2 t^2 + \cdots$$

is regular for $|t| \leq q$.

If A(t) has no zeros in the circle $|t| \le q$, then necessarily $y(z) \equiv 0$. In all other cases there exists a polynomial $b_0 + b_1 t + \cdots + b_k t^k$ with zeros (also with respect to their multiplicities) identical with those of A(t) in the circle $|t| \le q$. Then y(z) satisfies the linear differential equation of finite order

$$b_0 y(z) + b_1 y'(z) + \cdots + b_k y^{(k)}(z) = 0$$
.

First we deduce from these theorems the following

Lemma: Let the integral function of exponential type

$$y(z) = \sum_{h=0}^{\infty} c_h \frac{z^h}{h!} \ddagger 0, \quad c_h = 0 (q^h),$$

with algebraic coefficients c_0 , c_1 , c_2 ,... satisfy a linear differential equation of infinite order

$$a_0 y(z) + a_1 y'(z) + a_2 y''(z) + \cdots = 0$$

with constant coefficients not vanishing simultaneously and such, that the characteristic function

$$a_0 + a_1 t + a_2 t^2 + \cdots$$

is regular for $|t| \leq q$.

Then y(z) can be written

$$y(z) = \sum_{i=1}^{j} P_i(z) e^{Q_i z},$$

3) Schürer, F., Eine gemeinsame Methode zur Behandlung gewisser Funktionalgleichungsprobleme. Leipziger Ber. 70, 185-240 (1918); Satz VI.

See also: Perron, O., Uber Summengleichungen und Poincarésche Differenzengleichungen. Math. Ann. 84, 1—15 (1921); Satz I, and: Scheffer, I. M., Systems of differential equations of infinite order with constant coefficients. Ann. of Math. 30, 250—264 (1929); theorem 1, 2.

where $P_1(z)$, $P_2(z)$,..., $P_j(z)$ represent polynomials and where ρ_1 , ρ_2 ,..., ρ_j are different algebraic numbers and also zeros of the characteristic function $a_0 + a_1 t + a_2 t^2 + \cdots$.

Proof: The function y(z) considered in this lemma satisfies all the conditions of Sch ürer's theorem c); moreover $y(z) \not\equiv 0$, hence the characteristic function $a_0 + a_1 t + a_2 t^2 + \cdots$ necessarily has zeros in the circle $|t| \leq q$. Let $\rho_1, \rho_2, \ldots, \rho_s$ represent these zeros and let v_1, v_2, \ldots, v_s denote their multiplicities. Let $b_0 + b_1 t + \cdots + b_k t^k$ be a polynomial with zeros $\rho_1, \rho_2, \ldots, \rho_s$ of multiplicities v_1, v_2, \ldots, v_s . Then by Schürer's theorem the function y(z) satisfies the equation

$$b_0 y(z) + b_1 y'(z) + \dots + b_k y^{(k)}(z) = 0,$$
 (4)

with coefficients b_0, b_1, \ldots, b_k not vanishing simultaneously. Hence y(z) can be written

$$y(z) = \sum_{\sigma=1}^{s} P_{\sigma}(z) e^{\varrho_{\sigma} z}, \qquad (5)$$

where every $P_{\sigma}(z)$ represents a polynomial of degree $v_{\sigma}-1$ at most $(\sigma=1,2,\ldots,s)$.

Now we shall use the condition, that all coefficients c_0 , c_1 , c_2 of y (z) are algebraic. In stead of (4) we may write

$$L[y(z)] \equiv 0, \tag{6}$$

if we introduce the linear differential operator

$$L=b_0+b_1$$
, $D+\cdots+b_kD^k$.

The k+1 number b_0, b_1, \ldots, b_k have a linear independent basis $\tau_1, \tau_2, \ldots, \tau_r$ with respect to the field of algebraic numbers; hence

$$b_{\kappa} = b_{\kappa 1}, \, \tau_1 + b_{\kappa 2} \, \tau_2 + \ldots + b_{\kappa r} \, \tau_r \, (\kappa = 0, 1, \ldots, k),$$

with algebraic $b_{\aleph 1}, b_{\aleph 2}, \ldots, b_{\aleph r}$. It follows

$$L = \tau_1 L_1 + \tau_2 L_2 + \ldots + \tau_r L_r, \qquad (7)$$

if we put

$$L_{\rho} = b_{0 \rho} + b_{1 \rho} D + \ldots + b_{k \rho} D^{k}$$
 $(\rho = 1, 2, \ldots, r).$

Now all coefficients in $y(z) = c_0 + c_1 \frac{z}{1!} + c_2 \frac{z^2}{2!} + \dots$ are algebraic; hence

$$L_{\rho}[y(z)] = c_{0\rho} + c_{1\rho} \frac{z}{1!} + c_{2\rho} \frac{z^{2}}{2!} + \dots,$$

with algebraic coefficients $c_{0\rho}$, $c_{1\rho}$, $c_{2\rho}$, . . . , From (6) and (7) it follows therefore

$$c_{01}\tau_1 + c_{02}\tau_2 + \cdots + c_{0r}\tau_r = 0,$$

$$c_{11}\tau_1 + c_{12}\tau_2 + \cdots + c_{1r}\tau_r = 0,$$

hence, $\tau_1, \tau_2, \ldots, \tau_r$ being linearly independent,

$$c_{01} = c_{02} = \cdots = c_{0r} = 0,$$

 $c_{11} = c_{12} = \cdots = c_{1r} = 0,$

or

$$L_{\rho}[y(z)] \equiv 0 \text{ for } \rho = 1, 2, ..., r.$$

Every linear differential operator $L_{\rho} = b_{0\rho} + b_{1\rho} D + \dots + b_{k\rho} D^k$ has algebraic coefficients; these r(k+1) coefficients $b_{k\rho}$ do not vanish simultaneously on account of (7): hence y(z) certainly satisfies a linear differential equation

$$\bar{b}_0 y(z) + \bar{b}_1 y'(z) + \cdots + \bar{b}_k y^{(k)}(z) = 0$$

with algebraic coefficients $\bar{b}_0, \bar{b}_1, \ldots, \bar{b}_k$, not vanishing simultaneously. Its auxiliary equation

$$\bar{b}_0 + \bar{b}_1 t + \cdots + \bar{b}_k t^k = 0$$

clearly has algebraic roots $\bar{\rho}_1, \bar{\rho}_2, \ldots, \bar{\rho}_l$. Hence y(z) can be written

$$y(z) = \sum_{\lambda=1}^{l} \bar{P}_{\lambda}(z) e^{\bar{\rho}_{\lambda} z}, \qquad (8)$$

where $\bar{P_1}(z), \bar{P_2}(z), \ldots, \bar{P_l}(z)$ are polynomials and $\bar{\rho_1}, \bar{\rho_2}, \ldots, \bar{\rho_l}$ are different algebraic numbers.

We observe that the righthand-sides of (5) and (8) are identical functions of z. Using the elementary theorem b) we may suppose, without loss of generality,

$$\rho_i = \overline{\rho}_i, \quad \overline{P}_i(z) \equiv \overline{P}_i(z) \equiv 0 \qquad (i=1,2,\ldots,j) \quad (9)$$

and

$$P_{\sigma}(z) \equiv 0 \quad (\sigma = j+1, j+2, \dots, s), \quad \bar{P}_{\lambda}(z) \equiv 0 \quad (\lambda = j+1, j+2, \dots, l)$$

for a positive integer $j \leq Min(s, l)$. Hence

$$y(z) = \sum_{i=1}^{j} P_i(z) e^{\rho_i z}$$
.

On account of (9) the numbers $\rho_1, \rho_2, \ldots, \rho_j$ are algebraic and on the other hand they represent zeros of the characteristic function $a_0 + a_1 t + a_2 t^2 + \ldots$ by definition.

This proves our lemma.

Proof of the theorem: Suppose that, contrary to the assertion of our theorem, the transcendental function

$$y(z) = \sum_{h=0}^{\infty} c_h \frac{z^h}{h!}, \quad c_h = 0(q^h),$$
 (3)

with algebraic coefficients c_0, c_1, c_2, \ldots is a solution of

$$\sum_{\mu=0}^{m} \sum_{\nu=0}^{n} A_{\mu\nu} y^{(\mu)} (z + \omega_{\nu}) = 0, \tag{1}$$

with algebraic $A_{\mu\nu}$, ω_{ν} ; the constants $A_{\mu\nu}$ not vanishing simultaneously and $\omega_0, \omega_1, \ldots, \omega_n$ being different.

We have

$$y^{(\mu)}(z+\omega_{\nu})=y^{(\mu)}(z)+\frac{\omega_{\nu}}{1!}y^{(\mu+1)}(z)+\frac{\omega_{\nu}^2}{2!}y^{(\mu+2)}(z)+\cdots$$

Substitution in (1) gives a linear differential equation of infinite order

$$a_0 y(z) + a_1 y'(z) + a_2 y''(z) + \cdots = 0$$

with characteristic function

$$a_{0} + a_{1} t + a_{2} t^{2} + \dots = \sum_{\mu=0}^{m} \sum_{\nu=0}^{n} A_{\mu\nu} \left(t^{\mu} + \frac{\omega_{\nu}}{1!} t^{\mu+1} + \frac{\omega_{\nu}^{2}}{2!} t^{\mu+2} + \dots \right)$$

$$= \sum_{\mu=0}^{m} \sum_{\nu=0}^{n} A_{\mu\nu} t^{\mu} e^{\omega_{\nu} t}.$$

The function y(z) considered here obviously fulfills all conditions of the foregoing lemma. Hence

$$y(z) = \sum_{i=1}^{j} P_i(z) e^{Q_i z},$$
 (10)

where $P_1(z)$, $P_2(z)$,..., $P_j(z)$ represent polynomials and $\rho_1, \rho_2, \ldots, \rho_j$ different algebraic roots of the equation

$$\sum_{\mu=0}^{m} \sum_{\nu=0}^{n} A_{\mu\nu} t^{\mu} e^{\omega_{\nu} t} = 0.$$
 (11)

However, we will show, that all non-zero roots of this equation are transcendental. For suppose that $\rho \neq 0$ represents an algebraic root of (11), then $\omega_0 \rho, \omega_1 \rho, \ldots, \omega_n \rho$ are algebraic and different. From

$$\sum_{\nu=0}^{n} \left(\sum_{\mu=0}^{m} A_{\mu\nu} \rho^{\mu} \right) e^{\omega_{\nu} \varrho} = 0$$

it follows by the Lindemann — Weierstrass theorem, that the n+1 algebraic numbers

$$\sum_{\mu=0}^{m} A_{\mu\nu} \rho^{\mu} \qquad (\nu=0, 1, \ldots, n)$$

must vanish. But this conclusion contradicts one of the conditions of our theorem, the n+1 equations (2) having no common root, except perhaps t=0.

Hence the set of algebraic numbers $(\rho_1, \rho_2, \ldots, \rho_j)$ must consist of only one number $\rho_1 = 0$; it follows from (10)

$$y(z) = P_1(z),$$

but this gives a contradiction, for y(z) is a transcendental function by hypothesis.

This proves our theorem.

By analogous reasoning I found the following similar theorem: Let the integral transcendental function of exponential type

$$y(z) = \sum_{h=0}^{\infty} c_h \frac{z^h}{h!}, \quad c_h = O(q^h),$$

with algebraic coefficients c_0, c_1, c_2, \ldots satisfy an equation

$$\sum_{\mu=0}^{m} \sum_{\nu=0}^{n} A_{\mu\nu} y^{(\mu)} (z + \omega_{\nu}) = 0$$

where the constants $A_{\mu\nu}$ do not vanish simultaneously and where $\omega_0, \omega_1, \ldots, \omega_n$ are different.

Then y(z) is a transcendental number for every algebraic value of z with exception of a finite number of values for z. (Clearly z=0 always is such an exceptional value.)

If moreover $\sum_{\nu=0}^{n} A_{0\nu} \neq 0$, then these exceptional values for z which differ from 0 necessarily are zeros of y(z)

This theorem, however, is a very special case of the following theorem concerning differential equations of infinite order:

Let the integral transcendental function

$$y(z) = \sum_{h=0}^{\infty} c_h \frac{z^h}{h!}$$
, $\limsup_{h \to \infty} \sqrt[h]{|c_h|} \leq q$,

with algebraic coefficients c_0, c_1, c_2, \ldots , satisfy a linear differential equation of infinite order

$$a_0 y(z) + a_1 y'(z) + a_2 y''(z) + \cdots = 0$$

with constant coefficients a_0, a_1, a_2, \ldots , not vanishing simultaneously. Let the corresponding characteristic function

$$a_0 + a_1 t + a_2 t^2 + \dots$$

be regular in the circle $|t| \leq q$ and let v denote the maximum of the multiplicities of its zeros in the region $0 < |t| \leq q$.

Then y(z) is a transcendental number for every algebraic value of z with exception of v values for z at most.

If moreover $a_0 \neq 0$, then these exceptional values for z which differ from 0 necessarily are zeros of y(z).

The proofs of these theorems will appear elsewhere.