CONVEXITY AND NORMED SPACES
by
E. R. LORCH

1. It is common knowledge that in Banach space theory, the triangle
inequality, the Hahn-Banach theorem, and the theory of convexity are
closely interrelated. The second is a consequence of the first and the exi-
stence of support planes in the third has been proved by Mazur with the
help of the second. However, the precise nature and the full scope of the
interrelations seem not to have been noticed. In order to bring these into
strong light, it is necessary to introduce a type of vector space (a space
of type M), which was studied by Minkowski in his work on convex bodies.
An M-space differes from a Banach space in that the norm function need
not satisfy |f|=|—f|. It seems that triangle inequalities,” convexity, and
the extension of linear functionals not only may, but:should be studied
within an M-space structure. In this note, the program is carried out. The
principal feature of the proofs is the use of the second conjugate.of a
space. It is also important to note that even though the norm of a space
has no properties except ,|f|=0, and |f|=0 if and only if f=0 and [=f]
is bounded“ then the conjugate space is of type M. 71

2. We consider spaces I whose elements are vectors f, g,... over
the field of real scalars «, §3,.... That is, M is a module which admits of multi-
plication by real scalars subject to the customary rules. Inaddition there is defined
a real valued function |f| of f (called the norm) subject to the axioms:

1) |f/|=0. |f|=0 if and only if f=0-

2) If a>0, |af|=a]f].

3 If+ei=Ifl+lel

4) There is a constant ¢ >0 such that for all

fem, cHALI-FIS el fl

- It is clear that 9t is a metric space if we take as the distance between
f and g the number |f-g|+|g—f|. We assume that M is complete in
this metric. Furthermore, M is a Banach space if and only if |f[=|-F].
A space satisfying all these conditions will be said to be of type M.

Consider a real linear functional F over M. F is said to be bounded
if there exists a constant K such that Ff < K |f| for all f; obviously K = 0.
It is clear that ~Ff=F(-f)<K|-f| hence F is bounded if and only
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if there exists a positive constant K such that -K|- fI<Ff<K|f}|
The norm of F is defined by |F|=Lub. Ff/|f], f#0. 1t may be
shown that the totality of bounded linear functionals is a vector space I*
which satisfies axioms 1) to 4) above. If we introduce a metric in M* by
defining the distance of F to G to be |F-G|+|G-F, then M* is
complete in this metric. We shall see shortly that I* is not empty and
that there is a canonical isomorphism (both algebraic and metric) which maps
M into WM™,

“Theorem 1 (Hahn-Banach): If R is a closed linear manifold in
a space M of type M and G is a bounded linear functional defined over
St, then there is an extension F of G fo the space MM such that ]F}
(on M) equals |G| (on RN).

The proof proceeds in the usual way by transfinite induction. We
set down a few salient facts. Let geMM-N and let f,, f,E€N. Then
Gf,—Gfi=GC(fo~1) <IGllfa- f1i<lGiIfz+gI+lGH—-f1 g|. Hence
there exists a real number vy safisfying -|Gll-fi-gl- CGHL<Yv
|G|l fa+g|-Gfy. If h=f+Bg where fe%R, define Fh=Gf+By. Then it is
clear that F=G on N and |G| (on RN) equals | F| (on N+32).

This means that given any element fed, f#0, there exists an
FeMm* such that F£0 and Ff=|F|-|f]|. Let fedM and consider the
mapping f - f* € M** given by f¥*F = Ff, F ¢ M*. This mapping is an algebraic
isomorphism and |f¥|=|f|.

We now show that the Hahn-Banach theorem essentially characterizes
epaces of type M. In particular, the triangle inequality is a consequence
of the H-B theorem. » ' :

Theorem 2. Let % be a real vector space with a norm safisfying
axiom 1) and 4) and for which the Hahn-Banach theorem holds. Then R is
a linear subspace of a space of type M, that is, axioms 2) and 3) also hold.

Consider the totality 9t* of bounded linear functionals on 9R. Then -
9+ is a space of type M. 1t F, G € 0%, thenfor f g N, (F+G)f < (| F|+1G|) | ]
hence F+GeN* and 3) is satisfied. Simﬂarly for any real o aFeN*
and 2) is satisfied. Finally 9t* is complete.

Consider the space of bounded functionals on 9N*, namely 9*¥. By
the previous discussion, N** is of type M. If f €N and Fe N* consider
the mapping f - f*€ N** defined by f*F=Ff for all Fe *. We have
f*F<|f|| F| hence | f*|<|f|. By the usual reasoning involving the H-B
theorem if f#0, there is a linear functional F # 0 for which Ff=|F||f|.
Thus |Fl|fi=fF<|f*|{F|. Hence |f|=|f*|. Thus R is isometrically
isomorphic to a subspace of type M. :

3. We apply these ideas to the theory of convexity in Banach spaces
(spaces of type B). First we show that any convex set with interior points
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in a space of type B has a hyperplane of support at any point on its
boundary. This theorem is due to Mazur (Uber konvexen Mengen in line-
aren normierten Raiime, Studia Math., 4, pp 70-—84, (1933)). -

Let B be a Banach space; let & be a closed convex set in B. Let
p& denote the solid sphere of center 0 and radius p in B, that xs the
set of all f€ B such that |f]| <p. Suppose that there exist positive “con-
stants o and B such thal a® c® =B &. Suppose f is any vector such
that |f|=1. Then there is a posilive number y; such that y,f€® but
(ys+e)f &K for any 6 > 0. Note that a < y; < B.

Consider now a vector space I of type M defined as follows:
The elements of 9N and their -algebraic structure are identical with those
of B. Thus the symbol f refers to an element in B and also in M. A
norm is introduced in M — it will be denoted by [f], — as follows: If
|f|=1, then for § >0, y;|8f|,=|8f|. Thus conditions 1) and 2) on the
norm are satisfied. To prove 3) note that if f'=f/|f|, and g'=g/| gl
then | f'i;=|g'|;=1, hence f, g'€ R. Also for, 0 <61, 6f+(1-0)g'€eR
since & is convex. Setting 6=|f,(Ifu+lgh )“’ we obtain 3). The proof
of 4) is simple. '

It is clear that the canonical mapping of M onto B is a homeomor-
phism. For we have for |f|=1, a|fl,<y/|flhi=]f|<PBifl,. This M is
complete and of type M.

Let F be a linear functional defined on B, and hence also on M.
Then F is bounded on ®B if and only if it is bounded on 9 since
alfly, <1 fl<B|fl;i- Thus IM* and B* are algebraically isomorphic but differ
metrically. The norm in IM* will be denoted by |F|,. We may now prove.

Theorem 3 (Mazur): Let & be a closed bounded convex set contai-
ning the origin as an interior point in a Banach. space B and let f be a
veclor on the boundary of K. Then there exists a bounded linear functional
Fe B* such that for each g€ R, Fg < Ff. '

Proof: Introduce into B a new norm as above for which the boun-
dary of & is the ,unit sphere, thus changing B into a space M of type
M. By the Hahn-Banach theorem (theorem 1) there is a bounded linear
functional F in IN* such that |F|,=1, Ff=|F|,|fl;=1. Thus for every
g€ R we have Fg<|Fl|glh=1giZL1=Ff. Now F is also in B* and-
since Fg<Ff, g€ &, we have a supporting hyperplane at* f.

We turn to the following

Problem: Given a Banach space B and a set 8 in B which is
bounded and contains the origin as interior point. To construct the convex
cover of 8 (that is, the smallest closed convex set which contains £).

We supose as before that p@& is the solid sphere of radius p in 9B,
fI<p, and that for suitable a, B, 0<<a<B <o, aBccpG. For
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f such that |f|=1, find y;=Lu.b. p such that pfe L. Introduce a norm
function into B considered as an algebraic (but not a metric) structure
by defining for arbitrary 8 >0 and f such that [Fl=1:yr|8f|,=|8F].
The norm |g|, has properties 1) and 2) as well as 4). Denote the space
with the new norm by R¢. .

‘Let 9t* denote the set of all bounded linear functionals over 9. In
the first place, M* is clearly a space of type M. Next Fe R* if and only
it Fe ®* Let the norm of F in %* be denoted by |Fl,. If fe R, there
is an element f*e€ N** such that f*F=Ff for all Fe %*. The mapping
f- f* is an (algebraic) ‘isomorphism of % into 9**: The mapping is clearly
homomorphic and if =0 then Ff—0 for all F, and thus f=0; forif f £ 0
then there is an F € B*, F # 0, such that Ff=£0. It is easily seen that | /*[, <|f], .

Let 8=|f', (| f*])~% Let & be the set of all vectors ef where
0=<e=<vs8=([f*1)-% {f|=1. Then ® is the convex cover of Q.

First R 5 € since 8;=1. Note in passing that if ¢ is closed and
convex, 8;=1 and ®=¢ since 9 is of type M. Next, § is closed and
convex. In order to show this it is sufficient to show that & is the inter-
section of closed convex sets. It will be shown that there exist linear
functionals F; (i ranging over a suitable set Q) and constants «; such
that & 1% precisely the set of vectors 4 such that Fh<o; for all ie Q.
Consider any vector on the boundary of ® and write it in the form
Y;8:f, |f|=1. Suppose that there is a functional Fe N* such that F#0
and f*F=Ff=|f*|, | F|,. Then, for any g with |g|=1 we have Fy,8,g<
SYeO [Flilg*li=|Fly=Fy;8;f and if we set |F|,=a, the vectors # of
& satisfy Fh < a. Suppose that for a given f with [f|=1, it is not possible
to find F # 0 such that f*F=|f*|,| F|,. Let >0 be arbitrary and find F
such that f*F = |f*|,| F|,—eand | F|,=1. Then if we set o= (f* F4¢e) (| f*|,)-1,
heQ implies Fh<a. If Bf &R, then it is clear that by taking s suf-
ficiently small, there are an « and an F such that FBf=a. This proves
that & is closed and convex.

We complete the solution of the problem by showing that R is con-
tained in the closed convex cover of €. For Fe B* and a real number a,
the set of h €B such that Fh <« is called a half space. It will be suf-
ficient to show that ® lies in any half space contaning £, since by theorem
3 the closed convex cover of £ has asupporting hyperplane at each point
of its surface. If F is arbitrary in B*, then the Lu.b. Fh, he g, equals the
Lub. Fy,g |gl|=1, that is, Fh<lu.b. Fh= F|. Then Fy,8,g=
=Yg Fg=(|g* ) ' g*F < |F|,. This means that & lies in the half-space
- Fg < |F|, Therefore & is the convex cover of L.
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