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AN ANALYTICAL ESTIMATE OF VALUES OF PRESSURE
AND TEMPERATURE AT THE BOUNDARY OF A CONVECTIVE CORE

T. Angelov

Summary: We consider a model of star which is divided in two regions: the ,,internal®
and the ,external“ one. The model is spherically symmetric, in hydrostatic equilibrium, with
an equation of state for a perfect gas with p. = const. The dimensionless integral I5,, (Chandra-
sekhar, 1939) is considered in function of its upper limit, which determines the depth of the region.
Analytical estimates are given for I, ,, P and T, for the ,,internal® and ,external® region and the
values for P and T at their boundary.

Particularly, for the models of the zero main-sequence stars, with 4<{M,<{16,Pand T
are estimated at the boundary of the convective core.

Introduction

In the theory of Stellar Structure and Stellar Models, a dimensionless in-
tegral (Chandrasekhar, 1939) is considered

o [ () ()

in the whole interior of a star: from centre (r = 0, m = 0) to surface (r = R, m =
= M). For dp(r)/dr < 0 an estimate is given for I, ,, with given values of ¢ and
v, which is:
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(see also Cox and Giuli, 1968 ).Under the assumption that the star is spherically
symmetric, with a homogeneous chemical composition, in hydrostatic equilibrium
and having an equation of state for.a perfect gas with & = const, an estimate is
further given for P(Jy,), T(I;,) and P(I, ,).

When the star is considered as a set of concentric layers with given depth,
the integral I y can be defined, for every layer, with discretely variable limits.

We consider, in this paper, a model of star which consists in two regions:
an ,internal“ and an ,.external® one. In part I, I,y is defined and estimated for
the two regions. In II, mean values of pressure and temperature are found in
those domains, in function of I, y for given ¢ and v. Based upon the above, values
for P and T are estimated in III, at the boundary of the two domains. Obtained
values are applied (part IV) to some models of zero main-sequence stars, having
a convective core and an envelope in radiative equilibrium.

I. The Definition and Estimate of the Integral I,  for the Interior and the Exterior

Consider a spherically-symmetric model of star with two regions: an interior
and an exterior. Let us denote the boundary between the two domains by & and
assign to every variable indices %, o and ¢, related to the interior with the boundary,
to the exterior and to the centre of the model respectively. Let R and M be the
radius and the mass of the model, rx and m: the radius and the mass of its interior.

We define dimensionless quantities ¢- and ¢m by relations

Ye = (r R, Mre = gm M (3)
As we have
o(r) = m(r) [ (4m r%3), @

we obtain, using (3) and (4)

(r[R)* = (prlp(r)) (m| M) (gr/qm) (5)
where m = m(r). .
Consider, in analogy with I , from (1), the dimensionless integral for the
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For
do(Mdr <0, 0 r<R,

we have

P"Q’P_(r)<9m 0L<r<n

and for the integral (7) one obtain
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Let us consider now, the dimensionless integral for the exterior

o [V ()

PRy =p <o)< o, m<r<R

We have from (8)

and with (5) and (12) one obtains for integral (11)
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the left and right hand sides in (10) and (J3) are positive.

1I. P and T for the Interior and the Exterior

®
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The model is in hydrostatic equilibrium (the mass conservation law holds)

so that
dP(r) = — (Gm [ 4= r%) dm,

with an equation of state

P = (kjp u mu)eT, B=P,P

The mean value of the structure function F, for the interpal region is

mp
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and for the external one it is
M

1
- —— 18
Fom o [ Fam (13)

M

a) The Mean Value of The Pressure

Let us perform partial integration of (17), with F = P(r), using condition
(15). The integral I%, from (6) gives, for 6 =2, v =4,

my
m? M?
de = 1—2-4—1;’4 (19)
0
so that (17) becomes finally
- GM?
my Pp=my P, + —— I§,4 (20)

4r R4

Making use of the result for ¢ = 2, v =4 from (11), i.e.

2 3
_dm = ﬁzg,,, 1)

ré R¢
my,

and the hypothesis that P = P(R) € P,, relation (18) becomes similarly, for
F = P(r)

R, (22)

M(I_Qm)-l_:o‘: —m Py + f

n R4

Adding (20) and (22) one obtains the well-known result

- —  GM?
P(R)=P= I 23
(R=P= =0 b (23)

b) The Mean Value of The Temperature

Let it be, in the first approximation

B =Py(r)[P(r)=1 and up(r) =const, 0 <r<R.
We get then, from (16)

f T (r) dm = % f Pryav (24)
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where C = umua [ b = const.
Using the result from (6) for s =1, v=1, ie.

my

MS
f(mlr) dm = 72— It
0

(25)

and relations (24) and (15), the result of partial integration (17) for F = T(r) is

GM?

Cm;cT,,=P,‘ Vk + Il:.l

(26)

Similarly, with the assumption that P/P, L V,/V (V = V(R)), equation (18)

with F = T(r) gives

GAM? 1o,
R
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where use was made of the result from (13) for 6 = 1, v = 1, that is

M
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By adding (26) and (27) one obtains the well-known result

_ GM
R)=T= I
T(R)=T 3CR 1,1

I11. The Estimate of P and T on the Boundary of the Two Regions
Relation (10) becomes, for 6 =2, v=4
3 - 3 - -
PRI M <5 ahg MCArA
and for e =v =1,
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Relation (13) becomes, for 6 =2, v=4

FU-gD < B < U= g g g (32)

and for 6 =v =1,
3 5/3 0 3 5/3Y 41/3 p—1
—57(1 ~ )§-Il,1 g\?'(l_qm )qm\ A (33)

By substituting in (20) the minimal value of I%, from (30), one obtains
a result some more rigorous than Theorem 5 (Chandrasekhar, 1939, page 70),
for r = ry(m = m,). Moreover, when putting P,<<P,, one obtains

P<P,— E’ﬁ.[ﬂ] S - (34)
20 (2 ‘
ie,. , . .
P, <P,—0.5369 x 10-%(qn/q%)? (Mo/R%)? (35)

Here M, = M/Mo, Ry = R/RQ, P, and P, are in units 10% dyn/cm2
Equation (22) with p,<<P;, and 1°1”""’ from' (32) yields

P,>0.5369 x 10—2(1—45/3) (My/R2,)? (36)
Equatlon (27) with Zo<T:> ¢z Ve < m;, and I° (’f"”) from (33) yields
- Ty, > 4,585 p (1—¢;) (My/Ry) : @GN

for T, in units 10°K and C = 1, 202743 X 10-8 p, or using (29) and (2)

f,

Tk > ™" (1—q5’3) (38)

IV.Pand T at the Boundary of the Convective Core for some Models of the Zero
Main-Sequence Stars

Consider the models of the zero main-sequence stars with convective core.
When equating the integration limit % for integrals /%, and I3, with the limit
of the convective core, relations (35), (36) and (37) allow an analytlc estimate for
P and T at the boundary of the core, when P, ¢,, and ¢r are known in function
of M and R. One obtains correlations for P, g,, and q, from the models of the
zero main-sequence stars (Angelov, 1973, 1974) in the form: :

LgP, =+ 0.357 — 0.843 LgM, (39)
‘34 35
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(P, in 10V dyn/cm?),

Lgq, = — 1.11588931 + 0.59698577 LgM, (40)
g, = + 0.0744 4+ 0.5151 ¢, ()]
, 32 59 A

Results (39), (40) and (41) hold only for interval 4 < M, < 16 and for chemical
composition (X = 0.650, Z = 0.040) with @ = 0.643. For instance, for g,(M,)
one can draw the conclusion that coefficients in (40) are mutually distinct for 4 <M,
< 16 (Angelov, 1974) and for M, > 16 (Kotok, 1966).

One can show that for these models B / 1, so that the estimate for P and T,
in the first approximation, can be performed making use of (35), (36) and (37).

Values for P7ex, Ppin gnd Toin
(Py in units 10'7 dyn/cm?, T, in units 10K)

M, | Ry | P3* |Ppincion| T | Pa(mod)| Ty (mod)

4 2.35 0.59 0.27 4.7 0.36 18.6
5 2.69 0.48 0.24 5.1 0.27 19.2
8 3.56 0.32 0.19 5.9 0.14 20.2
10 4.05 0.26 0.17 6.3 0.11 20.5
16 5.28 0.17 0.14 7.0 0.06 23.8

Values for F7%*, Ppin and T%" at the boundary of the convective core (from
(35), (36) and (37)), are given in the Table, together with exact values for P, and
T, directly from the models. M, and R, are the model parameters (Angelov, 1973),
with (X = 0.650, Z = 0.040), ¢ = 0.643.

Analysis of the Results and Conclusion

One can see from the Table:

a) 1.6 < PY*/P, (mod) < 2.4 (except for M, = 16, when that ratio is equal
to 3.1) and decreases with the decrease of mass. The difference between P, (mod)

and P7* is little because 2 / P, (mod)/P, (mod) / 4 (the boundary of the con-
vective core for models considered is r; < 0.3 1’2\)/

b) 3/ T,(mod)/T%" / 4 and decreases with the increase of mass. Fur-
thermore, Ty/ 7" > (1 — ¢3/%) (relation (38)), i.e. one has surely T}, > 0.7 T (for
models used ¢, < 0.4).

With given M and p. for a models and with a correlation M — R known with
a fair accuracy for main-sequence stars, with convective core, it is possible, in the
first approximation, tQ give an analytical estimate of the values of pressure and
temperature at the boundary of the core.
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