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AN ANALYTICAL ESTIMATE OF VALUES OF PRESSURE 
AND TEMPERATURE AT THE BOUNDARY OF A CONVECTIVE CORE 

T. Angelov 

Summary: We consider a model of star which is divided in two regions: the "internal" 
and the "external" one. The model is spherical1y symmetric, in hydrostatic equilibrium, with 
an equation of state for a perfect gas with 11. = const. The dimensionless integral la, y (Chandra­
sekhar, 1939) is considered in function of its upper limit, which determines the depth of the region. 
Analytical estimates are given for la' y, P and T, for the "internal" and "external" region and the 
values for P and T at their boundary. 

Particularly, for the models of the zero main-sequence stars, with 4~Mo~ 16, P and T 
are estimated at the boundary of the convective core. 

Introduction 

In the theory of Stellar Structure and Stellar Models, a dirnensionless in­
tegral (Chandrasekhar, 1939) is considered 

(1) 

in the whole interior of a star: from centre (r = 0, m = 0) to surface (r = R, m = 
= M). For dp(r)fdr ~ 0 an estimate is given for la, I), with given values of a and 
v, which is: 

(2a) 

(2b) 

3* 
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3 3 
2 ~ 11,4 ~ 2 (p. Ip)4/3 (ic) 

(see also Cox and Giuli, 1968 ).Under the assumption that the star is spherically 
symmetric, with a homogeneous chemical composition, in hydrostatic equilibrium 
and having an equation of state for·a perfect gas with (l = const, an estimate is 
further given for 7-'(12,4)' 1'(11,1) and P .(11,4)' 

When the star is considered as a set of concentric layers with given depth, 
the integral I cr , v can be defined, for every layer, with discretely variable limits. 

We consider, in this paper, a model of star which consists in two regions: 
an "internal" and an "external" one. In part I, I cr, v is defined and estimated for 
the two regions. In Il, mean values of pressure and temperature are found in 
those domains, in function of I cr, v for given a and v. Based upon the above, values 
for P and T are estimated in Ill, at the boundary of the two domains. Obtained 
values are applied (part IV) to some models of zero main-sequence stars, having 
a convective core and an envelope in radiative equilibrium. 

I. The Definition and Estimate of the Integral I cr, v for the Interior and the Exterior 

Consider a spherically-symmetric model of star with two regions: an interior 
and an exterior. Let us denote the boundary between the two domains by k and 
assign to every variable indices k, 0 and c, related to the interior with the boundary, 
to the exterior and to the centre of the model respectively. Let R and M be the 
radius and the mass of the model, rk and mk the radius and the mass of its interior. 

We define dimensionless quantities qr and qm by· relations 

rk = qr R, (3) 

As we have 

per) = mer) J (47t .,af3), (4) 

we obtain, using (3) and (4) 

(r/R)3 = (pk/p(r» (mJM) (q3r/qm) (5) 

where m ~ mer). 
Consider, in analogy with Icr, v from (1), the dimensionless integral for the 

interior 

(6) 

or, by (5) 

(7) 
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For 
dp(r)/dr ~ O. 0 ~ r ~ R. (8) 

we have 

(9) 

and for the integral (7) one obtain 

3 qCa+l)r.v~Ik ~ __ 3 __ q(a+l)q;v(-:f!:.)V/3 (10) 
3(0"+ I)-v m r a,v 3 (0"+ 1)-'1 m r Ph 

Let us consider now, the dimensionless integral for the exterior 

(11) 

We have from (8) 

(12) 

and with (5) and (12) one obtains for integral (11) 

3 [ 1 _ qCa+ 1)-'1/3 ]&.10 & __ 3 __ [ 1 _ qC"a+ 1)-'1/3 ]qv/3 q-V (13) 
3 (0" + 1) - v m -..:: 0", V "'" 3 (a + 1) _ v m m r 

For 
v < 3 (a + 1) (14) 

the left and right hand sides in (10) and Cl 3) are positive. 

n. P and T for the Interior and the Exterior 

The model is in hydrostatic equilibrium (the mass conservation law holds) 
so that 

dP(r) = - (Gm /41t" r4) dm. (15) 

with an equation of state 

(16) 

The mean value of the structure function P, for the internal region is 

(17) 
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and for the external one it is 

M 

Po = __ 1 __ {F dm 
M-mic 

a) The Mean Value of The Pressure 

( 18) 

Let us perform partial integration of (17), with F = per), using condition 
(15). The integral I~,v from (6) gives, for 0' = 2, v = 4, 

mk 

-dm=-l f m2 M3 
r4 R4 2,4 

(19) 

o 

so that (17) becomes finally 

(20) 

Making use of the result for 0' = 2, v = 4 from (11), i.e. 

M 

-dm = -12°4 f
m2 Ma 

r 4 R4' 
(21) 

and the hypothesis that P = peR) ~ Pk , relation (18) becomes similarly, for 
F =P(r) 

Adding - (20) and (22) one obtains the well-known result 

_ ) _ GM2 
peR ==P=--Iu 

41' R4 ' 

b) The Mean Value of The Temperature 

Let it be, in the first approximation 

~(r) = Pg(r)! per) = 1 anc!. !L(r) = const, o~. r ~ R._ 

We get then, from (16) 

f T(r)dm = ~f P(r)dV 
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(22) 

(23) 

(24) 



where C = !U1'H I k = const. 

Using the result from (6) for a = 1, v = 1, i.e. 

f
m

" MS 
(mlr) dm = R Itl (25) 

o 

and relations (24) and (15), the result of partial integration (17) for F = T(r) is 

(26) 

Similarly, with the assumption that PIP" < V"IV (V = V(R)), equation (18) 
with F = T(r) gives 

where use was made of the result from (13) for a = 1, v = I, that is 

M 

f 
MI 

(mlr) dm = 7f If.1 

By adding (26) and (27) one obtains the well-known result 

- /To GM 
T(R)= J. = -- III 

3CR . 

Ill. The Estimate of P and T on the Boundary of the Two &gUms 

Relation (10) becomes, for a = 2, v = 4 

and for a = v = 1, 

~ q2 n-I & lie 1& 2- q2 n-I (p I-p )1/8 5 m 'Jr -..:: 1. -..::: 5 m 'J r ." 

(27) 

(28) 

(29) 

(30) 

(31) 
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Relation (13) becomes, for cr = 2, v = 4 

-~ (1- q5/3) :;:::: 10 :;:::: ~ (1- q5/3) t.J3 q-4 
5 m "" 2,4 "" 5 m m , 

(32) 

and for cr = v = I, 

~ (I - q5/3) :;:::: 10 :::;::: ~,( 1 _ q5/3) ql(3 n-I 
5 m~' 1,\ "-"', 5 m m 'I, . ..: ':::~., 

(33) 

By substituting in (20) the minimal valu~ . of.I~,4 from (30), one obtains 
a result some more rigorous' than Theorem 5 '(Chandrasekhar, 1939, page 70), 
for r = rk (m = mJ. Moreover, when putting Pk<Pe, one obtains 

, . 

Pk<P - __ mk - 30( )2 
e 20re r~ 

i.e, 

Here Mo = M/Mo, Ro = R/RO, Pc and Pk are in units 1011 dyn/cm2• 

Equation (22) with PO<Pk , and l~Jmin) from' (32) yields' '0' 

Equation (27) with 1'0< Tk, Pk Vk < mk and Ifjmin) from (33) yields 

T", > 4~585 (J. (l-q~3) (Mp/Ro) 

for Tk in units 106K and C = 1,~02743 X 10-8 (J., or using (29) and (2) 

r,' 

T;"> T"i
1O (1-q~3) 

(34) 

(35) 

(36) 

(37) 

(38) 

IV. P and T at the Boundary of the' Convective Core for some Models of the Zero 
Main-Sequence Stars 

Consider the models of the zero main-sequence stars with convective core. 
When equating the integration limit k for integrals I~,v .and I~,v with the limit 
of the convective core, relations" (35), (36) and (37) allow an analytic estimate for 
P and T at the boundary of the core, when Pc, qm and q'r are known in function 
of M and R. One obtains correlations for Pc, qm and qr from the models of the 
zero main-sequence stars (Angelov, 1973, 1974) in the form: 

LgPc " ,+ 0.3~7 - 0.843 LgMp 
" , "34 35' 

(39) 
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(Pc in 1017 dyn/cm~), 

Lgq1li = -1.11588931 + 0.59698577 LgMo 

qr = + 0.0744 + 0.5151 qm 
32 59 

(40) 

(41) 

Results (39), (40) and (41) hold only for interval 4 ~ Mo ~ 16 and for chemical 
composition (X = 0.650, Z = 0.040) with !L = 0.643. For instance, for qm(Mo) 
one can draw the conclusion that coefficients in (40) are mutually distinct for 4 ~Mo 
~ 16 (Angelov, 1974) and for Mo > 16 (Kotok, 1966). 

One can show that for these models ~ L 1, so that the estimate for P and T, 
in the first approximation, can be performcl making use of (35), (36) and (37). 

Values for P~, p,!:in and T'kin 

(P,. in units 1011 dyn/cm2, T,. in units 106K) 

Mo Ro I Pk'x I Pk'in (10") I T min ,. I p,.(mod) I T,.(mod) 

4 2.35 0.59 0.27 4.7 0.36 18.6 
5 2.69 0.48 0.24 5.1 0.27 19.2 
8 3.56 0.32 0.19 5.9 0.14 20.2 

10 4.05 0.26 0.17 6.3 0.11 20.5 
16 5.28 0.17 0.14 7.0 0.06 2').8 

Values for F7:=, p,!:in and T~in at the boundary of the convective core (from 
(35), (36) and (37)), are given in the Table, together with exact values for P,. and 
T,. directly from the models. Mo and ~ are the model parameters (Angelov, 1973), 
with (X = 0.650, Z -: 0.040), !L = 0.643. 

Analysis of the Results and Conclusion 

One can see from the Table: 

a) 1.6 ~ ptax/p,. (mod) ~ 2.4 (except for Mo = 16, when that ratio is equal 
to 3.1) and decreases with the decrease of mass. The difference between Pc (mod) 

and P"j"x is little because 2 L Pc (mod)/P,. (mod) L 4 (the boundary of the con­
vective core for models co'iiSidered is r,. < 0.3 R5. 

b) 3L T,.(mod)/T'kin L 4 and decreases with the increase of mass. FUr­
thermore, T,./T"'in > (1 - qfJ3) (relation (38)), i.e. one has surely T,. > 0.7 1.".in (for 
models used qm ~ 0.4). 

With given M and !L for a models and with a correlation M - R known with 
a fair accuracy for main-sequence stars, with convective core, it is possible, in the 
first approximation, ~o give an analytical estimate of the values of pressure and 
temperature at the bQundary of the core. 
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