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NUMERICAL DETERMINATION OF APPROXIMATE
TRUE ANOMALIES IN THE PROXIMITY OF QUASICOMPLANAR
ORBITS OF CELESTIAL BODIES

J. Lazovié

A purely numerical method of determination of approximate values of true
anomalies for two celestial bodies in the proximity of their osculating quasicom-
planar elliptic orbits is given. It consists in the solution of only one corresponding
quadratic equation. This method is particularly suited and efficient for serial work
when determining the least distances of orbits of quasicomplanar asteroids, when
these distances are small. This method is illustrated by an already examined pair
of asteroids, which has allowed the comparison with previously obtained results
and made possible to point out the advantage and the simplicity of this new met-
hod, which represents a further step when computing the proximities.

The determination of the proximity of osculating elliptic orbits of two ce-
lestial bodies poses the problem of determining the positions of those bodies,
when the mutual distance of their orbits is minimal. When these positions are
known, the minimal distance can be determined by a simple calculus.

True anomalies v, and v, of the positions of proximity for two celestial bodies
moving in osculating elliptic orbits can be obtained as the solutions of exact and
general transcendent equations of the form

floy v) =0, g(vy, ) =0. . RN ¢)

We solve these equations numerically, and after k successive approximations with
necessary accuracy, we obtain the solutions in the form

Uy = V- T AVige1s Vmk = Vg T+ Alyge-ns 2
k=1,2,..).

Corresponding expressions for f, g and Av,(,,_,), i = 1, 2, are given in the previous

papers (1, 2). Meanwhile, the problem consists in the knowledge of the approx1—

mate — initial values of true anomalies v;, and vy, of the proximity. For quasicom-
planar orbits of two bodies moving in almost the same plane, or having a small
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mutual inclination of their orbits, a graphical (1) and a numerical-graphical way
(2) of determining the needed initial true anomalies are given. We shall present a
purely numerical method of determining thosé approximate true anomalies.

In the proximity of quasicomplanar elliptic orbits of two celestial bodies,
when their distance is small, their longitudes and radii vectors are approximately
equal A ~ A, 1, &~ ry,, and when we take equalities instead of approximations,
as for the intersection of orbits, we have, as in (2),

T+ U= T+ v, (3)
where m, = (3, + o, (=1, 2), and

b1 S

- 3
1+e,cosvy 1+ e, cOs v,

4)
where index 1 is related to the first and 2 to the second orbit for considered bodies
We get from (3) the important relation

'v2 = '01 - T, (5)

which we shall use further when computing the wanted approximate values of
true anomalies. The quantity = represents

=Ty — . (6)
When eliminating from (4) v, using (5), we get
g,Cos8 v, + rsinoy, = p, 0]
where the functions of orbital elements are
p=0ps— p15 ®)
i = P COST — e, Py, & = &pySinm.

Equation (7) is the same as in (2), where it was solved graphically. Now we shall
solve it numerically. Using

Cos vy, = Vl - sin? o, (10)
we eliminate cos o, from (7) and obtain a quadratic equation in sin v,
(g2 + t)sin?v; — 2p sine; + (P2 — ¢}) =0, an

‘having the solutions:

. hiql/@+i—p
(Sln 7)1)1,2= P L ;? j—ltﬁ ! 3 (12)

84



by condition ¢} + t} — p? > 0, wherefrom we can obtain, for the first orbit,
the following four (or two, for q% + 13 — p® = 0) possible values for the required
approximate value oy, : (v10);; (V10)2> (V10)ss {(V10)s» because we do not know yet to
which quadrant belongs the possible angle. With these values for v,, we can obtain
then, from (5), the four (or two) corresponding values for vy, for the second orbit.
The multivalued character of the possible solutions is eliminated by a simple
comparison of values of true anomalies here obtained with exact values of true
anomalies for the relative nodes of the orbits (the points in which projections of
the orbits on the apparent celestial sphere intersect) of the considered pair of ce-
lestial bodies, for it is natural that the proximity of the orbits be near one of their
relative nodes (ascending or descending). By means of the least differences of
these anomalies we determine which true anomalies, among all possible, ought
to be choosen as the required approximate ones, with which we operate further
in successive approximations (2).

The second form of the equation, which is somewhat shorter than (11),
can be obtained by substitutions

?
X1= —, M= > (13)
which are functions of orbital elements. Then (7) becomes

Yy =xcospy +sinvy, (14)

as in (2). Hence, eliminating ccs v, by means of (10), we obtain second form of the
corresponding quadratic equation in sin v,

(1 + x})sin?v; ~ 2y;sino, +(y2 - x}) =0, . (15)
having the solutions
. ntx/1+22-y2
(sinvy)y, 3= 2 ]]+x§ 1, | (16)

by condition 1 + x, — 33 > 0.

Thus we obtain the required approximate values of the true anomalies v,,
and oy, of the proximity of quasicomplanar orbits of celestial bodies by solving
one quadratic equation (1 1) or (15), i. e. we find solutions by means of (12) or (16)
and (5). The calculation is not difficult, and we have avoided the use of a diagram,
which could be less precise.

Now we shall illustrate previously exposed numerical procedure by ele-
ments already used for the quasicomplanar pair of asteroids 1 = 589 Croatia
and 2 = 1564 Srbija, in order to compare the results of this calculation with those
previously obtained in (1) and (2). So for the considered pair we have from (1)

= 0.0398179, p, = 3.1295420, ea = 0. 2115994, IJ, = 3 0082028
and by nidms of (6) and (8)

w = 12°686, p= — 0.1213392, .
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so that expressions (9) and (13) yield the values
g, = 0.5262632, 1, = 0.1454263; x, = 3.6187622, y = — 0.8343690.

Then for the solutions (12) of the corresponding quadratic equation (11) we get
the values

(sin v,); = 0.8805767, (sinv,), = — 0.9989651; (17

and for the solutions (16) of the other form of the corresponding equation (15)
which can serve as a control of the calculation, we obtain values among which the
first differs only by 1 in the seventh decimal from the value in (17), i.e. our cal-
culation is correct. Further, we obtain from (17) as possible values for the needed
approximate true anomaly of the proximity for the first orbit:

(18)
(D4)s = 180° - 872393 = 2672393, (pyq), = 360° — 875393 = 272°607.

Thereafter, using (5), we obtain corresponding possible values for the approximate
true anomaly of the proximity for the second orbit:

’ (vgo)l = 49?026, (‘vm)a = 105?602, ('020)3 = 254?707, (‘020)4 = 259?921. (19)

The values of the true anomalies of the relative nodes of the orbits of choosen
asteroids (3) are:

v, = 2962047, v, = 2832352, o, = 116°047, v, = 1037352, (20)

where the first pair of values corresponds to the ascending relative node of the
first orbit -relatively to the second, and the second pair corresponds to the descen-
ding relative node. The difference between values of true anomalies for the two
nodes on the same orbit is 180°. Now with values (18) for the first orbit, (19) for
the second orbit and those from (20) for relative nodes we form differences, so
that for the required approximate values of true anomalies we take those for which
these differences are the least. This is the criterion for the determination of the
pair of possible values (18) and (19) which ought to be taken for the further cal-
culation of proximity.

As we obtain, in the case considered, for the least differences
Avy = (vy), — ¥} = 22241, Avf = (vye)y — v = 2°250, @1

we conclude. that values (1), (Vao)ys (P10)3s (Ban)ss (V10)a> (V20)a are left out, because
the differences between them and (20) for relative nodes are greater than (21),
so that here the proximity is near the descending relative node (at a distance of
approxnnately 2° from it), as we have found already in our previous considera-
tions for the considered pair of asteroids.

86



We have thus for the required approximate values of true anomalies of pro-
ximity
Vo = ('l)m), = 118?288, LUy = (vm)’ = 105?602. (22)

Let us remark that the same result is obtained when eliminating sin v, from
equation (7) or (14), and solving corresponding quadratic.equations in cos v,..

We already know (1), (2) and (3), that exact. values of true anomalies for
the proximity of the considered pair of asteroidal orbits are

v, = 11872977, v, = 10576025, (23)
so that the differences between these values and the approximate values are:

by the new method v, — v, = 0°010, vy — vy = 07001,
i.e 0°0097, 020005,
by the method (2) 9, — vy = 07098, Uy — Ty = 00003,

by the method (1) v, — U= — 07302, v, — vy, = 0°203.
The sums of the squares of th&se dlﬁ'ercnces are:

here 0.000 (i. €. 0.0001), from (2) 0.010, from (1) 0.132.

So here exposed purely numerical procedure of finding the approximate true
anomalies in proximity of quasicomplanar orbits gives considerably lesser devi-
ations. In the considered example we have obtained by this new method, the pre-
cision of one hundredth of a degree, while the previous methods gave the pre-
cision of 0°1 and 0?3. This new method has also the advantage in that drawing
and graphical determining is not necessary, so that it is particularly suitable for
serial work. It gives more approximate solutions than previous ones (1, 2), and
for the considered pair we see that the sum of squares of deviations is 100 times
less than for method (2).

Let us examin now how approximate values (22) of true anomalies for the
proximity of the considered pair of asteroids satisfy exact equations (1), and which
values are obtained in further numerical corrections (2), from formulae (1) and
(2). We find so

Fo(010> Uag) = — 0.0004638, go(10, Ugo) = 0.0004478;
Avyy = 0°0097, Avyy = 0°0006;
vy = 118°2977, vy = 105°6026.

When comparing these values v,; and v,, with exact ones (23), already known,
we see that only the second, vy, differs form v, by 1 in the fourth decimal.

Thus we conclude that here exposed method of determmmg of approximate
true anomalies gives valyes which satisfy bet;er gxact equations (1), for which
obtained values are about 10 times less than those obtained by the method from
(2), and the first numerical corrections Av,, are about 10 and 5 times less than
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those from (2). We see that it was sufficient now, for the pair considered, to deter-
mine the first numerical corrections only. So we have come, in our case, to the
definitive — exact solutions by one numerical approximation only, while the pre-
vious method (2) needed the determination of two numerical approximation,
by means of two pairs of numerical corrections Aw, and Av,y, ¢ = 1, 2. It is why
this new method is not only simpler, but also more efficient, being shorter and
leading faster to solutions required. '

*

This work is a part of the research project suppbn:ed by the Fund for Scien-
tific Research of the S. R. of Serbia.
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