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SummCl'll: A numerical analysis oC the viscous dissipation influence on the thermal 
instability oC a medium with thermal conduction and heating&i:cooling Cunction without any 
gravitation and magnetic field is presented. For the condensation and wave modes the effects 
of viscosity on the dependence k(w) and scale of maximum instability are distinguished. It 
is Cound that these effects are significantly larger for the wave mode. 

T. Angelov: UTICAJ VISKOZNOSTI NA TOPLOTNU NESTABILNOST - Daje se 
numericka analiza uticaja viskozne disipacije na toplotnu nestabilnost sredine sa· toplotnim 
provodjenjem i Cunkcijom zagrevanja i h1adjenja, bez gravitacione sile i magnetnog poIja. Za 
~ondenzacione i talasne mode, izdvajaju se eCekti viskoznosti na zavisnost k( w) i na sblu 
maksimuma nestabilnosti. Pokazuje se da su ovi eCekti znatno vea za talasnu modu. 

1. INTRODUCTION 

In a.n earlier paper (Ange1ov, 1988) the thermal instability of a viscous 
medium without any gravitation and magnetic field was considered. For small 
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perturbations of the type exp(wt + ik· r') .and for V x V = 0 (a. weak viscosity 
influence on the length A) the following characteristic equation was obtained 

(1) 

where 
Z - ~ A __ (kT + !. + !.) 

- kc' - k k" kv· (2) 

For purely real solutions of (1) - the condensation instability mode (i = I), 

B1 = 1 + - - + - ,D1 = - A + - + :J. k (k kT) 1 ( k k) 
kv k" k 'Y kv k 

(3a) 

and for Re(z) of its conjugate-complex solutions - the wave instability mode 
(i = 2), 

(3b) 

In (2), (3a), (3b) the wavenumbers are introduced 

kT = K£T, kll = K~£II' k" = !~, kv = UC4 
111 + 3fJ2 

(4) 

with [( = {-y -1)1'/ Rc, where R, 1', (1, T are the gas constant, the mean molecular 
weight, the density and the temperature, respectively, 'Y = c,/cv , c = ('YP/ (1)1/2 

- the adiabatic speed of sound, " and 111,112 - thermal conduction coefficient 
and both viscosity coefficients; £11' £T are the partial derivatives of the function 
£«(1. T) in (1 and T. The latter function is defined as energy losses minus energy 
gains, per gram of material per second. All quantities from (4) are calculated 
in the basic state of the medium which is homogeneous, being in mechanical 
and thermal equilibrium. 

For k E Re the medium is unstable in the domain D, > 0, whereas the 
perturbations with k > kc,; are stabilized by the dissipation processes. If kll 
and kT are small, 

(5) 

for the condensation and wave modes, respectively. 
In this paper a more detailed analysis of the viscous dissipation influence 

on the dependence k(w) within an unstable region (Sect. 2), as well as on the 
maximum instability (Sect. 3), is presented. 
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2. CHARACTER OF PERTURBATION STABILIZATION 

Let the dependence k(w) in a given medium be considered. By introducing 
dimensionless quantities 

U = (k/k,)2, a = kT/k" {3" = k,/k", (3" = k,/k", 

the characteristic equation (1) is transformed into the form 

aiu3 + 6iu
2 + CiU + ~ = o. 

The coefficients in (1) are 

al =0, 61 = {3'1./1, 
cl =({3" + {3" )z2 + (1 + a{3,,)z + (a - 1)/1, 
dl =z2(z+a) 

for the condensa.tion mode (i = 1), where z = wick, and 

a2 =({3" + {3" )(3"{3,,, 
2 1-1 ha =2[({3" + (3,,) + {3"{3,, le + -{3" + [1 + a(2{3" + {3" )]{3", 

1 

C2 =S({3" + {3" )e2 + 2[1 + a(2{3" + 3{3" )]e + a 2 {3" + 1 + (1 - 1 )a , 
. 1 

(6) 

(7) 

(Sa), 

d2 =2e(2e + a)2, (86) 

for the wave mode (i = 2), where e = Re(w/ck,). Note that quadratic part of 
(1) for a non-viscous medium ({3" = 0) was analysed by Field (1965). 

For a dissipationless medium ({3" = (3" = 0) the solution of (1) is U = -~/Ci 
and 0 5 k 5 00 for 

1 - a . (1 - 1)a - 1 ( 1 ) 
05 z 5 -1-(a < 1), t.e. 05 e 5 21 a < - 1 -1 ' (9) 

for i = I, i = 2, respectively. In a dissipative medium ({3", (3" #= 0) the unstable 
wavenumbers domain is 0 5 k 5 kC.i where 

(
1-a) l { kC•1 = k'"T ' kC•2 = k, 

1 }t a+--
1- 1 (10) 
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Fig. 1 - Visk08ity influence on ul18table domain of condensation mode 
(i = 5/3, Q = 1/2): P" = 0, 1 for each PlC = 0.01,0.1,1. 

The expressions yielding kC.i are obtained from (7) for z = 0, i.e. e = 0 or 
directly from (5) with the aid of (6). The value k :f: 0 for the marginal instabil
ity of the wave mode is equal to kC •2 from (10) only in the linear approximation 

-'- of the real root u1/ 2 of the equation 

when PlC and P" are small quantities. The roots u1/ 2(z) and u1/ 2{e) of equ. (7), 
which is quadratic in u for the condensation mode and cubic in u for the wave 
mode, are presented in Figs. 1-2 for given i,Q,PIC and p". 
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Fig. 2 - Visc08ty influence on ul18table wave-mode domain 
(i = 5/3, Q = -2): P" = 0,0.01 for each PlC = 0.01,0.1,1. 
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3. SCALE OF THE MAXIMUM INSTABILITY 

It is seen from Figs. 1-2 that a maximum of instability is present for 
Z = Zm, i.e. e = em. These values, for !3te,!3" # 0, are obtained from the 
condition that equ. (7) has one double root. For the condensation mode, Zm 

and Um,l = u(zm) are determined from 

C~ - 46l d1 = 0 

261 Urn,1 + Cl = 0. 

For the wave mode em and Um ,2 = u(em) are solutions of the system. 

(11) 

(p and q are coefficients of the normal form of the cubic (7», i.e. they are 
obtainable from 

62u;',2 + 2c2Urn,2 + 3d2 = 0 

3a2u;',2 + 262 Urn ,2 + C2 = O. (12) 

By solving (11), i.e. (12), with coefficients dependent of Zm, i.e. em, one 
obtains the equations 

n 

Pi(Ym) == L:L:EiJI:('Y,a,!3).B!Y~ = 0, (13) 
1:=0 ; 

n 

- '"''"' . I: Qi(Urn) = £...J £...J FiJI:(')', a, !3}fPteum,i = 0, (14) 
1:=0 ; 

for unkown quantities Ym and Urn,i, where (i,n,Ym) is (l,4,zm) for the conden
sation mode, i.e. (2,6, em) for the wave mode. - The coefficients in (13) and 
(14) depend on the medium parameters b,a,!3te and !3 = !3,,/!3te} only, but it 
is unnecessary to give their expressions here (some of them vanish, but some 
of them are very clumsy). In any case the form of the coefficients (as polyno
mials in !3te) makes possible examinations of the solution bf'haviour within the 
domain of small!3te (large Um,i)' which is the most frequent case in praxis. Let 
the approximati ve dependence in this domain be 

a-I' . 1 2 Um,i = gifJte " ,= , (15) 
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Fig. 3a - Normalized IJJ values at maximum instability for the 
condensaton inode (1 = 5/3 ,a = 1/2), from (13), for /3 = 0, 10, 100. 

Aaymtotic 2:m value from (9). 
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Fig. 3b - Normalized k values at maximum instability for the 
condensation mode (1 = 5/3, Cl = 1/2), from (14), for /3 = 0, 10, 100. 

Asymtotic dependence from (19). 

where 9i and 1; are real, positive, constants (for /3" <:1, Ym strives to the 
limiting values 2:"., i.e. em from (9) for short wavelengths). The general term 
in (14) is then Fi,ikgt/3!i, with 8i = j -Hi, and the dominant terms of the 
polynomial Qi({3"),/3,, < 1, are those with 8i = 8i,min' For 8i = 0, the dominant 
part of (14) is 

(16) 
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_ (1-a)2(1- 1 )a-1 
F200 - - -- , 

, 1 1 

1 
Fl12 = -j , 1 

1- 1 
F212 = --+/3 , 1 

for the condensation mode and wave mode, respectively, and 

li=j/k=~, i=1,2 

(17a) 

(17b) 

(18) 

for both of them. From the solution of (15) with the aid of (18) one obtains 

(19) 

where Gi = g;/2. From (16) and (17a), (17b), 

G1b.,a) = (1 ~ a) 1/2 {I + (-y -l)aP/4, (20a) 

(
l_a)l/'J{ (1-r)a-1 }1/4 

G2(r,a,/3)= -1- 1(r~1+/3) . 
(20b) 

The effect of viscosity on normalized wand k is presented in Figs. 3a,b 
and in 4a,b for the condensation and wave mode, respectively. It is seen that 
at the maximum instability both wand k decrease when the total dissipation 
increases (in accordance with the way of reduction of unstable domains in 
Figs. 1-2). Depending on /3" (/3 is a free parameter), both Wm,i and km,i 
are variable within the domain /3" < /3",h where /3",i is determined by the 
condition km,i = 0 i.e. Ej FiJo/3!,i = 0 from (14). For the condensation mode, 
/3",1 = [1 + (j - l)al/ra2 > 1 (for r = 5/3, a = 1/2, /3",1 = 3.2) i.e., /3" = 1 
is the real limitation for the thermal conductivity inftuence. An analogous 
consideration for the wave mode yields 

(1- j)a - 1 
/3",2 = ja2/3 (21) 

(for 1 = 5/3, a = -2: /3",2 = 0.05/(3). 
By using (10) and (20a), (20b), km,i from (19) is 

1- a 1- a 1/2 

{ 
2 } 1/4 

km ,l = (-r-) + a-
1

- (k"kc,t> , (22a) 

33 



T. Angelov: Influence of viscosity on the thermal instability 

km,2 = ( 1 ~ et) 1/2 (k,kc,2)1/2. (226) 

For 13 <: 1, G; and km,; for the wave mode can be written as 

G2 = Gi/(f3), km,2 = k;",2/(f3)i 1(13) ~ 1- ~ . 7 ~ 113, (23) 

where G; is G2 from (20b) for 13 = 0 and k:a,2 is km,2 from (22b) with kc,2 

from (10), for 13 = o. In any case for the purpose of approximative calculating 
it remains km,i ~ (k,kc,i)1/2, for both instability modes (Field, 1965) - the 
correction applied to kc,2 with respect to a non-viscous medium, is small. 
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Fig. 4a - Normalized w values at maximum instability for the wave mode 
(7 = 5/3, et = -2), from (13), for f3 = 0,1,10. 
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Fig. 4b - Normalized k values at maximum instability for the wave mode 
(r = 5/3, Cl = -2), trom (14), for {3 = 0, 1, 10. 

Asymtotic dependences from (19). 

4. CONCLUSION 

The subject of the present paper is a small viscous dissipation influence 
on the thermal instability of a medium. In such a model a redistribution of 
perturbations due to viscosity takes place, but the marginal instability of the 
condensation mode is unaffected (the limiting wavelength is determined by 
thermal conduction effect only). The influence of the viscous dissipation on 
the wave mode is stronger - it reduces the marginal instability domain and 
stabilizes the perturbations completely already at {3" = [(1 - r)Cl - 1]/rCl2 (in 
the numerical example treated here: r = 5/3, Cl = -2, the wave instability 
mode exists solely for (3" < 0.05). In the case of small t!~ermal conductivity 
influences ({3" < 0.01) the maximum-instability scale of the condensation mode 
is practically unaffected for {3" ::; {3", but becomes significantly reduced for 
the wave mode (up to 50% compared to a non-viscous medium). The relative 

35 



T. AngelOtl: Influence of viscosity on the thermal instability 

deviation of the asymtotic solution for km from the exact one within the domain 
PlC < O.Ol,p" !5 PlC' is less than 10% for the condensation mode and less than 
30% in the wave-mode case. 

* 
* * 

This work is part of the research project supported by the Fund for 
Scientific Research of the S.R. Serbia. 
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